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Abstract 

Predictive Molecular Dynamics simulations of thermal transport require forcefields that can 
simultaneously reproduce several structural, thermodynamic and vibrational properties of 
materials like lattice constants, phonon density of states, and specific heat. This requires a multi-
objective optimization approach for forcefield parametrization. Existing methodologies for 
forcefield parameterization use ad-hoc and empirical weighting schemes to convert this into a 
single-objective optimization problem. Here, we provide and describe software to perform multi-
objective optimization of Stillinger-Weber forcefields (SWFF) for two-dimensional layered 
materials using the recently developed 3rd generation non-dominated sorting genetic algorithm 
(NSGA-III). NSGA-III converges to the set of optimal forcefields lying on the Pareto front in the 
multi-dimensional objective space. This set of forcefields is used for uncertainty quantification 
of computed thermal conductivity due to variability in the forcefield parameters. We demonstrate 
this new optimization scheme by constructing a SWFF for a representative two-dimensional 
material, 2H-MoSe2 and quantifying the uncertainty in their computed thermal conductivity. 
 
Program Summary 

Program Title: MOGA-NSGA3 
Program Files doi: http://dx.doi.org/10.17632/pbc6nb7hp9.1 
Licensing Provisions: GNU General Public License 3 
Programming Language: C++ 
Nature of problem: Interatomic forcefields used for molecular dynamics simulations of thermal 
conductivity must be parameterized to accurately capture structural and vibrational properties of 
the material system being modeled. Therefore, these forcefields must be simulataneously 
optimized against several (n ≥ 5) material properties. However, such parameterization is difficult 
using existing forcefield parameterization schemes, which are limited to optimization of a single 
or few (n < 3) objectives. 
Solution method: We present software to perform evolutionary optimization of forcefields for 
thermal conductivity simulations using the recently developed 3rd generation non-dominated 
sorting genetic algorithm (NSGA-III). The algorithm’s unique reference-point-based niching and 
non-dominated sorting schemes enable efficient exploration of higher-dimensional objective 
spaces while preserving diversity among forcefield populations. The best set of forcefields on the 
Pareto front are used for estimating uncertainty in computed thermal conductivity due to 
forcefield parameterization. 
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Introduction 
Molecular Dynamics (MD) simulations can be used to model and quantify dynamic processes in 
nanomaterial systems such as suspended monolayer materials that are difficult to measure 
experimentally [1]. Interactions between atoms in these simulations are described by forcefields, 
which are empirical physically-motivated mathematical functions along with an associated set of 
parameters. Optimization of forcefields for thermal transport involves identifying a set of 
forcefield parameters that will most accurately reproduce physical properties like lattice 
constants, elastic constants, and phonon frequencies that govern thermal transport. While this 
parameterization requires simultaneous optimization of multiple properties with different 
physical units, most existing parameterization schemes simplify this into a single objective 
optimization problem by using an ad-hoc empirical weighting schemes to construct a weighted 
sum of objectives. Forcefields constructed using such single objective schemes are highly 
dependent on the choice of objective weights, making it difficult to quantify the uncertainty 
associated with variability in forcefield parameters. 
 
There have been limited attempts at multi-objective forcefield parameterization for complex 
forcefields like ReaxFF and COMB [2] using evolutionary approaches [3-5]. These methods 
have relied on algorithms such as NSGA-II, which are suitable only for optimization of 3 or 
fewer objectives, thus greatly limiting the applications for which forcefields can be optimized 
[3].  In this paper, we present a multi-objective optimization scheme based on the recent the 3rd 
generation non-dominated sorting genetic algorithm (NSGA-III) [6] for the parameterization of 
empirical forcefields of the Stillinger-Weber functional form [7] for modeling thermal transport 
in layered and two-dimensional materials. The NSGA-III algorithm represents a generational 
improvement over existing schemes [8-12] by enabling optimization of forcefields against 
significantly larger number of objectives (up to 11) and also includes a unique reference-point-
based niching scheme for the preservation of diversity among forcefields and thus a more 
thorough sampling of the Pareto front necessary for accurate uncertainty quantification. NSGA-
III also includes a normalization scheme to accommodate objectives which differ either in order 
of magnitude or physical units (e.g. lattice constants in nm vs. phonon frequencies in cm-1). 
 
Stillinger-Weber forcefields (SWFFs) are a family of short-ranged interatomic forcefields with 
simple functional forms suitable for simulating large systems (>>106 atoms) for long times (> 
several ns). They also contain a moderately large set of empirical parameters that can be tuned to 
accurately capture second-order and higher-order interatomic force constants, which govern 
lattice thermal conductivity [13]. Due to this combination of properties, SWFFs have been 
widely used to compute the thermal conductivity of several two-dimensional and layered 
materials. While more complex forcefields with larger sets of tunable parameters may be used 
for thermal transport calculations, their flexibility in accurately describing a very diverse phase 
space of atomic configurations is not required for low-temperature non-equilibrium MD 
simulations, where atoms merely vibrate about their equilibrium positions [14]. Therefore, we 
choose to optimize Stillinger Weber forcefields using our NSGA-III-based scheme. There is a 
large scatter in the computed values of thermal conductivity for the same two-dimensional 
material, MoS2 [15]. While this scatter is partially attributable to variations in the MD simulation 
parameters (system size, choice of equilibrium or non-equilibrium simulations etc.), the majority 



of the variation arises from differences in the forcefields parameters, which differ based on 
choices made during the single-objective parameterization process. 
 
Results 

The SWFF for the 2H-MoSe2 crystal models interactions between atoms using 2-body bonding 
terms and 3-body angle terms [7]. The total potential energy of the given system of N atoms 
located at [r1, r2, …, rN] in the SWFF can be written as  
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where ��� = �� − �� ∨. The 2-body term, ��, is defined as  
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The two-body term is defined by 3 optimizable parameters, �, � and !.  
 
The 3-body term, �� around a central atom % is given by three optimizable parameters, &, !�and 
!� and has the following functional form. Geometric parameters, including interaction cut-off 
distances, �"#$, �"#$� and �"#$� and equilibrium angles, �' are held fixed during parameterization. 
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The forcefield is parameterized against the lattice-constant, elastic constants, and full phonon 
dispersion curves at three values of lattice strain. Ground-truth values of the lattice and elastic 
constants are taken from quantum-mechanical density functional theory (DFT) calculations of 
the 2H and 1T’ monolayer crystal. Mode Grüneisen parameters are calculated by comparing the 
phonon dispersion curve of the relaxed (i.e. strain-free) monolayer with monolayers under 5% 
compressive and tensile biaxial strains. The SWFF is parameterized to minimize 5 objectives – 
the root-mean-square (RMS) distance between the DFT value and forcefield-computed values of 
lattice constant, elastic constant and three phonon dispersion curves (one for each strain state). 
The error associated with phonon dispersions is calculated as the RMS difference in the 
predicted and ground-truth phonon frequencies for each band at each q-point along selected 
high-symmetry directions (Figure 1d). The error is equal to a weighted sum of RMS frequency 
difference values for each band. The weights are chosen to give a greater priority to acoustic 
vibrational modes. Specifically, in our optimization, the relative weights assigned to the three 
lowest-energy bands are 30 times the values assigned to the remaining (higher-frequency optical) 
bands. This choice ensures a more accurate reproduction of acoustic bands by the optimized 
forcefields and is motivated by previous observations that acoustic phonons are responsible for 
the majority of lattice thermal transport in semiconducting and insulating systems [16]. Details 
about the DFT calculations for computing ground-truth values are given in the Methods section. 
 
Parameterization of 2H MoSe2 

The monolayer 2H phase of MoSe2 has a honeycomb crystal structure with hexagonal unit cell 
composed of a layer of 6-fold coordinated Mo atoms sandwiched between two planes of 3-fold 
coordinated Se atoms in an ABA stacking sequence (Figure 1). The crystal structure consists of 
two atom types – Mo and Se, and can be effectively described by three two-body interactions – 



Mo-Mo, Se-Se and Mo-Se along with two three-body interaction – Mo-Se-Mo and Se-Mo-Se. 
Excluding the interaction cutoff distances, , �"#$, �"#$� and �"#$�, the SWFF for the MoSe2 
system can be characterized by 13 design variables, which must be parameterized to minimize 5 
objectives (lattice constant, elastic constant, phonon dispersion curves at three values of lattice 
strain). 

 

 
Figure 1: (a, b) Crystal structure of MoSe2 showing two distinct atom types and (c) Phonon dispersion of 
the unstrained monolayer along high-symmetry directions (d) in the Brillouin zone. 
 
Figure 2 shows the reduction in the computed errors of all five objectives during forcefield 
optimization. The dark band indicates the variance in the measured objective between the 
different forcefields on the Pareto front at each generation. It is noticeable that the lattice 
constant and elastic moduli are sensitive to the variation of forcefield parameters, as indicated by 
the relatively large variance in computed errors. In contrast, the computed errors in phonon 
frequencies at all strain levels falls within a narrow band, indicating that all the forcefields on the 
front accurately reproduce the phonon dispersion curves. 
 

 
Figure 2: Computed error in lattice constant (a), elastic modulus (b) and three phonon dispersion curves 
(c). The dark line represents median of the Pareto front for each epoch, while the band quantifies the 
variance among forcefields on the front. 

 



The outcome of the genetic algorithm optimization is highly dependent on the choice of 
optimization metaparameters: population size, crossover and mutation ratios, etc. The forcefields 
in Figure 2 were generated by the NSGA-III with a population size of 300 examples. At every 
epoch, crossover was performed on 80% of the population using a simulated binary crossover 
operator. Mutation was simulated by choosing forcefield parameters from a uniform distribution 
between pre-specified lower- and upper-bounds for each decision variable. Tables 1 and 2 show 
a representative forcefield for 2H MoSe2 on the Pareto front of the final epoch. Nine other 
representative forcefields from the same front are provided in the SI.  
 
Table 1: Two-body terms of the Stillinger-Weber forcefield. The two-body interaction term has the form �� =
� + ,

-./0
− 11 �� + 2

-./3-4561. 

Interacting Atoms A γ B rmin rmax 

Se-Se 2.738 1.564 40.208 0.00 4.493 
Mo-Se 5.459 0.497 13.307 0.00 3.345 
Mo-Mo 2.899 0.406 38.732 0.00 4.493 

 

Table 2: Three-body angle bending terms in the Stillinger-Weber forcefield. The three-body interaction term 

has the form �� = &�� + 27
-./3-7 − 28

-.93-81 �()*� − ()*�'	� 

Triplet λ θ0 
γ1 = 

γ2 
r12

max r13
max r23

max 

Me-Mo-
Se 

53.107 
80.154 2.036 3.345 3.345 4.493 

Mo-Se-
Mo 

19.010 
80.154 5.921 3.345 3.345 4.493 

 
Computational Implementation 

In addition to lower and upper bounds on each decision variable, forcefield optimization using 
NSGA-III algorithm also requires specification of a number of meta-parameters. Some of these 
hyper-parameters such as population sizes, crossover and mutation rates and magnitude of 
mutation are generic to evolutionary algorithms and other parameters like number of hyper-plane 
reference points are specific to the NSGA-III method. The NSGA-III module (nsga3.c) 
completes a single iteration of Pareto optimization based on the input population(s). This single 
iteration approach allows for generality and optimization of objective functions without explicit 
functional forms. The output is two files: a new child population of variables and a copy of the 
previous population. This second population will be used in the next iteration as well as the new 
population to improve retention of successful forcefields between generations. 
 
Implementation of successive iterations for forcefield optimization is accomplished via a 
wrapper workflow script (moga.c). Figure 3 shows the flow of control in the NSGA-III-MOGA 
workflow. The implementation of the workflow is parallel, employing the Message Passing 
Interface (MPI) library [17, 18]. Each process evaluates the four objectives functions for a single 
forcefield in the current population. This is accomplished via the task runner software GULP 
[19]. Processes are assigned a line in the population file. The data is then parsed into the input 



format required for GULP. The resulting evaluations are collected serially into a single file and 
an iteration of Pareto optimization is performed.  
 

 
Figure 3: Flow chart showing the various components of the workflow used for implementation of 
parallel genetic algorithms 
 
NSGA-III implements a unique reference-point based framework that emphasizes population 
members that are non-dominated, yet close to a set of supplied reference points. The essential 
components of the previous iterations of the NSGA algorithm [20] were classification of the 
population into non-dominated levels (non-dominated sorting), selection of the ‘mating’ 
population according to rank and identification of the Pareto front (selection), and generation of 
the next population via genetic operations (crossover and mutation). NSGA-III includes these 
steps as well as the following: normalization of the values of the objective functions 
(normalization), association of members of the normalized population to the nearest reference 
point on the hyperplane (association), and selection of members among the Pareto front to 
maximize the diversity of the population relative to the reference points (niching). 
 
The numerical complexity of the NSGA-III algorithm is O(MN2) where M is the number of 
objective and N is the number of populations, hence the algorithm scales as N2 based on the 
population size. The implementation of the workflow as well as the genetic algorithm code is 
done in C++ to ensure the modularity and extending its plug-in capability of variety of MD 
simulation engines such as LAMMPS, GULP etc.   
 
Implementation of NSGA-III 

The current implementation of NSGA-III is an adaptation of the MATLAB code from the 
reference paper of Deb et al. [6]. Briefly, the unique aspects of the algorithm consist of three 
operations – normalization, association, and niching, which are described below, along with the 
algorithm in its entirety, in pseudocode. 
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Algorithm Non-dominated-Sort-Genetic Algorithm-III (Pt, Pt-1) 
 
Input: 

Pt:  population of the tth generation of size N, containing n tuple element each 
Pt-1: population of the previous generation 

 
Output: 

       Pt+1: Population for next generation Pt+1  
 

Steps: 

 1. Initialization and non-dominated sorting 
  :$ = ∅, % = 1 
  <$ = =$>=$3� 
  ?@�A = B)C − D)E%CFG�D:)�G�<$	 
  
 2. Loop until size of current population exceeds N 
  while (|:$| < B) 
   :$ = :$>@� 

   % = % + 1 
  end while 
 3. Include more genes until |:$| = B; last front to be included is@Z = @� , 
  %[ ) 
   =$\� = :$  
  �]*� 
   1. =$\� = _ = 1] = 1@�  

    K more points to be chosen from Fl such that e = B − =$\� ∨ 
   2.Normalization of objectives and creation of reference setZr 
    B)�EF]%k�) 

   3. Association of set S with reference points 
    op, Dp = �**)(%FG��:$, q-	 
    op: (])*�*G��[���C(� )%CG 
    Dp: D%*GFC(�s�Gt��C��[���C(� )%CG ∧ *  
   4. Compute niche count of reference point_wq-: x� = ∑ �op| |_	pz{ |}⁄  

   5. Choose K members one at a time fromFl to construct=$\�  

    =$\� = B%(ℎ%C�
e, x�, o, D, q-, @Z , =$\��      
  end if 

 

 
 
Algorithm B)�EF]%k�) 
 
Input:   :$:  ) �]FG%)C*�G*�(ℎGℎFG%G* ≤ B 
 q-: ��[���C(�*�G(ℎ))*�C[)�*FE ]%C�)[ F��G)[�)CG  
 qp: *G��(G���D )%CG* 
 q�: *�  ]%�D )%CG* 
 
Output: 

       [�, q- )%CG*)C��[���C(�C)�EF]%k�Dℎ� �� −  ]FC�  



 

Steps: 1. �)E �GFG%)C)[%D�F]G�FC*]FG�Gℎ�)s_�(G%��*[)]])t�Ds�()E �GFG%)C)[��G��E� )%CG* 

  [)�_ = 1� 

   �D�F]=)%CG�)E �GFG%)C: k���� = E%Cpz{6[��*	 

   �s_�(G%����FC*]FG%)C: [���*	 = [��*	 − k����∀*w:$  

   ��G��E�=)%CG�)E �GFG%)C: k���� = *: F��E%Cpz{6�:@
*, t��tℎ���t� =
�w, w, . , w	�   

         w = 103� ∧ t� = 1 

  �CD[)� 
 2. B)�EF]%kFG%)C)[)s_�(G%��*[�sF*�D)C()E �G�D%CG��(� G*F�[)�_ = 1,2,3, … . . , � 

  [)�% = 1� 

   [�� = �.���	
�.3�.�.� = �.��	3�.�.�

�.3�.�.�  

  �CD[)�        

 

 

 

Algorithm �**)(%FG%)C�:$, q-	 
 
Input:   :$:  ) �]FG%)C*�G*�(ℎGℎFG%G* ≤ B 
 q-: ��[���C(�*�G(ℎ))*�C[)�*FE ]%C�)[ F��G)[�)CG  
 

Output: 

        op: C�F��*G��[���C(� )%CG* 
 Dp: D%*GFC(�s�Gt��C* ∧ ��[���C(� )%CGop 
 

Steps: 

 1. �)E �GFG%)C)[��[���C(�]%C� 
  [)�kwq-  
   �)E �G�t = k 

  �CD[)� 
 2. �)E �GFG%)C)[op ∧ Dp 
  [)�*w:$ 
   [)�twq-  

    D��*, t	 = * − t� *⁄ |t| ∨ 
   �CD[)� 
  �CD[)� 

  o�*	 = t: F��E%C�z��D��*, t	 

  D�*	 = D�
*, o�*	�   

 

 

 

 

Algorithm B%(ℎ%C�
e, x�, o, D, q-, @Z� 



 
Input:   e: B�Es��)[E�Es��**G%]]C��Ds�%C(]�D�D@Z  
 x�: B%(ℎ�()�CG 

 op: B�F��*G��[���C(� )%CG∀*w:$  
 Dp: �%*GFC(�)[*w:$��* �(G%��op  
 

Output: 

        =$\�: @%CF] ) �]FG%)C)[[)�C��G��C��FG%)C 

 

Steps: 

 1. �)E �GFG%)C)[=$\� 
  tℎ%]�� ≤ e 
    ��� = ?_: F��E%C�z��x�A 

   ¡́ = �FCD)E� ���	 
   �� = ?*: o�*	 = ¡́, *w@ZA 

   %[�£́ ≠ ¥ 

    %[x£́ = 0 

     =$\� = =$\�> +*: F��E%C{z¦/D�*	1 

    �]*� 

     =$\� = =$\�>�FCD)E
�£́� 

    �CD%[ 
    x£́ = x£́ + 1, @Z = @Z 

    � = � + 1 

   �]*� 
    q- = q- ?⁄ ¡́A 

   �CD%[ 
  �CDtℎ%]� 

   

 

 

Discussion 

In contrast to single-objective schemes, which produce a single optimized forcefield that 
minimizes the given objective, multi-objective schemes converge to a set of optimal forcefields 
that simultaneously minimize errors associated with all objectives. In the presented NSGA-III-
based scheme, this is represented by the Pareto front of mutually non-dominated, reference-point 
based forcefields. This Pareto-frontal breakdown of different forcefields for each generation 
provides a natural way to establish one of the primary sources of uncertainty in molecular 
dynamics simulations – namely the uncertainty in forcefield parameters. Variability in the 
computed thermal conductivity between these forcefields gives us the effective epistemic error 
due to forcefields parameters. The diversity preservation properties of NSGA-III, including 
niching and association to reference points on the hyperplane in the objective space, provide a 
more accurate estimate of the uncertainty in thermal conductivity due to errors in forcefield 
parameters. This Pareto-frontal uncertainty quantification approach offers an alternative method 
to estimate the errors in forcefield parameters [3, 21-24], to complement the predominantly 
Bayesian approaches employed in prior studies [25]. 



 
Figure 4 shows the computed thermal conductivity of 10 representative forcefields on the Pareto 
front of the final generation (Table 1 and SI). The computed κ shows a relatively tight 
distribution around 31.2 W/mK for a system of size 3200 ⨉ 100 Å in spite of a relatively large 
variation in the forcefield parameters. This error (σ = 3.07 W/mK) is indicative of the epistemic 
error in the forcefield parameters among a set of forcefields that are optimized to reproduce the 
physical properties relevant for thermal transport. System level quantum corrections and isotopic 
scattering corrections will affect the computed thermal conductivity values from each forcefield 
identically and would thus have no significant effect on the calculated variance of thermal 
conductivity. 
 

 
Figure 4: Computed thermal conductivity values using 10 representative forcefields from the final Pareto 
front after 500 epochs for 2H MoSe2 crystals. Error-bars on individual points represent uncertainty in 
computed thermal conductivity for each forcefield due to variations in the slope of the temperature 
profile. 
 
Conclusion 

In summary, we describe software to perform multi-objective optimization of atomistic 
forcefields for molecular dynamics simulations using the 3rd generation non-dominated-
searching-based genetic algorithm (NSGA-III), which allows for the optimization of forcefields 
to reproduce up to 11 physical properties. We demonstrate this multi-objective evolutionary 
optimization workflow to construct empirical Stillinger-Weber forcefields to reproduce the 
lattice constant, elastic moduli and phonon dispersion curves at different values of lattice strain 
for  a representative two-dimensional material – 2H-MoSe2. The epistemic uncertainty in 
computed thermal conductivity is computed as the standard deviation of thermal conductivity 
computed from all forcefields on the Pareto front. Our NSGA-III-based workflow provides a 
better estimate of this uncertainty than previous work due to a better sampling of the Pareto front 
from the reference-point based preservation of forcefield diversity. This relatively large 
parameter and objective space accessible by the NSGA-III algorithm suggests that this method 
can be extended to more complex forcefields such as ReaxFF and COMB with significantly 
larger parameter sets. 
 
Software Distribution 



The source code and documentation for the NSGA-III-MOGA code is available on GitHub at 
https://github.com/USCCACS/MOGA-NSGA3. The software is free for use and distributed 
under the GNU General Public License v3.0. 
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Methods 

1. NSGA-III Forcefield Parameterization 

Parameterization was performed with population size of 300-500 for 500 generations to achieve 
convergence. Parameterization is performed in two stages. We initiate the the first stage with 
randomly-generated values for each of the 13 decision variables with magnitudes similar to 
previously published values for the isomorphous MoS2 crystal [15]. In this stage, we allow a 
perturbation of 50% for each parameter around the initial value. The mutation and crossover rate 
are also kept high initially at 60% and 40% respectively to ensure that the parameter space is 
well-sampled resulting in high diversity in the forcefield population. The forcefields on the 
Pareto front in this stage are chosen as the initial population for the second stage of the 
parameterization, where we impose a smaller perturbation of 20% with mutation and crossover 
rate of 80% and 20% respectively. This two-stage strategy ensures both a broader search of the 
parameter space as well as convergence to the global optimum set of forcefields. The MOGA 
scripts, moga.c and ga.c, can be compiled with GNU or Intel C++ compilers. The workflow and 
NSGA-III code are completely standalone in nature and do not require any external libraries or 
module to be downloaded for execution of force field optimization. The method uses GULP [19] 
for computing the 5 objectives from the forcefield.  
 
2. Density Functional Theory Simulations 

Optimization of 2H MoSe2 crystal structures were done quantum mechanically using density 
functional theory (DFT) with the projector augmented wave (PAW) [26] method implemented in 
the Vienna Ab initio Simulation Package (VASP) [27, 28]. Exchange and correlation effects are 
calculated using the Perdew–Burke–Ernzerhof form of the generalized gradient approximation to 
the exchange-correlation functional [29]. Valence electron wave functions are constructed using 
a plane wave basis set containing components up to a kinetic energy of 450 eV and the reciprocal 
space is sampled at the ¨ point with a 0.1 eV Gaussian smearing of orbital occupancies. DFT 
simulations were performed on systems containing 108 atoms, corresponding to 36 formula units 
of MoSe2, in a simulation cell measuring 19.73 Å ⨉ 19.73 Å along the crystalline a- and b-
directions. A vacuum of 15 Å is added along the c-axis of all simulation cells to remove spurious 
image interactions. Calculations were performed till each self-consistency cycle is converged in 
energy to within 1 × 103ª eV/atom and forces on ions are under 1 × 103� eV/Å.  
 
Dynamical stability was inferred from the frequency of normal vibration modes of the 2H crystal 
structure. The Hessian matrix was generated within the formalism of density functional 
perturbation theory and dispersion relations for normal vibration modes were calculated using 
the open-source phonopy package [30]. 



 
3. Non-equilibrium molecular dynamics (NEMD) simulations for thermal conductivity 

calculations 

Thermal conductivity is calculated by the so-called ‘direct’ method using non-equilibrium 
molecular dynamics simulations. In this method, a fixed and predefined heat flux, �'́, is added to 
the kinetic energy of atoms at � = « 4⁄ , where « is the dimension of the system along the heat-
transfer direction, and an identical heat flux is removed from the atoms at � = 3 « 4⁄ . At steady 
state, these thermal fluxes will establish a temperature gradient between « 4⁄  and 3 « 4⁄ , which is 
related to the thermal conductivity of the materials (as determined by the forcefield) through the 
Fourier law of heat conduction. This method  [31, 32] provides us with linear temperature 
profiles as opposed to the Muller Plathe method [33]. See reference [15] for more details.  

Specifically, ­ = �
�® ⋅ �'́ ⋅ °±�

±�²3�
, where � is the cross-sectional area of heat transfer, taken to be 

equal to 6.5 Å, one-half of the out-of-plane lattice constant in bulk 2H-MoSe2 crystals. 
 

 
Figure 5: Schematic of the NEMD simulations for measuring Thermal Conductivity of 2D Materials 

In the systems that we used for testing the forcefields, we use a system of size 3200 ⨉ 100 Å on 
the � and � directions. All the simulations are carried out using LAMMPS (Large Scale 
Atomic/Molecular Massively Parallel Simulator) [34]. In these simulations periodic boundary 
conditions are applied in all three directions with a vacuum of about 100 Å in the k direction to 
simulate a thin film. The MD simulations use a timestep of 2 femtoseconds. Conjugate Gradient 
relaxation is done initially to obtain the correct box size. Following which the atoms are given a 
gaussian distribution of velocities equivalent to 300 K and the system is thermalized as a 
constant energy ensemble for 20 picoseconds (ps). This process is repeated 5 times. The system 
is then thermalized at 300 K as a constant temperature ensemble for 200 ps after which the 
system is ready for carrying out thermal conductivity calculations. NEMD simulations are 
performed for 12 nanoseconds (ns) with a timestep of 2 femtoseconds (fs) and an imposed heat 
flux of 0.2 eV/ps. The temperature gradient is computed over the last 6 ns of the NEMD 
simulation, to ensure that a steady state is established.  
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