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Abstract

Predictive Molecular Dynamics simulations of thermal transport require forcefields that can
simultaneously reproduce several structural, thermodynamic and vibrational properties of
materials like lattice constants, phonon density of states, and specific heat. This requires a multi-
objective optimization approach for forcefield parametrization. Existing methodologies for
forcefield parameterization use ad-hoc and empirical weighting schemes to convert this into a
single-objective optimization problem. Here, we provide and describe software to perform multi-
objective optimization of Stillinger-Weber forcefields (SWFF) for two-dimensional layered
materials using the recently developed 3™ generation non-dominated sorting genetic algorithm
(NSGA-III). NSGA-III converges to the set of optimal forcefields lying on the Pareto front in the
multi-dimensional objective space. This set of forcefields is used for uncertainty quantification
of computed thermal conductivity due to variability in the forcefield parameters. We demonstrate
this new optimization scheme by constructing a SWFF for a representative two-dimensional
material, 2H-MoSe; and quantifying the uncertainty in their computed thermal conductivity.

Program Summary

Program Title: MOGA-NSGA3

Program Files doi: http://dx.doi.org/10.17632/pbc6nb7hp9.1
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Programming Language: C++

Nature of problem: Interatomic forcefields used for molecular dynamics simulations of thermal
conductivity must be parameterized to accurately capture structural and vibrational properties of
the material system being modeled. Therefore, these forcefields must be simulataneously
optimized against several (n > 5) material properties. However, such parameterization is difficult
using existing forcefield parameterization schemes, which are limited to optimization of a single
or few (n < 3) objectives.

Solution method: We present software to perform evolutionary optimization of forcefields for
thermal conductivity simulations using the recently developed 3™ generation non-dominated
sorting genetic algorithm (NSGA-III). The algorithm’s unique reference-point-based niching and
non-dominated sorting schemes enable efficient exploration of higher-dimensional objective
spaces while preserving diversity among forcefield populations. The best set of forcefields on the
Pareto front are used for estimating uncertainty in computed thermal conductivity due to
forcefield parameterization.
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Introduction

Molecular Dynamics (MD) simulations can be used to model and quantify dynamic processes in
nanomaterial systems such as suspended monolayer materials that are difficult to measure
experimentally [1]. Interactions between atoms in these simulations are described by forcefields,
which are empirical physically-motivated mathematical functions along with an associated set of
parameters. Optimization of forcefields for thermal transport involves identifying a set of
forcefield parameters that will most accurately reproduce physical properties like lattice
constants, elastic constants, and phonon frequencies that govern thermal transport. While this
parameterization requires simultaneous optimization of multiple properties with different
physical units, most existing parameterization schemes simplify this into a single objective
optimization problem by using an ad-hoc empirical weighting schemes to construct a weighted
sum of objectives. Forcefields constructed using such single objective schemes are highly
dependent on the choice of objective weights, making it difficult to quantify the uncertainty
associated with variability in forcefield parameters.

There have been limited attempts at multi-objective forcefield parameterization for complex
forcefields like ReaxFF and COMB [2] using evolutionary approaches [3-5]. These methods
have relied on algorithms such as NSGA-II, which are suitable only for optimization of 3 or
fewer objectives, thus greatly limiting the applications for which forcefields can be optimized
[3]. In this paper, we present a multi-objective optimization scheme based on the recent the 3™
generation non-dominated sorting genetic algorithm (NSGA-III) [6] for the parameterization of
empirical forcefields of the Stillinger-Weber functional form [7] for modeling thermal transport
in layered and two-dimensional materials. The NSGA-III algorithm represents a generational
improvement over existing schemes [8-12] by enabling optimization of forcefields against
significantly larger number of objectives (up to 11) and also includes a unique reference-point-
based niching scheme for the preservation of diversity among forcefields and thus a more
thorough sampling of the Pareto front necessary for accurate uncertainty quantification. NSGA-
III also includes a normalization scheme to accommodate objectives which differ either in order
of magnitude or physical units (e.g. lattice constants in nm vs. phonon frequencies in cm™).

Stillinger-Weber forcefields (SWFFs) are a family of short-ranged interatomic forcefields with
simple functional forms suitable for simulating large systems (>>10° atoms) for long times (>
several ns). They also contain a moderately large set of empirical parameters that can be tuned to
accurately capture second-order and higher-order interatomic force constants, which govern
lattice thermal conductivity [13]. Due to this combination of properties, SWFFs have been
widely used to compute the thermal conductivity of several two-dimensional and layered
materials. While more complex forcefields with larger sets of tunable parameters may be used
for thermal transport calculations, their flexibility in accurately describing a very diverse phase
space of atomic configurations is not required for low-temperature non-equilibrium MD
simulations, where atoms merely vibrate about their equilibrium positions [14]. Therefore, we
choose to optimize Stillinger Weber forcefields using our NSGA-III-based scheme. There is a
large scatter in the computed values of thermal conductivity for the same two-dimensional
material, MoS> [15]. While this scatter is partially attributable to variations in the MD simulation
parameters (system size, choice of equilibrium or non-equilibrium simulations etc.), the majority



of the variation arises from differences in the forcefields parameters, which differ based on
choices made during the single-objective parameterization process.

Results
The SWFF for the 2H-MoSe: crystal models interactions between atoms using 2-body bonding
terms and 3-body angle terms [7]. The total potential energy of the given system of N atoms

located at [ry, I, ..., rn] in the SWFF can be written as
E(rlerl"'rN) = ZVZ(rij) + Z Vg(rijlrjikl eijk)
i<j i<j<k

where 1;; = 1; — 1; V. The 2-body term, V,, is defined as
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The two-body term is defined by 3 optimizable parameters, A, B and y.

The 3-body term, V3 around a central atom i is given by three optimizable parameters, A, y;and
¥, and has the following functional form. Geometric parameters, including interaction cut-off
distances, 7y, Teurr and 7¢y¢, and equilibrium angles, 6, are held fixed during parameterization.
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The forcefield is parameterized against the lattice-constant, elastic constants, and full phonon
dispersion curves at three values of lattice strain. Ground-truth values of the lattice and elastic
constants are taken from quantum-mechanical density functional theory (DFT) calculations of
the 2H and 1T° monolayer crystal. Mode Griineisen parameters are calculated by comparing the
phonon dispersion curve of the relaxed (i.e. strain-free) monolayer with monolayers under 5%
compressive and tensile biaxial strains. The SWFF is parameterized to minimize 5 objectives —
the root-mean-square (RMS) distance between the DFT value and forcefield-computed values of
lattice constant, elastic constant and three phonon dispersion curves (one for each strain state).
The error associated with phonon dispersions is calculated as the RMS difference in the
predicted and ground-truth phonon frequencies for each band at each g-point along selected
high-symmetry directions (Figure 1d). The error is equal to a weighted sum of RMS frequency
difference values for each band. The weights are chosen to give a greater priority to acoustic
vibrational modes. Specifically, in our optimization, the relative weights assigned to the three
lowest-energy bands are 30 times the values assigned to the remaining (higher-frequency optical)
bands. This choice ensures a more accurate reproduction of acoustic bands by the optimized
forcefields and is motivated by previous observations that acoustic phonons are responsible for
the majority of lattice thermal transport in semiconducting and insulating systems [16]. Details
about the DFT calculations for computing ground-truth values are given in the Methods section.

Parameterization of 2H MoSe:

The monolayer 2H phase of MoSe> has a honeycomb crystal structure with hexagonal unit cell
composed of a layer of 6-fold coordinated Mo atoms sandwiched between two planes of 3-fold
coordinated Se atoms in an ABA stacking sequence (Figure 1). The crystal structure consists of
two atom types — Mo and Se, and can be effectively described by three two-body interactions —



Mo-Mo, Se-Se and Mo-Se along with two three-body interaction — Mo-Se-Mo and Se-Mo-Se.
Excluding the interaction cutoff distances, , T¢ye, Teupr and 7oy, the SWFEF for the MoSe»
system can be characterized by 13 design variables, which must be parameterized to minimize 5
objectives (lattice constant, elastic constant, phonon dispersion curves at three values of lattice
strain).

(a)

(b)

Figure 1: (a, b) Crystal structure of MoSe, showing two distinct atom types and (¢) Phonon dispersion of
the unstrained monolayer along high-symmetry directions (d) in the Brillouin zone.

Figure 2 shows the reduction in the computed errors of all five objectives during forcefield
optimization. The dark band indicates the variance in the measured objective between the
different forcefields on the Pareto front at each generation. It is noticeable that the lattice
constant and elastic moduli are sensitive to the variation of forcefield parameters, as indicated by
the relatively large variance in computed errors. In contrast, the computed errors in phonon
frequencies at all strain levels falls within a narrow band, indicating that all the forcefields on the
front accurately reproduce the phonon dispersion curves.
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Figure 2: Computed error in lattice constant (a), elastic modulus (b) and three phonon dispersion curves
(c). The dark line represents median of the Pareto front for each epoch, while the band quantifies the
variance among forcefields on the front.



The outcome of the genetic algorithm optimization is highly dependent on the choice of
optimization metaparameters: population size, crossover and mutation ratios, etc. The forcefields
in Figure 2 were generated by the NSGA-III with a population size of 300 examples. At every
epoch, crossover was performed on 80% of the population using a simulated binary crossover
operator. Mutation was simulated by choosing forcefield parameters from a uniform distribution
between pre-specified lower- and upper-bounds for each decision variable. Tables 1 and 2 show
a representative forcefield for 2H MoSe> on the Pareto front of the final epoch. Nine other
representative forcefields from the same front are provided in the SI.

Table 1: Two-body terms of the Stillinger-Weber forcefield. The two-body interaction term has the form V, =

B Y
4 (riI])‘ 1) exp (rij_rcut).

Interacting Atoms A v B min  TFmax
Se-Se 2.738 1.564 40.208 0.00 4.493
Mo-Se 5.459 0497 13307 0.00 3.345
Mo-Mo 2.899 0.406 38.732 0.00 4.493

Table 2: Three-body angle bending terms in the Stillinger-Weber forcefield. The three-body interaction term
has the form V; = lexp (y—i - L) (cosB — cos6,)?

Tij—T Tik=T2

Triplet A 0o n= ™ rg™ rp™

Y2
Mei’lo' 33107 80154 2.036 3.345 3.345 4.493

Mo-Se- 19.010
Mo

80.154 5.921 3.345 3.345 4.493

Computational Implementation

In addition to lower and upper bounds on each decision variable, forcefield optimization using
NSGA-III algorithm also requires specification of a number of meta-parameters. Some of these
hyper-parameters such as population sizes, crossover and mutation rates and magnitude of
mutation are generic to evolutionary algorithms and other parameters like number of hyper-plane
reference points are specific to the NSGA-III method. The NSGA-III module (nsga3.c)
completes a single iteration of Pareto optimization based on the input population(s). This single
iteration approach allows for generality and optimization of objective functions without explicit
functional forms. The output is two files: a new child population of variables and a copy of the
previous population. This second population will be used in the next iteration as well as the new
population to improve retention of successful forcefields between generations.

Implementation of successive iterations for forcefield optimization is accomplished via a
wrapper workflow script (moga.c). Figure 3 shows the flow of control in the NSGA-III-MOGA
workflow. The implementation of the workflow is parallel, employing the Message Passing
Interface (MPI) library [17, 18]. Each process evaluates the four objectives functions for a single
forcefield in the current population. This is accomplished via the task runner software GULP
[19]. Processes are assigned a line in the population file. The data is then parsed into the input



format required for GULP. The resulting evaluations are collected serially into a single file and
an iteration of Pareto optimization is performed.
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Figure 3: Flow chart showing the various components of the workflow used for implementation of
parallel genetic algorithms

NSGA-III implements a unique reference-point based framework that emphasizes population
members that are non-dominated, yet close to a set of supplied reference points. The essential
components of the previous iterations of the NSGA algorithm [20] were classification of the
population into non-dominated levels (non-dominated sorting), selection of the ‘mating’
population according to rank and identification of the Pareto front (selection), and generation of
the next population via genetic operations (crossover and mutation). NSGA-III includes these
steps as well as the following: normalization of the values of the objective functions
(normalization), association of members of the normalized population to the nearest reference
point on the hyperplane (association), and selection of members among the Pareto front to
maximize the diversity of the population relative to the reference points (niching).

The numerical complexity of the NSGA-III algorithm is O(MN?) where M is the number of
objective and N is the number of populations, hence the algorithm scales as N? based on the
population size. The implementation of the workflow as well as the genetic algorithm code is
done in C++ to ensure the modularity and extending its plug-in capability of variety of MD
simulation engines such as LAMMPS, GULP etc.

Implementation of NSGA-III

The current implementation of NSGA-III is an adaptation of the MATLAB code from the
reference paper of Deb et al. [6]. Briefly, the unique aspects of the algorithm consist of three
operations — normalization, association, and niching, which are described below, along with the
algorithm in its entirety, in pseudocode.



Algorithm Non-dominated-Sort-Genetic Algorithm-III (P, Pv.1)

Input:
P¢: population of the t" generation of size N, containing n tuple element each
P.;: population of the previous generation

Output:
P..i: Population for next generation Py

Steps:
1. Initialization and non-dominated sorting

S,=0,i=1
Rt = PtUPt—l
{F;} = Non — dominatedSort(R;)

2. Loop until size of current population exceeds N
while (|S¢| < N)
S¢ = S;UF;
i=i+1
end while
3. Include more genes until |S;| = N; last front to be included isF; = F;,
if)
Py =S¢
else
1Py =j=1=1F
K more points to be chosen from Fysuchthat K = N — P, V
2.Normalization of objectives and creation of reference setZ,
Normalize)
3. Association of set S with reference points
m,, ds = Associate(S;, Z,.)
ns: closestreferencepoint
ds: distancebetweenreferencepoint A's
4. Compute niche count of reference pointjeZ": p; = Yses/r, (sl 1))
5. Choose K members one at a time fromF, to constructP;, ;
P41 = Niching(K, p;,m,d, 2", F;, Prys)
end if

Algorithm Normalize)

Input: S;:populationsetsuchthatits < N
Z":referencesetchoosenforsamplingofparetofront
Z%: structuredpoints
Z%: suppliedpoints

Output:
f" Z,.pointsonreferencenormalizedhyper — plane




Steps:
1. Computationofidealtranslatetheobjectivesfollowedbycomputationofextremepoints

forj=1M
IdealPointComputation: zj-’"i" = Minges, f;(s)
ObjectiveTranslation: fj (s) = f;(s) — ijinVseSt
ExtremePointComputation: z;"** = s: argmingcs, ASF (s, Wj)WheT‘er =
(e,6,.,6)T
e=10"°Aw; =1
endfor
2. Normalizationofobjectivesf"basedoncomputedinterceptsa;forj = 1,2,3,.....,M
fori=1M
! (x i(x) -z
it = aifiz(in?in = f:i_)zimin
endfor

Algorithm Association(S;, Z")

Input: S;:populationsetsuchthatits < N
Z":referencesetchoosenforsamplingofparetofront

Output:
s nearestreferencepoints
ds: distancebetweens A referencepointmg

Steps:
1. Computationofreferenceline
forzeZ,
Computew = z
endfor
2.Computationofms A d;
forseS,;
forweZ,
dt(s,w)=s—wTs/ |w|v
endfor
endfor
(s) = w:argmin,,.;rd*(s,w)

d(s) = d*(s,n(s))

Algorithm Niching(K, p;,m,d, 27, F;)




Input: K: NumberofmembersstillneedbeincludedF,
pj: Nichecount
ng: NearestreferencepointVseS,
ds: DistanceofseS;respectivern

Output:
P;,: Finalpopulationof fornextgeneration

Steps:
1. Computationof P4
whilek < K
Jmin = Ut argminjezrpj}
Jj = random(Jimin)
I; = {s:m(s) = j,seF;}
ifl; + ¢
Peyy = PrygU (5: argminsajd(s))
else
Piy1 = Pt+1Urandom(Ij)
endif
pj=p;jt+LF =8
k=k+1
else
zm =Z7"/{Jj}
endif
endwhile

Discussion

In contrast to single-objective schemes, which produce a single optimized forcefield that
minimizes the given objective, multi-objective schemes converge to a set of optimal forcefields
that simultaneously minimize errors associated with all objectives. In the presented NSGA-III-
based scheme, this is represented by the Pareto front of mutually non-dominated, reference-point
based forcefields. This Pareto-frontal breakdown of different forcefields for each generation
provides a natural way to establish one of the primary sources of uncertainty in molecular
dynamics simulations — namely the uncertainty in forcefield parameters. Variability in the
computed thermal conductivity between these forcefields gives us the effective epistemic error
due to forcefields parameters. The diversity preservation properties of NSGA-III, including
niching and association to reference points on the hyperplane in the objective space, provide a
more accurate estimate of the uncertainty in thermal conductivity due to errors in forcefield
parameters. This Pareto-frontal uncertainty quantification approach offers an alternative method
to estimate the errors in forcefield parameters [3, 21-24], to complement the predominantly
Bayesian approaches employed in prior studies [25].



Figure 4 shows the computed thermal conductivity of 10 representative forcefields on the Pareto
front of the final generation (Table 1 and SI). The computed x shows a relatively tight
distribution around 31.2 W/mK for a system of size 3200 X 100 A in spite of a relatively large
variation in the forcefield parameters. This error (¢ = 3.07 W/mK) is indicative of the epistemic
error in the forcefield parameters among a set of forcefields that are optimized to reproduce the
physical properties relevant for thermal transport. System level quantum corrections and isotopic
scattering corrections will affect the computed thermal conductivity values from each forcefield
identically and would thus have no significant effect on the calculated variance of thermal
conductivity.
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Figure 4: Computed thermal conductivity values using 10 representative forcefields from the final Pareto

front after 500 epochs for 2H MoSe; crystals. Error-bars on individual points represent uncertainty in
computed thermal conductivity for each forcefield due to variations in the slope of the temperature
profile.

Conclusion

In summary, we describe software to perform multi-objective optimization of atomistic
forcefields for molecular dynamics simulations using the 3™ generation non-dominated-
searching-based genetic algorithm (NSGA-III), which allows for the optimization of forcefields
to reproduce up to 11 physical properties. We demonstrate this multi-objective evolutionary
optimization workflow to construct empirical Stillinger-Weber forcefields to reproduce the
lattice constant, elastic moduli and phonon dispersion curves at different values of lattice strain
for a representative two-dimensional material — 2H-MoSe>. The epistemic uncertainty in
computed thermal conductivity is computed as the standard deviation of thermal conductivity
computed from all forcefields on the Pareto front. Our NSGA-III-based workflow provides a
better estimate of this uncertainty than previous work due to a better sampling of the Pareto front
from the reference-point based preservation of forcefield diversity. This relatively large
parameter and objective space accessible by the NSGA-III algorithm suggests that this method
can be extended to more complex forcefields such as ReaxFF and COMB with significantly
larger parameter sets.

Software Distribution



The source code and documentation for the NSGA-III-MOGA code is available on GitHub at
https://github.com/USCCACS/MOGA-NSGA3. The software is free for use and distributed
under the GNU General Public License v3.0.
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Methods

1. NSGA-III Forcefield Parameterization

Parameterization was performed with population size of 300-500 for 500 generations to achieve
convergence. Parameterization is performed in two stages. We initiate the the first stage with
randomly-generated values for each of the 13 decision variables with magnitudes similar to
previously published values for the isomorphous MoS: crystal [15]. In this stage, we allow a
perturbation of 50% for each parameter around the initial value. The mutation and crossover rate
are also kept high initially at 60% and 40% respectively to ensure that the parameter space is
well-sampled resulting in high diversity in the forcefield population. The forcefields on the
Pareto front in this stage are chosen as the initial population for the second stage of the
parameterization, where we impose a smaller perturbation of 20% with mutation and crossover
rate of 80% and 20% respectively. This two-stage strategy ensures both a broader search of the
parameter space as well as convergence to the global optimum set of forcefields. The MOGA
scripts, moga.c and ga.c, can be compiled with GNU or Intel C++ compilers. The workflow and
NSGA-III code are completely standalone in nature and do not require any external libraries or
module to be downloaded for execution of force field optimization. The method uses GULP [19]
for computing the 5 objectives from the forcefield.

2. Density Functional Theory Simulations

Optimization of 2H MoSe; crystal structures were done quantum mechanically using density
functional theory (DFT) with the projector augmented wave (PAW) [26] method implemented in
the Vienna Ab initio Simulation Package (VASP) [27, 28]. Exchange and correlation effects are
calculated using the Perdew—Burke—Ernzerhof form of the generalized gradient approximation to
the exchange-correlation functional [29]. Valence electron wave functions are constructed using
a plane wave basis set containing components up to a kinetic energy of 450 eV and the reciprocal
space is sampled at the I' point with a 0.1 eV Gaussian smearing of orbital occupancies. DFT
simulations were performed on systems containing 108 atoms, corresponding to 36 formula units
of MoSez, in a simulation cell measuring 19.73 A X 19.73 A along the crystalline a- and b-
directions. A vacuum of 15 A is added along the c-axis of all simulation cells to remove spurious
image interactions. Calculations were performed till each self-consistency cycle is converged in
energy to within 1 X 10> eV/atom and forces on ions are under 1 X 1072 eV/A.

Dynamical stability was inferred from the frequency of normal vibration modes of the 2H crystal
structure. The Hessian matrix was generated within the formalism of density functional
perturbation theory and dispersion relations for normal vibration modes were calculated using
the open-source phonopy package [30].



3. Non-equilibrium molecular dynamics (NEMD) simulations for thermal conductivity
calculations

Thermal conductivity is calculated by the so-called ‘direct’” method using non-equilibrium
molecular dynamics simulations. In this method, a fixed and predefined heat flux, E 0, 1s added to
the kinetic energy of atoms at x = L/4, where L is the dimension of the system along the heat-
transfer direction, and an identical heat flux is removed from the atoms at x = 3 L/4. At steady
state, these thermal fluxes will establish a temperature gradient between L/4 and 3 L/4, which is
related to the thermal conductivity of the materials (as determined by the forcefield) through the
Fourier law of heat conduction. This method [31, 32] provides us with linear temperature
profiles as opposed to the Muller Plathe method [33]. See reference [15] for more details.

i -1
Specifically, k = i -Ey - (Z—D , where A is the cross-sectional area of heat transfer, taken to be
equal to 6.5 A, one-half of the out-of-plane lattice constant in bulk 2H-MoSe: crystals.

Figure 5: Schematic of the NEMD simulations for measuring Thermal Conductivity of 2D Materials

In the systems that we used for testing the forcefields, we use a system of size 3200 X 100 A on
the x and y directions. All the simulations are carried out using LAMMPS (Large Scale
Atomic/Molecular Massively Parallel Simulator) [34]. In these simulations periodic boundary
conditions are applied in all three directions with a vacuum of about 100 A in the z direction to
simulate a thin film. The MD simulations use a timestep of 2 femtoseconds. Conjugate Gradient
relaxation is done initially to obtain the correct box size. Following which the atoms are given a
gaussian distribution of velocities equivalent to 300 K and the system is thermalized as a
constant energy ensemble for 20 picoseconds (ps). This process is repeated 5 times. The system
is then thermalized at 300 K as a constant temperature ensemble for 200 ps after which the
system is ready for carrying out thermal conductivity calculations. NEMD simulations are
performed for 12 nanoseconds (ns) with a timestep of 2 femtoseconds (fs) and an imposed heat
flux of 0.2 eV/ps. The temperature gradient is computed over the last 6 ns of the NEMD
simulation, to ensure that a steady state is established.
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