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Abstract

In this paper, we study the multiscale Boltzmann equation with multi-dimensional
random parameters by a bi-fidelity stochastic collocation (SC) method developed in
B3l [72] [73]. By choosing the compressible Euler system as the low-fidelity model,
we adapt the bi-fidelity SC method to combine computational efficiency of the low-
fidelity model with high accuracy of the high-fidelity (Boltzmann) model. With only
a small number of high-fidelity asymptotic-preserving solver runs for the Boltzmann
equation, the bi-fidelity approximation can capture well the macroscopic quantities
of the solution to the Boltzmann equation in the random space. A priori estimate on
the accuracy between the high- and bi-fidelity solutions together with a convergence
analysis is established. Finally, we present extensive numerical experiments to verify
the efficiency and accuracy of our proposed method.

Keywords. Boltzmann equation, uncertainty, bi-fidelity models, multiple scales,

stochastic collocation

1 Introduction

Kinetic equations are widely used in classical fields such as rarefied gas, plasma
physics, astrophysics, also in emerging areas such as semiconductor device modeling,
social and biological sciences. They model the non-equilibrium dynamics of a large
number of particles from a statistical point of view [I3]. The Boltzmann equation, as
one of the most fundamental kinetic equations [I1], is an integro-differential equation
describing the time evolution of probability density distribution of particles in rarefied
gas.
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There have been extensive studies on the Boltzmann and related kinetic models,
both in theory and numerical computation [67, 21]. One of the main computa-
tional challenges is that the kinetic problems often encounter multiple temporal and
spatial scales, characterized by the Knudsen number, the dimensionless mean free
path, that may vary in orders of magnitude in the computational domain, covering
the regimes from fluid, transition to rarefied. Asymptotic-preserving (AP) schemes,
which preserve the asymptotic transition from one scale to another at the discrete
level, have been shown to be an effective computational paradigm in the past two
decades [38,[39]. They allow efficient numerical approximations in all regimes—coarse
mesh and large time steps can be used even in the fluid dynamic regime, without
numerically resolving the small Knudsen number. For the space inhomogeneous
Boltzmann equation, AP schemes were first designed using BGK-operator penalty
based method [26]. Other approaches include the exponential integrator based meth-
ods [20] or micro-macro decomposition [44] 28]. Despite the successful development
of AP solvers in recent years, the complexity and memory cost for computing the
collision term still remains challenging [568] 52| 29] 27].

Another challenge, which has been ignored in the community until recently, is
the issue of uncertainties in kinetic models. Kinetic equations, derived from N-body
Newton’s equations via the mean-field limit [8], typically contain an integral operator
modeling interactions between particles. Calculating the collision kernel from first
principles is extremely complicated and not possible for complex particle systems,
thus only empirical formulas are used for general particles [12], which means that the
collision kernel contains many uncertainties. Other sources of uncertainties may also
come from inaccurate measurements of the initial or boundary data, forcing or source
terms. See for example [41] 23] [34] (0} [17, 48], [49] for recent efforts on uncertainty
quantification for kinetic equations, in particular [64] [35], where numerical schemes
for the Boltzmann equation with multi-dimensional random inputs have been studied.

One widely used method in uncertainty quantification is stochastic collocation
(SC) method, especially in conjunction with the gPC expansion and high-performance
grids such as sparse grids. There have been many works developed, for example
[1, Bl B4, 56, BT [68),[6]. One of the challenges central to collocation approaches is the
simulation cost. For many complex systems, in particular, the multiscale Boltzmann
equation with multi-dimensional random inputs we are studying, an accurate high-
fidelity deterministic simulation can be so time-consuming and memory demanding
that only a few high-fidelity simulations can be afforded. As many stochastic al-
gorithms such as SC require repetitive implementations of the deterministic solver,
the overall accurate stochastic simulation can be difficult and even computationally
infeasible.

Fortunately, there usually exist some approximate, less complex low-fidelity mod-
els for practical problems. Compared to the high-fidelity models, these low-fidelity
models usually contain simplified physics and/or are simulated on a coarser phys-
ical mesh, and consequently, own a cheaper computational cost. Although their
accuracy may not be high, the low-fidelity models are designed in such a way that

they can resolve or capture certain important features of the underlying problem



and produce reliable and qualitative predictions. Despite numerous multi-fidelity
algorithms have been developed in different communities from different perspectives
[30, 14 [71], [42], [66), ©11, 60}, BIL (5] 25] 53] [72], [73], there have not been many attempts
for kinetic equations with uncertainty in the multi-fidelity setting, except for the
recent work [22]. In [22], the authors take the steady state or approximated time-
dependent solution with the asymptotic behavior close to the fluid limit as control
variate models to accelerate the convergence of standard Monte Carlo methods.

Despite numerous multi-fidelity algorithms have been developed for different ap-
plications [63 [62] [70], [69 57, [45], the goal of our work is to adapt the bi-fidelity
method developed in [53] [72] [73] to efficiently approximate the high-fidelity solutions
of the Boltzmann equation with multi-dimensional random parameters and multi-
ple scales. In rarefied gas dynamics, fluid models are derived when the mean free
path of a particle is very small compared to the typical macroscopic length. One
can perform a Hilbert or Chapman-Enskog expansion ([11]) of the solution to the
Boltzmann equation in powers of the Knudsen number . At the leading order in ¢,
the distribution function approaches a local equilibrium — a Maxwellian whose pa-
rameters are the fluid variables (density, mean velocity and temperature) governed
by the compressible Euler equations. When ¢ is small, the Euler equations provide
us a good accuracy in the physical space and numerical efficiency. Motivated by the
above observation, we take advantage of this multiscale nature of the kinetic problem
and choose the low-fidelity model based on the Fuler equations in this work. More
specifically, we connect an e-dependent microscopic model (Boltzmann equation)
and its macroscopic model (Euler equations) through the corresponding macroscopic
quantities of the Boltzmann equation. Our numerical experiments demonstrate that
the bi-fidelity solutions can approximate the high-fidelity solutions well at a much
reduced computational cost.

This paper is outlined as follows: In Section [2, we give an introduction of the
Boltzmann equation and its macroscopic equations. Section [3| reviews the frame-
work of SC method with multifidelity models and discusses how it is adapted to
our problem under study. Section [] establishes the convergence of the bi-fidelity
approximation to the high-fidelity solution under suitable assumptions. In section 5]
we provide extensive numerical experiments to illustrate the effectiveness and effi-
ciency of our proposed method, where kinetic, fluid and mixed regimes are carefully

examined. We conclude the paper in Section [6]

2 Introduction of the Boltzmann equation

2.1 The Boltzmann equation with uncertainty

We first give an introduction to the classical (deterministic) Boltzmann equation,
known as one of the most celebrated kinetic equations for rarefied gas. A dimension-
less form reads

O +v-Vef = 10U ), (rv) €QXRY, (2.1)



where f(t,z,v) is the probability density distribution function, modeling the proba-
bility of finding a particle at time ¢ > 0, at position z in a bounded domain  C R%
with velocity v € R%, where d, and d,, are the dimensions of the 2 and v variables.
Periodic boundary condition is considered. The parameter ¢ is the Knudsen number
defined as the ratio of the mean free path over a typical length scale such as the
size of the spatial domain. The collision operator Q is a quadratic integral operator

modeling the binary elastic collision between particles, and is given by

Q@) = [ [ Bllu—vl.cost) (F)Fw) = F0)f(0) dodon. (22)

(v,v,) and (v',v}) are the velocity pairs before and after the collision, during which
the momentum and energy are conserved; thus (v, v,) can be expressed in terms of

(v, vy) as follows:

;v v =
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ool +o. v — vy (2.3)
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with the vector o the scattering direction varying on the unit sphere S®~!. The col-

lision kernel B is a non-negative function of the form B(v,v.,0) = B(|v — v4/|, cos ),

o-(v—vy)
fo—va]

(VHS) model [7], with a commonly used form for the collision kernel:

where cosf =

is the deviation angle. We consider the variable hard sphere

B(v,vs,0) =blv — v, —d, <y<1, (2.4)

where b is a positive constant, v > 0 corresponds to the hard potential, and v < 0 is

the soft potential. Denote the vector

m(v) = (1,v, '“;)T (2.5)

then
Q(f, fym(v) dv =0, (2.6)

Rdv
which correspond to the conservation of mass, momentum and kinetic energy of the
collision operator.

The celebrated Boltzmann’s H-theorem gives the dissipation of entropy ([11]):

/Rd O(f, f)In fdv <0.

Furthermore, the equality holds if and only if f reaches the equilibrium state

P v —u?
M(v)pur = ———F— €xp (—) , (2.7)
’ (2xT) % 27
which is known as the Maxwellian. Here p, u and T are the density, bulk velocity

and temperature, respectively:

1 1
= v) dv, U= - v)v dv, T=
P Rdv f( ) P JRdv ( ) dvp Rdv

f)v—ul*dv. (2.8)



There are many sources of uncertainties in the Boltzmann equation, such as
the initial data, boundary data, and collision kernel. We introduce the Boltzmann

equation with uncertainty

Ouf +0-Vof = 2. 1).

(2.9)
f(0,z,v,2) = fi(z,v, 2), (r,0) eQxRY z€I,.

Here z € I, is a d-dimensional random parameter with probability distribution m(z)
known in priori characterizing the uncertainty in the system. Without loss of gener-

ality, we only consider periodic boundary condition in space throughout this paper.

2.2 The macroscopic fluid equations

When the Knudsen number € > 0 becomes very small, the macroscopic fluid
dynamics describing the evolution of averaged quantities such as the density p, mo-
mentum pu and temperature 1" of the gas, namely, the compressible Euler or Navier-
Stokes equations, become adequate [2, []].

Multiplying by m(v) and integrating with respect to v, by using the con-
servation property of Q given in , one gets a non-closed system of conservation

laws
P pU
O|lpu|+Ve-| puru+P | =0, (2.10)
E Fu+Pu+Q
where E is the total energy defined by
B = (1) = golul* + T, (211)

with (-) denoted as a velocity average of the argument,

= gt

Here P = ((v — u) ® (v — u)f) is the pressure tensor, and Q = % ((v — u)|v — u[f)
is the heat flux vector. Note that the variables p, u and E in depend on the
random parameter z.

When ¢ = 0, f — M(v),,,7. We can approximate f by M(v),.,r and use the
expression , P and Q become

P=pl, Q=0,
where p = pT is the pressure, I is the identity matrix. Then (2.10]) reduces to the

compressible Euler equations of gas dynamics for a mono-atomic gas:

p pu
O |lpu| +Ve | puu+pl| =0, (2.12)
E (E+pu

which is known as a first order approximation with respect to € to the Boltzmann
equation (2.9). By the Chapman-Enskog expansion, the compressible Navier-Stokes
equations give a second order approximation in € to the distribution function of the

Boltzmann equation [I1].



3 A stochastic collocation method with bi-fidelity

models

In this section, we first briefly review an efficient bi-fidelity approximation to the
high-fidelity solution studied in [53} [72], then we shall discuss the motivation of our

choices of the low-fidelity model in our current study.

3.1 A bi-fidelity Algorithm

Assume we have access to the high-fidelity solutions u'?(z) and low-fidelity so-
lutions u*(z). Let M be the number of affordable low-fidelity simulation runs,
which can be very large. N denotes the number of high-fidelity simulation runs
that can be afforded and is often very small, i.e., M > N. Let v = {z1,---, 21},
k > 1 be a set of sample points in I,. Denote the low-fidelity snapshot matrix
ul(y) = [ul(z1), - ,u(2x)] and the corresponding low-fidelity approximation space

U*(v) = span{u®(7)} = span{u”(z1), -, u”(21)}.

Similarly, the high-fidelity snapshot matrix and the correponding high-fidelity ap-
proximation as follows:
Hz), - u(an)), UM (7) = span{u” ()}

The bi-fidelity algorithm for approximating the high-fidelity solution consists of
offline and online stages. In the offline stage, we employ the cheap low-fidelity model
to explore the parameter space to find the most important parameter points. Within
the online stage, we learn the approximation rule from the low-fidelity model for
any given z, and apply it to construct the bi-fidelity approximation. The detailed
algorithm is summarized in Algorithm[I]

Most of the steps in this algorithm are straightforward. It would be instructional
to provide details for Step 3 (point selection) and Step 6 (bi-fidelity reconstruction).

Point selection. To select the subset vy, we shall search the parameter space
by the greedy algorithm proposed in [53] [72]. Start with a trivial subspace vy = &,
and assume that the first £ — 1 important points v4—1 = {z,, - ,2i,_,} C I have
been selected. We shall choose the next point z;, € I' as the point that maximizes
the distance between its corresponding low-fidelity solution and the approximation
space UL (y;_1), spanned by the low-fidelity solutions on the existing point set v_1,
ie.,

Zif, = argmealz(dist(uL(z), U (ve-1)), Vi = Vh—1 U 25, , (3.1)

where dist(v, W) is the distance function between v € u”(T") and subspace W C
UL(T). The greedy procedure essentially serves the purpose of searching the linear
independent basis set in the parameterized low-fidelity solution space. We remark
that the whole algorithm allows an efficient implementation by standard linear alge-

bra operations. See [53), [72] for more technical details.



Algorithm 1: bi-fidelity approximation

Offline:
1 Select a sample set I' = {z1,29,...,2p} C L.
2 Run the low-fidelity model u;(z;) for each z; € I'.
3 Select N “important” points from I" and denote it by vy = {z;,, - ziy } CT.
Construct the low-fidelity approximation space U (vyy).
4 Run high-fidelity simulations at each sample point of the selected sample set vy .
Construct the high-fidelity approximation space U (yy).
Online:
5 For any given z, run the low-fidelity model to get the corresponding low-fidelity

solution u”(z) and compute the low-fidelity coefficients by projection:
N
L L L
u”(2) = Pyriypu” = ch(z)u (zx)-
k=1

6 Construct the bi-fidelity approximation by applying the sample approximation

rule learned from the low-fidelity model:

Bi-fidelity approximation. In the offline stage, we have constructed the low-
and high-fidelity approximation space, UL (yx) (step 3) and U (yx) (step 4), respec-
tively. During the online stage, for any given sample point z € I, we shall project the

corresponding low-fidelity solution u”(z) onto the low-fidelity approximation space

UL(WN)Z N

u"(2) % Py [ ()] = D en(z)ub (zi,),

k=1
where Py is the projection operator onto a Hilbert space V and the corresponding

projection coefficients {c;} are computed by the following projection:
Gle=t, f = (fr)i<k<n, fr = (W (2),u" ()", (3.2)
where GT is the Gramian matrix of uX(yy), defined by
(GH)y = (Wb () ub ()", 1< kij<N, (3.3)

with (-,-)¥ the inner product associated with the approximation space U (yy).
These low-fidelity coefficients {cy} serve as the surrogate of the corresponding
high-fidelity coefficients of u'?(z). Therefore, the sought bi-fidelity approximation of

uf (2) can be constructed as follows:



N
uP(2) =Y en(2)u (z,). (3.4)
k=1

We emphasize that if the low-fidelity model can mimic the variations of the high-
fidelity model in the parameter space, the low-fidelity coefficients can be a good
approximation of the corresponding high-fidelity coefficients for a given sample z.
We refer interested readers to [53] [72], B3] for details of the error analysis and justi-
fications.

It is worth noting that since the number of low-fidelity basis is typically small
(O(10) in our numerical tests), the cost of computing the low-fidelity projection
coefficients by solving the linear system is negligible. The dominant cost of
the online step is one low-fidelity simulation run. If the low-fidelity solver is much
cheaper than the high-fidelity solver, the speedup during the online stage can be
significant.

3.2 The high- and low-fidelity models in our problem

Our purpose is to efficiently approximate high-fidelity solutions for the uncer-
tain Boltzmann equation for a fixed z, which is solved by a deterministic AP
solver discussed in section It is well known that existing solvers for deter-
ministic kinetic equations are time-consuming and memory demanding due to its
high-dimensional nature in the physical space. With the random parameter, it is
more challenging to fully sweep the multi-dimensional parameter space by solving
the Boltzmann equation repeatedly, especially given the complicated nonlinear col-
lision operator in our model.

To mitigate this computational cost, we consider to choose the compressible Euler
equations as our low-fidelity model. It is a first-order approximation to the
Boltzmann equation, which can mimic the variations of macroscopic quantities of
the Boltzmann equation in the fluid regime up to a certain accuracy. Besides, it
is worth noting that the macroscopic quantities do not depend on the velocity v
in . Therefore, solving the deterministic Euler equation is much easier and
more efficient in terms of memory and computational time compared to solving the
deterministic Boltzmann equation . These facts motivate us to choose the Euler
equation as the low-fidelity model in our numerical experiments. A comparison of
the computation cost (CPU time) for the two models are given in Section

3.2.1 A high-fidelity solver

To solve the high-fidelity model Boltzmann equation, we shall resort to a high-
fidelity asymptotic-preserving (AP) solver. There have been many works in de-
veloping robust numerical schemes for kinetic equations in the framework of the
asymptotic-preserving scheme, see for example [B| 44, [43] [40] 16, 28]. As pointed in
[26], AP scheme for the kinetic equation has two major merits: 1) as the Knudsen

number € go to zero, it automatically becomes a consistent and stable scheme for



the limiting fluid equation, with the stability condition independent of ¢ (i.e., At
independent of €); 2) the implicit collision terms can be implemented explicitly, free
of Newton-type nonlinear algebraic solvers. Compared with multi-physics domain
decomposition methods [I8], AP schemes avoid the coupling of physical equations
of different scales where coupling conditions and interface locations are difficult to
determine. In contrast with many existing multiscale solvers, the AP schemes only
require solving one equation — the kinetic equation and it becomes a robust macro-
scopic solver automatically when ¢ — 0.

For our problem, we shall employ an AP scheme developed in [26] for the deter-
ministic rescaled Boltzmann equation as our high-fidelity solver. The main idea
of [26] is to penalize the collision term Q(f, f) by the BGK operator P(f) = M — f
which can be inverted easily, thus the scheme can be solved explicitly. Let the initial
distribution function be fi;, and consider periodic boundary conditions. The basic

scheme consists of the following two major steps:

1. We first discretize (2.1)) in time by the following first-order semi-discrete scheme:

n+l _ fn m £n) _ AQn n _ fn n n+1l _ rn+1
et iV i R T O I e ot WP
t € €
f™t1 can be rewritten as follows:
n 1 n n At n n n n n n n
f—H:@ " =Atv-V,f +?(Q(f7f>_ﬂ (M _f)+5M+1) )

(3.6)
where § is some constant that depends on the spectral radius of the linearized
collision operator of Q around the Maxwellian M. We refer to [26, Section 2]
on the intuition and justification of choosing 3. For example, one can set

o(fm, )

ﬁn:sup fn_Mn

)

and other choices 8 are also available [26, 28]. We numerically evaluate the
collision term Q(f™, ™) in by applying the fast spectral method developed
in [52].

2. Though the above equation appears to be implicit due to M"*!, it can be
solved explicitly, thanks to the conservation property of Q(f, f) and the BGK
operator P(f). By multiplying the equation with the vector m(v) in (2.5),
we can get the following equation:

wn+l _ W
At
where W := (p, pu, E') that consists of the macroscopic quantities (mass, mo-

FV, - (omf™) = 0. (3.7)

mentum and energy). With W"*+! one computes M"*! from the Maxwellian
[2.7). Finally, we can update f"*! explicitly from (3.6]).

For the spatial discretization in , we employ a second order upwind MUSCL
scheme as in [26], and a second order minmod slope limiter is used to suppress
possible spurious oscillations near discontinuities or sharp gradients [46]. In addition
to , a second order TVD scheme with a minmod slope limiter is also applied,

see [0l 28] for details of implementation.



3.3 A low-fidelity solver

For the low-fidelity model, instead of solving the Euler system directly,
we shall semi-discretize its equivalent form with f replaced by the Maxwellian
M(v)pur, i€,

wn+l W

At
where the relation between W := (p, pu, E) and M is given in and (2.7).
The initial data of p, w and E are obtained from the initial distribution f;, for the
Boltzmann equation, by using and . That is, the initial data for the low-
and high-fidelity models are consistent. The scheme is numerically solved in the
same way as equation in the AP solver for the Boltzmann equation. Since Euler

+ V. (vmM™) =0, (3.8)

system is marching the macroscopic quantities, instead of marching the distribution
solution f to the Boltzmann equation, the scheme (3.8)) can be solved with a much

reduced computational cost and memory consumption.

Remark 3.1. We remark that instead of taking the solution f to the Boltzmann equa-
tion via the scheme (@ as the high-fidelity solutions, we consider its correspond-
ing macroscopic quantities of interest UM (z) = [pf (2),u® (2), TH(2)]" as the high-
fidelity snapshot solutions in order to connect the macroscopic quantities computed
from the low-fidelity models. The low-fidelity solutions U (z) = [p¥(2),u®(2), T*(2)]"
we considered are computed from the Euler system by using (@) During the point
selection step to construct vy in Algorithm 1, we shall select the important pa-

rameter points based on the concatenated macroscopic quantity snapshot, namely
Ut (z) = [p"(2),u"(2), T*(2)] T

Remark 3.2. We acknowledge that there could be other choices of low-fidelity models
that lead to more accurate bi-fidelity approximation, e.g., the compressible Navier-
Stokes equations. To estimate if the low-fidelity model would be useful for constructing
a reasonable accurate bi-fidelity approximation, one can explore an a priori estimate

developed in the recent work [335].

4 Accuracy and convergence analysis

To establish the accuracy and convergence results, we first give a summary of
the hypocoercivity framework and notations used in [50], then introduce the relation
between the solutions to the Boltzmann and compressible Euler system in suitable
norms. To study the difference between the high- and bi-fidelity solutions, one can
split it into two parts: the projection error and the remainder. In section we
show the estimate for the projection error in Theorem [{.1] In section[d:2] we give the
regularity of high-fidelity solution, then prove the accuracy and convergence results
of our bi-fidelity method adapted to the Boltzmann equation in Theorem

10



4.1 The projection error

The subject of hydrodynamic limits and rigorous derivations of macroscopic
models such as the fundamental PDEs of fluid mechanics from the kinetic theory
of gases is a challenging task and has been studied for decades, see for example
[24, 511 10, 4 Bl 37, B2]. We shall show that for each fixed z € I, the error between
solutions to the Euler system and the macroscopic quantities obtained from the
Boltzmann equation (with consistent initial data) is small and of order e, which will
be described in .

Hypocoercivity framework. First, we review the hypocoercivity framework
and notations for the norms used in [50]. Let f be the solution to the Boltzmann
equation . Consider a linearization around the global equilibrium and pertur-
bation of f:

f=M+evMh,
with
1 _?
M(U)Z €
(2m) ¥

then h satisfies the perturbed equation
1
Oth+v-Vih= gﬁ(h) + F(h,h), (4.1)
where the linearized operator £ and the nonlinear operator F are given by

L(h) = (\//\7)_1 [Q(\/ﬂh,M) + oM, \//T/zh)] ,
F(hh) =2 (\/ﬂ)_l Q(VMh, vV Mh).

Denote 8 := d/dv; d/dz; for multi-indices j and I. Introduce the following Sobolev

norms:

Wl = > N00Plez,, Wellazy = Y 107AlE:
71+ <s lv|<r (42)
Al a1z =/ hllagy w(2)dz, lhllaggpe = sup [[hllmg;-
I, zel,

Refer to [9, Theorem 2.5, we extend its analysis to our case of the Boltzmann
equation in the acoustic regime. Let h. be the perturbed solution to the linearized

equation (4.1). Suppose the initial data for (4.1) and (2.12)) are consistent for each
z. If the initial distribution h;, € Null(£) and h;, € H? , then for each z, (he)

z,v’

e>0
converges strongly to

h(t, 2,0, 2) = p(t,x,z)—}—v-u(t,x,z)—i—%(|v|2—dv)T(t,x,z) M(v)

in L[zO T}HiL% as the Knudsen number € — 0, where p, u, T (with E obtained by
(2.11))) satisfy the Euler system (2.12)). We adapt our acoustic scaling to [9, Theorem
2.5] and get the follows: For all z € I, if h;, belongs to HZL?, then

v

sup |[|h(t,2) = he(t,2)||zz , < sup |[|h(t,2) = he(t, 2)|[gsp2 < Cmax{e, eVr(e)},
t€[0,00] T tefo,00] o

(4.3)

11



where VT' > 0, Vp(e) is defined as

Vr(e) = sup ||h(t, 2) — he(t, 2)||poorz — 0, ase— 0.
te[0,T) o
Error splitting. Let (- )H be an inner product space corresponding to the high-
fidelity solution and ||-||” be the corresponding induced norm, see [53]. For each z,

to study the total error ||uf(z) — uB(z)HH, one can split it into two parts:

" H H
HuH(z) - uB(z)H < HuH(z) - PUH(,YJI\})UH(Z)H + ’)PUH(,YJI\/,)UH(Z) - uB(z)H .
(4.4)
[53, Lemma 4.3] shows the estimate for the second term:
H H
[Ponayu2) = wP )| < e |[Pungyu ()| +|[VET(GH 1 QrH|, @)

where we refer ¢ to g1 + 3 + €122 in [53, Lemma 4.3], which is small, based on
the reasonable assumptions made there. The last term above is related to the non-
invertibility of high-fidelity Gramian matrix and usually negligible. Here G (or
G is the Gramian matrix of u(y) (or u’(v)) given by (3.3), the vector L has
entries

fi = (uh () ut ()"
and Q := I — P is the orthogonal projection onto its kernel (with P the orthogonal

H
PUH(’YIL\})U‘H(Z)H S

projection matrix onto its range), see [53]. In addition, since ‘

||uH(z)||H7 thus
[Ponn™ ) — PG| < el @I + VET@ Qe @)

Projection error. The rest of this section will study the estimate for the projec-
tion error (the first term on the right-hand-side of (4.4)) and conclude it in Theorem
We now adapt the analysis in [53, subsection 4.1] and incorporate our high-
fidelity (Boltzmann) and low-fidelity (Euler) models, by utilizing the knowledge of
(4.3)). Denote

zy = argmaxd” (u(2), U7 (110)), ol =wmia ULz} (4.7a)
z = argmaxd”(uh(z), UM (y0)), = Uz (4.7b)

The “best” achievable distance for approximation from a general N-dimensional

subspace is the Kolmogorov N-width, defined by

d¥wf(I,))= inf d? (v, V). 4.8
N (U™ (I2)) (A= R, (v, Vi) (4.8)

The following is similar to [53, Lemma 4.1], except that we use the inequality (4.3)).
Since it is lengthy, we present as Lemma [I.I] with its proof in the Appendix.

Theorem 4.1. If all the assumptions in Lemma [1.1] are satisfied for each n =
0,1,--- N —1, then

sup [u™ (2) = Py yryu ()| < C\/dnja(uf (1)), (4.9)

12



where dy (uf (1,)) is the N-width of the functional manifold u™ (I.), and the constant
C = \/5((51 —(525)_1 with 0 < 61 — doe < 1.

Proof. Lemma shows that it is a weak greedy procedure to use the nodal choices
of z£: 30 < §; — 83 < 1 such that for all n =0,1,--- , N — 1,

d"(u" (z), U™ (1)) > (61 — b2 ¢) Sup " (u" (2), UM (1),

and [19, Corollary 3.3] indicates that (4.9) holds with C' = v/2(6; — dp €)1 O

4.2 Smoothness of the solution and convergence analysis

In this section, we first study the smoothness of the high-fidelity solution u'’ :
I, — VT where z is a multivariate random parameter and V¥ is a Hilbert space
with an inner product (-, ~>H. Then we shall establish an estimate bound for the
Kolmogorov width in Theorem finally combine all the arguments and show the
convergence result for our bi-fidelity procedure in Theorem

We introduce the standard multivariate notation. Denote the countable set of

“finitely supported” sequences of nonnegative integers by

F ={v=(v,ve,---):v; €N, and v; # 0 for only a finite number of j},

with [v] := 37,5, [vj|. For v € F supported in {1,---,J}, one defines the partial
derivative in z )
"l
o’y = —F——, 4.10
u 8V1Z1...8VJZJ ( )
and the multi-factorial v! := szl v;!, where 0! := 0.

Regularity of uff. Tt is not hard to extend the sensitivity analysis in [50] to
the multi-dimensional random variable case, see Remark 2.8 in [65] on the extension.
[50] tells us that 1) the uncertainties from the initial data and collision kernel (under
suitable assumptions) will eventually diminish and the solution will exponentially
decay in time to the deterministic global equilibrium M; 2) the regularity of the
initial data in the random space is preserved at later time.

Let h. be a perturbed solution to the equation . If its random initial data
satisfies for all r,

1R (2|21 < Cr, (4.11)

then at time ¢t > 0,
||h€(t7 Z)HH;:ZLEC § CT €_ETt’

Moreover, h is analytic in the random space, meaning that
10" he(t, 2)||ms ,pe < Ce T (|v!),  for any v > 0. (4.12)

See Appendix B for a discussion on the linearized Boltzmann case.
We now use a weaker version by letting s = 1 in (4.11)) and (4.12)). If the initial
data [|hZ*(2)]| y1.r oo < Ci, then

10" he(t,2) |12 poo < 110" he(t, 2)|l2  poe < Ce™ 7

13



By the definition of u containing perturbed macroscopic quantities (see [9] section

2.2.4]) by the Cauchy-Schwarz inequality, one easily gets
107 u(t, )iz nee S 1107 helt, 2)llns 1o < C e, (4.13)

for |v| < r, where C and 7 > 0 are all generic constants independent of e. We assume
that the high-fidelity solution u® follows a similar behavior as the analytic solution
u (computed from h.) to the Boltzmann equation, with an error that depends on the
numerical scheme used in the high-fidelity model. If the initial distribution of the
high-fidelity model satisfies

I (s < C, (414)
then for a fixed time ¢t > 0 and |v| <,

sup [|0"uf (t,2)||F < C"e T 4 ¢, (4.15)
z€el,

where £ depends on the order and discretization parameters At, Az, Av used in the

high-fidelity solver. Thus for all z € I, one gets
07w (t, 2)[| < C" e+ &

Note that Cy, C, C" and 7 in the inequalities (4.11)—(4.15)) are all positive generic
constants independent of e.

We make the following assumption on the random collision kernel:

Assumption 1. Assume the collision kernel take the form

B(Jv — v*|,co86,z) = ®(Jv — v*|)b(cos b, z), D(Jv —v*|) = Clv —v*|™, m € [0,1],

(4.16)
and (1;);5, be an affine representer (see definition in [15]) of the cross section b,

that is,
bn2) = B) + 3 us(n) 2= (), m=cosh,  (417)

Jj=21
where the sequence (||wj||Loo(n))j21 €LP for 0 <p <1 (see [1]]). One also assumes
that

b(n, 2)| < Co,  [Opb(n, 2)| < Cr,  [0"b(n,2)| < Ca, (4.18)

foralln € [-1,1], |v| <r. Here C, Cy, C1, Cy are all positive constants.

The above ([4.16)-(4.18) extend the conditions in [50, Theorem 4.4 (ii)] from one-
dimensional random space to the multi-dimensional random space.

An upper bound for N-width. We can now utilize the result in [I5, Corollary
3.11], which works for general parametric PDEs. Define the norm

[lu=ollzoer.vy = sup [[u(z) = v(2)|lv,

zel,

14



where V' is the physical space considered, in our case V = L2. Under Assumption
by the analyticity of u’ given in (4.15)), for z € I,, one obtains

ufl — Z w, P,

vEAN

1
SCW+D™, g=o -1 (4.19)

Loo(12,V)
where (Py),~, is the sequence of renormalized Legendre polynomials on [—1,1], Ay
is the set of indices that corresponds to the N largest ||w,||v, and the constant
C:= ||(||wy||v)y€}-||ep < o0. By 7 one formally gets C' = ce ™ + .

Recall (4.8) and the definition d” (v, Vy) := mingev, |[v — w||y (refer to [I5]
equation (8.3)]), the best achievable error in L>(I,, V) is described by the N-width
of the solution manifold M = v (I):

dy(M)y = dim(l\g\f):N :eu}\:)/[ Jnin [lv —w||v. (4.20)

One can use the polynomial approximation bound in L*°(I,, V) to estimate an upper
bound for dx(M)y, as studied in [I5] Section 4]. Let the N-dimensional subspace

Vn :=span{c, : v € An}.
For N > 1, one observes that
dy(M)y < sup min |Jv — w||y = sup min |[u?(2) — w||y
veEMWEVN z€l, WEVN

" 1 (4.21)
S Hu — Z wVPUHLOO(Iz,V) SC(N_’_l)—q’ q:f—l
vEA p
N
where ) o Ay WoPy is the truncated Legendre expansion and ({4.19) is used in the

last inequality.

We now conclude with our main result on convergence analysis:

Theorem 4.2. If the assumptions for the random initial data, random collision
kernel, namely and Assumption (1| are satisfied, for fized time t > 0 and
fized numerical discretization parameters At, Ax and Awv, then for all z € 1,

eTt

e~

[l t,2) = w21 < O e

e +C eyt | [VET(GE) T Qe (2)|
(4.22)
where N is the size of the subspace vy in Algorithm 1, and q is given in with p

depending on the (P-summability assumption of (¥;);>1, C1 = O 61—71625 , Cy and T

are constants that depend on the initial data u'™ and Assumption [1| on the collision
kernel. 61, 0o are all sufficiently small with 0 < &, — do¢ < 1. Definitions of G*,
GH, Q and f¥ are given below , X 1s associated to the order and discretization
mesh in the high-fidelity solver. € is the Knudsen number in the Boltzmann equation

-
Proof. According to the inequalities (4.4)), (4.6), (4.21]), (4.15) and Theorem one

gets for all z € I,

[ ¢ 2) —uP (1.2)]| " < C\Janga (@ (1) + el ()17 + |[VET (@5 Qe (2|

15



e—e7‘t+§ Cer _
<O gy T e T e |verehat)||

eTt

e
<C—
= HIN/2F 1)92

)

+Cre 4 x| [VET(GH) T Qrk(2)

here C, C1, Cs, T are all generic positive constants independent of e, Co = ¢ C’ which
is small, and x = C1/€ + &. O

Theorem indicates that the error between the bi- and high-fidelity solutions
decays algebraically with respect to the number of high-fidelity runs V. The conver-
gence rate ¢/2 is independent of the dimension of the random space and the regular-
ity of the initial data; it only relates to the /P summability of the affine representer
(1j)j>1 in Assumption 1.

Remark 4.3. We make the following remarks:

1. The estimate in Theorem [{.4 may not be sharp. Deriving a sharper estimate
requires a better understanding on the role of the Knudsen number € in the
accuracy analysis.

2. It is not our goal of the current work to establish stability and error analysis

for the deterministic AP method for the multiscale Boltzmann equation in [26],

which is difficult due to the penalization used in the scheme thus has not been

studied to our best knowledge. Thus deriving (4.15)) from (4.13) rigorously
remains challenging.

We hope to report more results regarding the above two issues in future researches.

5 Numerical Tests

To examine the performance of the method, we shall compute numerical errors in
the following way: we choose a fixed set of points {2;}7_; C I, that is independent
of the point sets I', and evaluate the following error between the bi-fidelity and high

fidelity solutions at a final time t¢:
1 n
[ (t) = u” ()| r2(px1.) & - Z [ (2, 1) — uP (25, 8)|| 22 (D). (5.1)
i=1

where [[-]|z2(p) is the L? norm in the physical domain D = Q x R2. The error can be
considered as an approximation to the average L? error in the whole space of D x I,.
Since our goal is to numerically solve the multiscale Boltzmann equation with
random inputs, we solve the Boltzmann equation as the high-fidelity AP solver
discussed in Section 3.2l We assume the random collision kernel in the form of

B(v,vs,0,2) = b(2)|v — v.|, (5.2)

and consider Maxwell molecules, i.e.;, A = 0 in (5.2). The low-fidelity model is
chosen as the Euler equation solved by the forward Euler in time and second-order

MUSCL scheme in space, by using the same spatial and temporal resolutions as the
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high-fidelity model, but with a different number of quadrature points N! in velocity
discretization.

In all the examples, the spatial domain is chosen to be [0, 1] with IV, grid points,
and periodic boundary condition is assumed except for the shock tube tests. The
velocity domain is chosen as [—L,, L,]? with L, = 8.4 and N, grid points in each di-
mension. Without loss of generality, the d-dimensional random variable z is assumed
to follow the uniform distribution on [~1,1]%. The training set T is chosen to be
M = 1000 random samples of z. We examine the error of bi-fidelity approximation
with respect to the number of high-fidelity runs by computing the norm defined in
(5.1)) (evaluated over an independent set of n = 1000 Monte Carlo samples). All nu-
merical experiments are conducted by MATLAB R2018b on macOS Mojave system
with 2.4 GHz Intel Core i5 processor and 8GB DDR3 memory),

5.1 A double-peak initial data test

We first consider the following initial data to mimic the Karhunen-Loeve expan-

sion of the random field:

d
1 1 p
pdaﬂq:3<2+m¢mm+ozz}mpﬂk+nﬂ%>,

2k
k=1
ug = (0.2, 0),
To(z,2") = 1 3+ cos(2mz) + 0.2 Z cos[2m(k + 1)z] ke
’ 4 — 2k |’

_ po [v —ug|? v+ uo|?
folz,v,z) = T (exp( o ) + exp( o ).

The uncertain collisional cross section is given by

b(z) =1+0.520, (5.4)

P= (P ... P T
Here z# = (zl, ,zdl),z

= (le, e ,zgll), and z’ = 2 represent the random
variables in the collision kernel, initial density and temperature. Let the initial
distribution fy follow a double-peak non-equilibrium initial data [26]. Set d; = 7, thus
this is a d = 15 dimensional problem in the random space. We use the Boltzmann
equation as the high-fidelity model and the Euler system as the low-fidelity model,
set Az = 0.01, At = 8 x 10~ (in both the high- and low-fidelity models), N/ = 16,
and the final time ¢t = 0.1.

In Figure [1, we consider the fluid regime with ¢ = 10=%. This figure shows the
mean L? errors of p, u1, T between the high- and bi-fidelity solutions with different
quadrature points in velocity space. Here uj in the figures below stands for the first
component of the two-dimensional bulk velocity u. It is clear that the error decays
fast with the number of high-fidelity runs. In addition, when N! increases, the error
between the high- and bi-fidelity solutions decreases. This is expected because the
Euler equation solved by more quadrature points in velocity space can capture more

information about the high-fidelity model.
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In Figure [2| fluid regime is considered and we vary & from ¢ = 1072 to ¢ =
10~%. The Euler equation is chosen as the low-fidelity model, solved by the same
forward Euler in time and second-order MUSCL scheme in space, and the same
spatial and temporal meshes as the Boltzmann equation in the high-fidelity model,
and with N! = 8 velocity quadrature points. One observes that the smaller ¢ is,
the lower level the errors saturate. This is expected, because when the Knudsen
number e approaches to zero, the Euler equation as the low-fidelity model commits
less modeling error and can capture more information of the high-fidelity model.

In Figure

the kinetic regime with ¢ = 1. Fast convergence of the mean L? errors with respect

| we investigate the performance of the bi-fidelity approximation for
to the number of high-fidelity runs is observed. Even though ¢ is relatively large
compared to the previous two tests, a satisfactory accuracy in characterizing the
behaviors of the solution in the random space is achieved in both cases: N! = 8 and
N! = 4; and the errors with N! = 8 is smaller than that of N! = 4. On the right
column of Figure[3] we plot the high-, low- and the corresponding bi-fidelity solutions
(with » = 20, N! = 8) for a particular sample point z. One observes that the high-
and bi-fidelity solutions match quite well, whereas the low-fidelity solutions appear
inaccurate at some spatial points. This example seems to indicate that although
in the kinetic regime, the fluid description breaks down in the physical space, the
bi-fidelity solution can still capture important variations of the high-fidelity model

(Boltzman equation) in the random space.
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Figure 1: The mean L? error of the bi-fidelity approximation of p, u1, T with respect to
the number of high-fidelity simulation runs, based on the low-fidelity model with different

N,
Y 19



Figure 2: The mean L? error of the bi-fidelity approximation of p, u1, T with respect to
the number of high-fidelity simulation runs, based on the low-fidelity model with N} = 8

for different e.
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Figure 3: (Left) The mean L? error of the bi-fidelity approximation of p, uy, T with
respect to the number of high-fidelity simulation runs, based on the low-fidelity model
with different N!. (Right) Comparison of the low-fidelity solution (N} = 8), high-fidelity
solutions (Nf) = 16), and the corresponding bi-fidelity approximations with r = 20 for a
fixed z.
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5.2 Sod shock tube test

We next consider a more challenging problem where the initial data is discontin-

uous. Assume the random collision kernel in the form

di+1 Zb
b(z’) =1+0.5 Zk
(z") =1+ kZ::l o

and the random initial distribution

0

oz, v,z) = LA et
) 9 - 27_[_TO )

where the initial data for p°, u® and T° is given by

dq T
z
=1 = (0,0 Ti(z") =1+04) & <05
Pl ) uy ( ’ )7 l(Z ) + e 2]{5’ AR )
1 o1 SR
. ==, L =(0,0, T(z0)=-(1+04Y Zk), 0.5.
pog w=00 BED=gu+0a3 2 a>
Here zb = (zi’, e ,231+1) and zT = (zf, e ,zgl) represent the random variables in

the collision kernel and initial temperature. Set d; = 7, then the total dimension
d of the random space is 15. We use the Boltzmann equation as the high-fidelity
model, and solve it by Az = 0.01, At = 8 x 107%, and N = 24, until the final time
t = 0.15. We shall employ the Euler equation as the low-fidelity model, and solve it
with the same spacial and temporal resolution with the high-fidelity model but with
N! =12. We consider the fluid regime with ¢ = 10~% in this test.

From the left column of Figure [4] we see a fast convergence of L? errors between
the high- and bi-fidelity solutions. With only 10 high-fidelity runs, the bi-fidelity
approximation can reach an accuracy level O(10~3) for a 15-dimensional problem in
random space, while the low-fidelity approximation is quite poor with an accuracy
level O(1071). To further illustrate the performance of our bi-fidelity method, we
compared the high-, low- and the corresponding bi-fidelity solutions (with r = 10)
for a particular sample point z. One observes that the high- and bi-fidelity solutions
match really well, whereas the low-fidelity solutions seem to be quite inaccurate at
some points in the spatial domain. Even in this case, the bi-fidelity solutions can
approximate the high-fidelity solutions very well.

Figure [5] shows clearly that the mean and standard deviation of the bi-fidelity
approximation of p, u; and T agree well with the high-fidelity solutions by using
only 10 high-fidelity runs. The result is a bit surprising yet reasonable, suggesting
that even though the Euler model may be inaccurate in the physical space, it still can
capture the behaviors and characteristics of the solution to the Boltzmann equation
in the random space. Moreover, since the high-fidelity model (Boltzmann) with
N = 24 costs approximately 43 times of the low-fidelity solver (Euler) with N} = 12
(the former takes 30.6 seconds, the latter takes 0.7 seconds for one single run; a

significant speedup is quite noticeable in this case.
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Figure 4: (Left) The mean L? errors between high-fidelity and low- or bi-fidelity solutions
with respect to the number of high-fidelity runs; (Right) Comparison of the low-fidelity
solution (N! = 12), high-fidelity solutions (N} = 24), and the corresponding bi-fidelity

approximations r = 10 for a fixed z.
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Figure 5: Mean and standard deviation of p, u1, T' of high-fidelity solutions and bi-fidelity

solutions with r = 10.

5.3 Mixed regime test

The next test we shall consider is more challenging than the previous two tests.
Because various scales are involved, good accuracy of the AP scheme for the Boltz-

mann equation is required for all ranges of €. We consider a mixed regime with the
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Knudsen number ¢ varying in space show in Figure. [6] and given by

e(z) = 10~ + % [tanh (1 - L;(x _ 0.5)) + tanh (1 + %(x _ o.5)>} . (55)

The random initial data and collision kernel are given by (5.3) and (5.4). The total

dimension of the random space is d = 15.

6(;)

Figure 6: The distribution of £(x) in (5.5]).

All the numerical parameters used in temporal and spatial discretizations are the
same as that in Section We solve the Boltzmann equation for the high-
fidelity solution with N = 24, and the Euler system for the low-fidelity solution
with N! = 8.

From the left column of Figure [7| we observe a fast convergence of L? errors be-
tween the high- and bi-fidelity solutions, where they saturate quickly when r reaches
about 25. It is worth noting that the dotted lines that represent the errors be-
tween the high- and low-fidelity solutions are much larger O(1071) compared to that
between the high- and bi-fidelity solutions. This indicates that even though the low-
fidelity solutions alone are relatively not accurate in the spatial domain, it might be
still able to behave similarly in the random space, therefore the resulted bi-fidelity
approximation based on a small number of high-fidelity runs (say r = 25) can reach
a reasonable accuracy level up to O(1072).

The right column of Figure [7] shows the high-, low- and bi-fidelity solutions at a
randomly chosen sample point z. One can see that the high- and bi-fidelity solutions
match really well, whereas the low-fidelity solutions are not accurate. In addition,
with NV = 1000 low-fidelity runs of the Euler model, together with only 25 runs of the
AP solver to the Boltzmann model, one can get the bi-fidelity solutions which are able
to capture behavior of the solutions to the Boltzmann equation in the random space,
up to an accuracy of 1073; on the other hand, using the low-fidelity model (Euler
equation) alone can not achieve this result, especially under the multiple scalings
where e ranges from 1072 to 1 (since the errors between macroscopic quantities

calculated from the Boltzmann and Euler equation deteriorate when £ becomes large).
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This observation certainly highlights the merits of our bi-fidelity method. Figure
presents the mean and standard deviation of p, uy, T' by using 25 high-fidelity runs.
One can see that the high- and bi-fidelity solutions match well, indicating that the bi-
fidelity solutions have captured well the characteristics of the macroscopic quantities
in the random space.

Once we construct the bi-fidelity model, the online computational cost can be
significantly reduced. In this example, the high-fidelity model (Boltzmann) with
NI = 16 takes about 50 times computation time of the low-fidelity model (the
former takes 12.3 seconds, while the latter takes 0.23 seconds for a single run). Since
the dominant cost of the bi-fidelity reconstruction for a high-fidelity solution lies
in the corresponding low-fidelity run, a significant amount of computational cost is

saved in our method.
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Figure 7: (Left) The mean L? errors between high-fidelity and low- or bi-fidelity solutions
with respect to the number of high-fidelity run; (Right) Comparison of the low-fidelity
solution (N! = 8), high-fidelity solutions (N! = 16), and the corresponding bi-fidelity

approximations r = 25 for a fixed z.
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Figure 8: The mean and standard deviation of p, uy, T' of high-fidelity solutions and
bi-fidelity solutions with r = 25.

6 Conclusion

In this work, we study the multiscale Boltzmann equation with multi-dimensional
random parameters by a bi-fidelity collocation method [53] [72]. By choosing the low-
fidelity solution as the solution of the corresponding first order macro-model — the
compressible Euler equations with a consistent initial data, our bi-fidelity approxi-
mation can capture well the variations of macroscopic quantities computed from the

high-fidelity AP solver of the Boltzmann equation with multiple scales, at a much
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reduced computational cost and memory footprint. An error analysis developed in
[53] has been extended by incorporating the knowledge of the regularity of our high-
fidelity and low-fidelity solutions. The computational accuracy and efficiency are
demonstrated in various numerical examples and holds promise to accelerate the
computation for more complex problems in multiscale kinetic equations with uncer-
tainty.

Appendices

A The Lemma proof

Lemma 1.1. Let zH, 2L be the mazimizers of and , respectively. One
assumes that

1. 3 positive constants K", KX, Cy, Cy such that
[l OIF = K™ Ju® (20)]]7] < Cre,
[l GO = K |[u® (D)|IF] < Cae,
2. HnL <1 and nH <1 such that
1Puzu® (21" < n"[|Punu (21T,
1 Puau (20)[[7 < n™||Pyrut(20)]17.

3. 3 constants A" and AL satisfying

1< Af < i 1< Al < U
- max{0,nH — KH}’ - max{0,nt — KL}
such that
[l ()| < ARd™ (uf (1), U),
[l (z)[|F < APd" (u" (), Up).
Then

d (M (27), U3") 2 (01 = b26) d™ (u" (1), UT),
with 0 < 61 — dpe < 1.
Proof. Using the above assumptions, one gets
d"(ut (1), Uy) = |lu® (DI — [|Pyzu® (z0)||F
> K|l ()| = Cre —[|Pyzut ()17
> K™l ()" = Cre =i ||Pynu™ (21|17
=" ([l DN = 1Puau (IDIT] = Cre+ (K7 —n™)|[u™ ()17

> nHdt (' (22, UH) + Cy e — max{0,nT — KH}AH aH (" (:F), UH)
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= [nH — max{0,n — KH}AH] dH (uf (27, Uy — Oy ¢,
Similarly, we have
d" (W (z5), U > [n* — max{0,n" — K*}A"] d"(u" (L), UL) — Cae.
Therefore,
dH(uH(z*L), Uf) > [nL - max{O,nL - KL}AL] dL(uL(z*L), U,f) —Cqe

> [n" — max{0,n" — K*}A"] d"(u"(z["),U}) — Cy ¢

> [nL — max{O,nL — KL}AL] . [nH — maX{O,nH — KH}AH] dH(uH(z

—{[n" — max{0,n" — K*}A"] C1 + C:} e
> (61— dpe) a (uM (217), UR),
where we assume that
0<d; = [nL — max{0,n" — KL}AL] : [nH — max{0,nT — KH}AH} <1,
and 305 such that 0 < 61 — do e < 1 with

(" — max{0,n" — K*}A"] C1 + Cy < 62 a" (u™ (z]"), UL).

* n

B Proof of analyticity for the linearized equation

For simplicity, consider the linearized Boltzmann equation under the acoustic
scaling. The perturbative solution satisfies

Bih+v-Voh = éﬁ(h). (B.1)

For simplicity, we write out the proof for one-dimensional random variable z. Assume
the collision cross-section has the form b(cos 0) = bg(cos 8)+b; (cos ) z, and we require
|b1| < Cy. Define the operator 7; := %C — v - V,, and the notation h; := dLh for all
[ > 0. Take alz of the equation 7 then

1
Othy = To(hy) + gﬁbl (hi=1),

where L, is defined by substituting b(cos ) by bi(cosf) in the linearized collision
operator L. Thus

d 2
%thH?{k = 2(Te(h1), hi) e + gl (Lo, (hi—1), ha) .

By the hypocoercivity theory and £ being a bounded operator,

d Cy
@thH%k < —eCy ||hz\|qu + ?l ho—1 || me| [Pl mre

30

H
*

),

UH

n

)



where [[hl|2 = 5 4 o ‘

2
2 .
i) and [IBlla = [[A(L+ [0)/2]] , . with y shown

s
Lm,v

in (2.4). Since |||y controls ||hy||gx, then by setting g1 = |[lu]| g,

d C
79 < —eCogr+ —lgi_1.
13

Using [47, Lemma 6] in a similar way, one gets

l

gl(t) < e—sC’ot Z_:O(l—/rln')'rnl (C;t) hl_m(O).

Following [47, Theorem 5], if the initial data satisfies ||OLho(2)||g+ < R!, VI > 0,

then at time ¢,

l
08 A(2) | < CemeOot <R n Ot) ,

where C, Cy, C are independent of [ and €. The convergence radius for h at any

point zg is defined by

7 (20) = : -
*7 Jim SUP; o0 (gl(Zo)/“)l/l

which is independent of zg, thus h (or f) is analytic in z.
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