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Abstract

We have studied the molybdenum dimer (Mo2) system. The binding energy was calculated by means
of the �xed-node DMC (FN-DMC) method. The Slater part of the trial wave function was constructed
by the Selected-CI method by using the orbitals generated by the KS-DFT method with a hybrid meta-
GGA exchange and correlation functional, TPSSh. We also carried out CCSD(T) calculations which were
subsequently extrapolated to the complete basis set (CBS) limit. The results are presented.
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1. Introduction

As a transition metal, molybdenum (Mo) often ful�lls important role in electronic structure properties
of a number of chemical systems. This versatility stems from its half-�lled outer d-shell with signi�cant
degeneracies and tendency to form multiple bonds. These systems host a rich spectrum of many-body e�ects
due to strong correlations so it is not surprising that they also pose challenges for theoretical studies [1�13].5

Computationally e�cient and popular electronic structure techniques such as Density Functional Theory
(DFT) method have a mixed reliability for these types of correlated systems. Obviously, investigations by
alternatives with signi�cantly higher accuracy are highly desirable.

Mo and its isoelectron atomic counterparts (Cr and W in the group VIB) with their �ve nd and (n+ 1)s
orbitals form dimers (Cr2, Mo2 and W2) with a high multiplicity of bonds. However, due to the di�erent10

characteristics of nd orbitals, the nature of corresponding bonding varies. In particular, in Cr2 d orbitals
are more localized when compared with Mo2. Interestingly, Cr2 has a much smaller binding energy than
Mo2 [8] despite having much smaller bond length. This somewhat counterintuitive fact is due to the very
strong electron-electron repulsion in the molecular orbitals formed mainly from the d−channel.

Mo2 is a low spin-state molecule with ground state 1
∑+
g and it dissociates into an atomic state with

maximized spin-state, 7S. Mo2 has nominally sextuple bond with the following diatomic orbitals:

σ2
g(d)π4

u(d)δ4g(d)σ2
g(s). (1)

Due to multiple degeneracies and high electron density in the bond region of Mo2 and similar systems,15

their binding energy calculations have been a di�cult task for ab initio methods[3]. For instance, Kohn
Sham DFT gives very scattered values with di�erent types of exchange-correlation functionals; the binding
energy is biased by the choice of the functionals [13]. Also, CASSCF level methods underestimate the
binding energy, often with a large degree discrepancy [14].
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In this paper we have aimed at calculating the binding energy of Mo2 by using the �xed-node di�usion20

Monte Carlo (FN-DMC), a projector QMC method in real space of electron coordinates. FN-DMC employs
a stochastic many-body methodology with sophisticated trial functions [15, 16]. Its accuracy, however,
depends on the quality of the nodal structure (i.e., the sign structure) of the trial wave function since
its nodes are only approximate. Our trial wave function was of a Slater-Jastrow type, i.e., a product of
linear combination of Slater determinants and a Jastrow factor. Since the ground state of Mo2 needs to25

be represented with a multi-referenced wave function, su�ciently extensive linear combination of Slater
determinants in the trial wave function is crucial. The method is computationally demanding and most of
the QMC computational is spent on evaluating the trial wave function, its gradients and laplacians [16�18].
Hence, while the trial wave function should re�ect the exact wave function (or the exact nodes) to the
highest possible extent, the wave function should be as compact as possible in order to achieve the optimal30

trade-o� between the accuracy and the computational time demands.
To this end, there are determinant update methods [19] which allow us to lower the complexity of the

computational time to evaluate the value, gradients and laplacian of a determinant expansion. Hence, the
computational time is not necessarily linear with the number of determinants but could possibly exhibit a
more favorable scaling such as

√
Ndet [20], where Ndet is the number of determinants.35

Fortunately, FN-DMC usually converges much faster than CI type methods regarding the number of
determinants, provided that the most signi�cant determinants are included in the expansion. For instance,
in Ref. [21], it was demonstrated that FN-DMC was able to account 98-99% of the correlation energy of a
small atomic system with only two Con�guration State Functions (CSFs). A similar accuracy was achieved
by the full CI method with a much larger number of CSFs. Therefore, it is highly desirable to devise a40

determinant selection method.
The construction of the Slater part of the wave function (i.e., the selection of the determinants) can be

done by Con�guration Interaction (CI) or MCSCF type of methods. Here we opted for higher e�ciency
o�ered by Selected-CI method [20, 22�25] to build the anti-symmetric component. The Selected-CI method
(see Appendix A) enables to pick-up the most signi�cant determinants iteratively from a determinant space45

which can be generated with signi�cant �exibility on-the-�y. In addition, a faster convergence can be
obtained once the single-particle orbitals are also reoptimized in the process. We examined single-electron
orbitals generated by di�erent methods in order to have a rapid start into the Selected-CI process.

In order to compare our �xed-node DMC results, we carried out CCSD(T) (i.e., Coupled Cluster, Singles,
Doubles with Triples treated approximately) calculations as well. The CCSD(T) results are extrapolated to50

the complete basis set (CBS) limit which is believed to provide a highly accurate prediction.
The rest of the paper will be organized as follows: the method and computational details will be discussed

in Section 2. The results and discussion will be presented in Section 3. Concluding remarks are given in
Section 4. Finally, the Selected-CI method is summarized in Appendix A.

2. Method and Computational Details55

2.1. Fixed-Node Di�usion Monte Carlo

Di�usion quantum Monte Carlo (DMC) is a projection QMC method in which the ground state of a
given symmetry can be obtained by applying the projector operator e−t(H−E0) to a trial wave function of
the same symmetry:

Φ0 = lim
t→∞

e−t(H−E0)ψT (2)

where Φ0 and ψT are the ground state and trial wave functions, respectively. Therein, H is the Hamiltonian,
E0 is an energy o�set and t is a real parameter (imaginary time). Due to the e�ciency concerns, one usually
prefers the importance sampling, and hence, instead of Eq. 2, the projection takes the following form:

f(R, t+ τ) =

∫
dR′G̃(R← R′, τ)f(R′, t) (3)
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where G̃(R ← R′, τ) is the Green's function, R and R′ represent electronic con�gurations and τ is the
propagation time step. f(R, t) is the probability density function which converges to the ground state in
the form of limt→∞ f(R, t) = Φ0(R)ψT (R). In Eq. 3, the short-time Green's function is given as G̃(R ←
R′, τ) = 〈R|e−τ(H−E0)|R′〉ψT (R)ψT (R′)−1. Due to the fermionic nature of wave functions, one faces the60

well-known fermion sign problem which can be circumvented by using the �xed-node approximation[15, 16,
26�28] among a few prescriptions. In the �xed-node approximation, the sign structure (nodes) of a trial wave
function ψT (R) is adopted as approximate nodes of the exact wave function Φ0(R). This will guarantee
that f(R, t) ≥ 0 and hence the integral equation introduced in Eq. 3 can now be solved stochastically in
an e�cient manner. The �xed-node bias which is a consequence of approximate nodes taken from a trial65

wave function is an important drawback in the application of the �xed-node Di�usion quantum Monte Carlo
(FN-DMC), which is otherwise an exact method in principle. The �xed-node error vanishes as the nodes of
a trial wave function becomes exact. Although the exact nodes are di�cult to estimate except in a few small
systems, FN-DMC is known with its high accuracy which can reproduce the experimental results within a
marginal error.70

2.2. Computational Details

In our calculations, the single-particle orbitals were generated by a hybrid meta-GGA DFT method,
TPSSh, with an uncontracted form of the basis sets denoted as cc-pV5Z-PP. The core electrons were
removed from the calculation by employing the e�ective core potentials (ECPs) adapted from Ref. [29]
so that 4s4p4d5s electrons are explicitly considered. The generation of the single-particle orbitals and75

calculations of the one-body and two-body integrals were done with the quantum Chemistry software package
GAMESS-US [30]. The one-body and two-body integrals were subsequently exploited in the selected-CI
calculations.

The trial wave functions used in our QMC calculations were multi-determinant Slater-Jastrow type
wave functions. The Jastrow factor contains electron-nucleus, electron-electron and electron-electron-nucleus80

terms. The determinant coe�cients and the Jastrow function were optimized in the framework of Variational
Monte Carlo (VMC) method[31], a variant in the QMC methodology. We observed that the determinant
coe�cients obtained by a Selected-CI calculation were not always optimum, and therefore, it was essential
to re-optimize them with the VMC method.

In addition to FN-DMC, we carried out CCSD(T) calculations with a subsequent extrapolation to the85

CBS limit. For this purpose, we employed hierarchically designed correlated basis sets, aug-cc-pVXZ-
PP, where X is the cardinal number of the basis set [29]. We used the uncontracted form of the basis
sets and no frozen core was assumed. For the sake of consistency, in both of the QMC and CCSD(T)
calculations the same ECPs were preferred. The original pseudopotentials were slightly modi�ed to avoid
a potential singularity at nuclei centers which causes large �uctuations in local energy values of QMC. The90

QMC calculations and CCSD(T) calculations were carried out by using the quantum chemistry packages
QWalk [32] and Gaussian09 [33], respectively.

For the CCSD(T)/CBS energy extrapolation we used �ve schemes[34�38] which will be denoted as CBSn
where n = 1, 2, .., 5. The �rst one, CBS1, is an exponential scheme[38]:

E(X) = E(∞) +Ae−BX (4)

where E(∞) = Ecbs, E(X) is the energy with a given basis set, and X is the cardinal number of the basis
set. E(∞), A and B are �tting parameters. The second one, CBS2, is a power extrapolation scheme[34]
given by:

E(X) = E(∞) +AX−B , (5)

the third one, CBS3, is a mixed exponential scheme[35]:

E(X) = E(∞) +Ae−(X−1) +Be−(X−1)
2

, (6)
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the fourth one[39], CBS4, is

E(`) = E(∞) +
A

(`+ 1
2 )B

, (7)

where ` is the maximum angular momentum quantum number in the basis set, and the last one[39], CBS5,
is with integer exponents:

E(`) = E(∞) +
A

(`+ 1
2 )4

+
B

(`+ 1
2 )6

. (8)

The HF energies were also extrapolated to the CBS limit with the following formula:

EHF(X) = EHF(∞) +A(X + 1)e−γ
√
X (9)

where EHF(∞) is the CBS limit of the Hartree-Fock (HF) energy, and EHF(∞), A and γ are �tting param-
eters.

We should also note that all calculations were done at the experimental bond length, i.e., 1.93 Å [9].95

3. Results and Discussion

The DMC and VMC energies of the dimer state (Mo2) with respect to the number of determinants in
the trial wave function are given in Fig. 1. The percentages of the correlation energy recovered by DMC to
the estimated exact correlation energy are also presented in the same �gure. The estimation of the exact
energy of the dimer state was based on the atomic DMC energy, the experimental value for the binding100

energy (4.29(2) eV) and the estimated zero-point-energy (0.03 eV). This is, however, a biased estimation as
the experimental reports in the literature do not imply a clear consistency among each other (see Table 2).
Despite this, such an estimation can still be helpful to depict the performence of our calculations.

The number of determinants was up to 3500. The DMC energy apparently converged to a value with
respect to the number of determinants. We observed that a further noticeable energy drop was only possible105

if a substantially high number of additional determinants were considered in the trial wave function. This
is because the energy contribution of determinants selected iteratively by the Selected-CI method drops in
a geometric fashion as the number of determinants increases. Hence, the expansion of initial determinants
is relatively easy to optimize. However, as the expansion of the determinants grows, the wave function will
contain many determinants with low energy contributions, thereby making the optimization more challeng-110

ing.
A faster convergence can be reached by exploiting higher quality single-particle orbitals. After examining

orbitals generated by di�erent techniques such as HF orbitals, natural orbitals generated by CISD with
various virtual orbital spaces and DFT orbitals, we observed that DFT orbitals provide lower energies.
Also, among many types of functionals, TPSSh,which is a hybrid meta-GGA DFT functional, was found to115

yield slightly better orbitals.
The same optimization procedure was followed for the atomic state as well. Since the error cancellation �

i.e., mainly the �xed-node error cancellation in our case� plays a crucial role in energy di�erence calculations,
it was important to treat the atomic and dimer states on an equal footing. However, unlike the dimer that
is well-known to have a highly multi-reference wave function, the atomic state is dominated by a single-120

reference and hence the optimization yielded very small multi-reference expansion coe�cients. Therefore,
the atomic multi-determinant wave function resulted only in negligible total energy improvements.

Nevertheless, as it is given in Fig. 1, the DMC calculation of Mo2 with 3500 determinants gained a high
percentage, 98.20(3)%, of the correlation energy.

In Table 1, the CCSD(T) and HF energies calculated with the correlation-consistent basis sets, aug-cc-125

pVXZ-PP, and their extrapolations to the CBS limit according to the aforementioned schemes are given.
In Fig. 2, the extrapolation of the HF energies of Mo and Mo2 following the scheme given in Eq. 9 is
presented. The CBS extrapolations of the CCSD(T) energies of Mo and Mo2 according to the �ve schemes
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introduced in Eqs. 4-8 are shown in Figs. 3 and 4, respectively. The binding energies calculated by the
DMC and CCSD(T) methods are presented in Table 2. In addition to the current work, other theoretical130

and experimental reports in the literature are also given in the same table. One can notice that the binding
energies shown in Table 2 are calculated method-consistently; i.e., the energies of Mo and Mo2 are considered
in the same level of method.

It is remarkable that although the DMC method provides lower energies than CCSD(T)/aug-pVXZ-PP
does in both of the atomic and dimer states, the binding energies obtained by CCSD(T)/aug-pVXZ-PP135

are closer to the experimental values than DMC/MDSJ (DMC with a multi-determinant Slater-Jastrow
type trial wave function) is. This indicates that the error cancellation is in favor of the CCSD(T)/aug-
pVXZ-PP method compared to DMC/MDSJ. One can deduce that the balance of the �xed-node DMC
biases is less even in di�erent systems and this is well-known to cause increase in the corresponding bias,
see for example Ref. [40]. Arguably, Mo dimer is a case where this aspect comes to the forefront due to140

the signi�cant di�erences between single-reference vs. multi-reference wave functions of atomic vs. dimer
states, respectively. This can be partially alleviated by improving the trial wave functions as presented here.
Clearly, one of our goals was to shed some light on how e�ective the multi-reference expansions with medium
size of the excitation space can be for these types of systems. The corresponding binding energies calculated
by the �xed-node DMC method with an increasing number of determinants are presented in Table 3.145

The CBS extrapolation aims at lifting the bias introduced due to the truncated basis sets. CCSD(T)/CBS
energies in both Mo and Mo2 are lower than DMC/MDSJ energies. The main reason for this missing
correlation energy in DMC/MDSJ is the �xed-node bias. The �xed-node bias can vanish if the trial wave
function nodes are the same as the nodes of the exact wave function. Such a wave function, in principle,
could be constructed if we were able to optimize and run a complete set of determinants; albeit this is not150

possible. In other words, similar to the bias originating from the �nite basis set in CCSD(T), DMC su�ers
from the �xed-node bias which is indirectly associated with the �nite set of determinants in our speci�c
case. The unfortunate point for the DMC method is that unlike well-developed systematic extrapolation
schemes to the CBS limit in CCSD(T)/aug-pVXZ-PP, there is no such a fully developed method that would
extrapolate DMC energies from �nite numbers of the determinants to the in�nite number of determinants.155

CCSD(T)/CBS methods provide binding energies with a satisfactory agreement with the experimental
values. DMC, however, underestimates the binding energy by almost 0.5-0.7 eV. On the other hand, the
binding energy can be a misleading quantity to compare the accuracy of the methods due to error can-
cellations. It is known that DMC and CCSD(T) are competitive methods which can produce results with
a similar accuracy. Nevertheless, the well-developed CBS extrapolation schemes deliver a systematic ad-160

vantage to CCSD(T)/CBS. From a feasibility point of view, however, DMC is much more practical than
CCSD(T) due to the time scaling and parallelism in QMC. As the system size increases CCSD(T) is simply
ruled out.

Mo2, with d-d bondings, was expected to pose a great challenge for the �xed-node DMC. This is because
the �xed-node bias increases with electron density and non-linearity on nodal surface[40] which are presum-165

ably abundant in d-d bondings. One of the remedies is to employ a multi-referenced trial wave function of a
high quality. As shown in Table 1, DMC recovers almost 98% of the correlation energy which is, in fact, an
indicator of high quality of the trial wave functions constructed. However, the missing 2% of the correlation
energy has a signi�cant importance. In order to recover the missing correlation energy, one can construct
the trial wave functions with a better set of single-particle orbitals than the ones we have already examined170

in this study or construct the trial wave function by including more determinants. As we discussed above,
the latter will be, however, beyond the feasibility of the calculations since it will require a much higher
number of determinants most of which are with small contribution to the energy.

4. Conclusion

In this paper, we presented our study on the molybdenum dimer. We calculated the binding energy of175

Mo2 at the experimental bond length by means of the �xed-node DMC method. The multi-determinant
Slater component of the trial wave function was constructed by employing the Selected-CI method. It helps
to include all possible highly contributing determinants iteratively so that the wave function contains only
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the most relevant determinants, thereby making the wave function as compact as possible. As QMC is a
computationally demanding method, Selected-CI can be considered as an e�cient tool in constructing a180

trial wave function.
We also compared our DMC results with the results obtained by the CCSD(T) method which is usually

seen as the golden standard in the Quantum Chemistry community. DMC was able to provide lower
energies in both the atomic and dimer states than CCSD(T)/aug-pVXZ-PP. However, with the favorable
error cancellations the binding energies obtained by CCSD(T)/aug-pVXZ-PP were closer to the experimental185

value than the DMC binding energy result was. Furthermore, the well-developed CBS extrapolation schemes
enable a systematic estimation of the CBS limit out of the truncated basis set results of CCSD(T). In our
study, the CCSD(T)/CBS results with various extrapolation schemes yield a reasonable agreement with the
experimental values. Nonetheless, FN-DMC with a multi-Slater determinant trial wave function was able
to recover a high percentage of correlation energies.190

Appendix A Selected-CI method

The construction of a multi-determinant trial wave function in QMC is usually done by selecting the
determinants according to the absolute values of expansion coe�cients. An alternative way can be to select
the determinants considering their energy contributions via the Selected-CI method. This can be more
e�cient strategy to keep the wave function as compact as possible.195

By beginning with the HF determinant, the most optimum determinants are selected iteratively. Let
K(n) be the subspace of determinants at the iteration n and also let |Ψ(n)〉 be the corresponding eigenstate
with the lowest eigenvalue of the Hamiltonian

H ← Hij = 〈Di|H|Dj〉 for |Di〉 , |Dj〉 ∈ K(n). (10)

where |Di〉 is a Slater determinant in the subspace K(n). Hence, the wave function will be a linear combi-
nation of the Slater determinants in the subspace:

|Ψ(n)〉 =
∑
i

|Di〉∈K(n)

c
(n)
i |Di〉. (11)

The Selected-CI algorithm can be summarized as follows:
i) One can begin with the HF determinant and expand the wave function iteratively. ii) At the iteration n,
generate a universal space Kn

u of excited determinants of |Ψ(n−1)〉; a determinant pool. This is performed
by applying singly excitation and doubly excitation operators on each determinant in K(n−1). One may
prefer some restrictions in the generation of determinants since the number of excited determinants may200

reach a prohibitive level.
iii) Scan each determinant in K(n)

u which does not exist in K(n−1) and �nd the coupling of each deter-
minant with |Ψ(n−1)〉:

Hi(n−1) = 〈Di|H|Ψ(n−1)〉 (12)

where Di /∈ K(n−1) but Di ∈ K(n)
u . If the coupling is non-zero, then the energy contribution is calculated

according to Epstein-Nesbet perturbation theory:

∆Ei =
|〈Di|H|Ψ(n−1)〉|2

E(n−1) − Eii
=

H2
i(n−1)

E(n−1) − Eii
(13)

where Eii = 〈Di|H|Di〉 and E(n) = 〈Ψ(n)|H|Ψ(n)〉 are the self-energies of the particular determinant and the
current wave function, respectively. It is noteworthy that the determinants are normalized, i.e., 〈Di|Dj〉 = δij
and Hij = 〈Di|H|Dj〉 is calculated according to Slater-Condon rules.
iv) The determinant with the lowest ∆Ei is taken into the subspace:

K(n−1) + |Dζ〉 → K(n)
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Mo
Basis Set CCSD(T) En. (Ha) HF En. (Ha) Corr. En. (Ha)

aug-pVTZ-PP -67.7595 -67.3423 0.4172
aug-pVQZ-PP -67.8108 -67.3424 0.4684
aug-pV5Z-PP -67.8334 -67.3424 0.4910

CBS1 -67.8513 -67.3424 0.5089
CBS2 -67.8695 -67.3424 0.5271
CBS3 -67.8466 -67.3424 0.5042
CBS4 -67.8628 -67.3424 0.5204
CBS5 -67.8596 -67.3424 0.5172

En. (Ha) Corr. En.(Ha)
DMC/MDSJ/SDSJ∗ -67.8455(5) 0.5031(5)

Mo2
Basis Set CCSD(T) En. (Ha) HF En. (Ha) Corr. En. (Ha)

aug-pVTZ-PP -135.6529 -134.3379 1.3150
aug-pVQZ-PP -135.7640 -134.3408 1.4232
aug-pV5Z-PP -135.8127 -134.3415 1.4712

CBS1 -135.8505 -134.3417 1.5089
CBS2 -135.8889 -134.3417 1.5471
CBS3 -135.8411 -134.3417 1.4994
CBS4 -135.8748 -134.3417 1.5331
CBS5 -135.8686 -134.3417 1.5270

En. (Ha) Corr. En. (Ha)
DMC/SDSJ -135.7993(4) 1.4576(4)
DMC/MDSJ -135.8229(3) 1.4812(3)

Table 1: The CCSD(T) and DMC energies of Mo and Mo2 are given. The CBS extrapolation methods denoted as CBSn
where n = 1, 2, ..., 5 are explained in the text (see Eqs. 4-8). DMC/SDSJ and DMC/MDSJ stand for DMC calculations with
single-determinant and multi-determinant trial wave functions, respectively.
∗DMC/MDSJ/SDSJ indicates that the DMC/MDSJ and DMC/SDSJ yield esentially the same energy value in the atomic state.
This was because the di�erence between the DMC/SDSJ and DMC/MDSJ energies in the atomic state (Mo) was negligible
within the error bars.

where Dζ is the determinant such that ∆Eζ = min({∆Ei}).
v) The hamiltonian matrix, Hij , is formed and diagonalized with the determinants in the new subspace
K(n) which yields a new wave function Ψ(n) and the energy E(n)

vi) Go to step ii) and repeat the steps until the size of the wave function or convergence in the energy reaches205

the desired value.
So far we have only pronounced determinants. However, a determinant is not a pure spin state, there-

fore, a selection scheme based on determinants may result in spin contamination. In order to avoid spin
contamination, CSFs which are appropriate linear combinations of a number of determinants yielding pure
spin states may be preferred. Switching to CSFs will also lower the number of functions in the universal210

determinant (now CSF) space.
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Method D0(eV) Re/Å
MRSDCI+Q [6] 2.92 1.993
CASSCF [14] 0.55 2.10
CASPT2 [14] 2.14 2.09
PNOF5 [14] 3.26 2.10

CASSCF/MS-CASPT2 [8] 4.41 1.95
AFQMC/CASSCF/CBS [41] 4.46(5) 1.95(2)

CCSD(T)/aug-pVTZ-PP (this work) 3.61 1.93
CCSD(T)/aug-pVQZ-PP (this work) 3.84 1.93
CCSD(T)/aug-pV5Z-PP (this work) 3.94 1.93

CCSD(T)/CBS1 (this work) 4.00 1.93
CCSD(T)/CBS2 (this work) 4.05 1.93
CCSD(T)/CBS3 (this work) 3.99 1.93
CCSD(T)/CBS4 (this work) 4.03 1.93
CCSD(T)/CBS5 (this work) 4.04 1.93
DMC/SDSJ (this work) 2.92(3) 1.93
DMC/MDSJ (this work) 3.56(3) 1.93

exp. [42] 4.29(2), 4.2(3)
exp. [43] 4.47(1)
exp. [13] 4.1(7) 1.93
exp. [44] 1.93
exp. [45] 1.94

Table 2: The binding energies of Mo2 obtained by several methods are shown. The CBS extrapolation methods denoted as
CBSn where n = 1, 2, ..., 5 are explained in the text (see Eqs. 4-8). DMC/SDSJ and DMC/MDSJ stand for DMC calculations
with single-determinant and multi-determinant trial wave functions, respectively.

NDet D0(eV)
1 2.92(3)
4 3.07(3)
22 3.20(3)
300 3.43(3)
600 3.45(4)
1200 3.49(3)
2400 3.53(3)
3000 3.55(3)
3500 3.56(3)

Table 3: The DMC binding energies of the molybdenum dimer calculated with an increasing number of determinants in the
trial wave function of a Slater-Jastrow type are given.
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Figure 1: Mo2 energy obtained by the DMC and VMCmethods with a varying number of determinants are given. The estimated
exact energy is based on the DMC energy of Mo, the experimental binding energy value, 4.29(2) eV, and an estimated value
of the zero-point-energy, 0.03 eV. Note that this is a biased estimation as there are discrepancies among di�erent experimental
reports in the literature (see Table 2). The error bars for the VMC and DMC energies are much smaller than the scale of the
graph.
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aug-pVXZ-PP are shown. The extrapolation scheme given in Eq. (9) is employed.
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Figure 3: The CBS extrapolations of the energies of Mo obtained by the CCSD(T)/aug-pVXZ-PP method are shown. Various
extrapolation schemes given in Eqs. (4-8) are exploited. The �ttings and CBS limits are presented.
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Figure 4: The CBS extrapolations of the energies of Mo2 obtained by the CCSD(T)/aug-pVXZ-PP method are shown. Various
extrapolation schemes given in Eqs. (4-8) are exploited. The �ttings and CBS limits are presented.
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