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Abstract 
     The energy vs. crystal momentum E(k) diagram for a solid (band structure) constitutes the 
road map for navigating its optical, magnetic, and transport properties. By selecting crystals 
with specific atom types, composition and symmetries, one could design a target band 
structure and thus desired properties. A particularly attractive outcome would be to design 
energy bands that are split into spin components with a momentum-dependent splitting, as 
envisioned by Pekar and Rashba [Zh. Eksperim. i Teor. Fiz. 47 (1964)], enabling spintronic 
application. The current paper provides “design principles” for wavevector dependent spin 
splitting (SS) of energy bands that parallels the traditional Dresselhaus and Rashba spin-orbit 
coupling (SOC) -induce splitting, but originates from a fundamentally different source—
antiferromagnetism. We identify a few generic AFM prototypes with distinct SS patterns using 
magnetic symmetry design principles. These tools allow also the identification of specific AFM 
compounds with SS belonging to different prototypes.  A specific compound -- centrosymmetric 
tetragonal MnF2 -- is used via density functional band structure calculations to quantitatively 
illustrate one type of AFM SS. Unlike the traditional SOC-induced effects restricted to non-
centrosymmetric crystals, we show that antiferromagnetic-induced spin splitting broadens the 
playing field to include even centrosymmetric compounds, and gives SS comparable in 
magnitude to the best known (‘giant’) SOC effects, even without SOC, and consequently does 
not rely on the often-unstable high atomic number elements required for high SOC. We 
envision that use of the current design principles to identify an optimal antiferromagnet with 
spin-split energy bands would be beneficial for efficient spin-charge conversion and spin orbit 
torque applications without the burden of requiring compounds containing heavy elements. 
 
 
 
 
_____________________________________________________________________________ 
Emails: erashba@physics.harvard.edu ; alex.zunger@colorado.edu 
Corresponding authors: Alex Zunger, Zhi Wang 



	 2	

I. Introduction   

     An electron with momentum 𝒑 and mass 𝑚 moving in an inversion symmetry-breaking electric field 𝑬 
in a solid experiences an effective magnetic field 𝑩eff~𝑬 × 𝒑/𝑚𝑐! in its rest-frame, where 𝑐 is the speed 
of light. In bulk crystals[1] this symmetry breaking electric field is given by the gradient of the crystal 
potential 𝑬 = −∇𝑉, whereas in heterostructures[2] it can be produced by interfacial asymmetry, and in 
centrosymmetric compounds by the local asymmetry of individual structural sectors[3]. This intrinsic 
magnetic field couples the electron momentum to its spin, a relativistic effect leading to spin–orbit-
coupling (SOC) induced spin splitting of energy bands at wave vectors differing from the time reversal 
invariant moments (TRIM). In the semi-relativistic Pauli equation, the SOC is described by the Thomas 
(T)[4] term 𝐻" = − #ℏ

%&!'!
[𝛔 ⋅ 	(𝛻𝑉(𝐫) × 𝐩)]  that couples electron spin 𝛔  to its coordinate 𝒓  and 

momentum 𝒑, and its fully relativistic generalization. These seminal studies have formed the basis for 
the development of spintronics[5-7], bringing 𝒌-dependent spin-orbit interaction to the forefront of 
solid-state physics, including applications to spin transistor, spin–orbit torque, spin Hall effect, 
topological insulators, and Majorana Fermions (see review in Ref. [8]).  

     Since the relativistic SOC increases rapidly with atomic number Z, and since the strength of chemical 
bonds in compounds decreases rapidly with increasing atomic number (e.g. in the sequence ZnTe-CdTe-
HgTe, or ZnS-ZnSe-ZnTe[9]), the ease of breaking such fragile high-Z bonds-- creating  vacancies that 
produce free carriers-- has been an unwelcome but constant companion of high SOC compounds both 
for spin splitting and for topological insulators applications.[9-12] This double limitation of the Rashba 
and Dresslhause[1,2] spin splitting effects to high-Z and non-centrosymmetric compounds has limited 
the playing field, raising hopes for an alternative spin splitting mechanism in thermodynamically stable, 
low Z compounds of more general symmetries. 

     More recently, the investigation of spin splitting of energy bands has been expanded to magnetic 
systems, in particular, antiferromagnets (AFM), for eliminating stray fields.[13-16] For example, spin 
splitting has been calculated in some high-Z AFM half-metallic compounds such as iron-pnictide AFM 
BaCrFeAs2[17], Mn3Al and Mn3Ga[18], and 2D van der Waals[19] AFM materials, but such occurrences 
were not distinct from the traditional spin orbit effect[1,2]. Indeed, it is generally implied that such 
splitting in the presence of background AFM may be treated just as SOC-induced splitting in non-
magnetic (NM) materials[1,2], through the usual Thomas term[4]. For example, allowing for 
antiferromagnetism in calculations on BiCoO3[20] having SOC manifests but a small change in its spin 
splitting;  furthermore, if SOC is deliberately removed from the Hamiltonian, the predicted spin splitting 
vanishes in the whole Brillouin Zone (BZ). Also, the field-free magnetic mechanism discussed in the 
present paper differs from the anomalous spin-orbit coupling in antiferromagnets induced by applying 
external magnetic field, discussed in Ref. [21,22].  

     A phenomenological theory of magnetic spin splitting has been proposed 1964 by Pekar and Rashba 
[23], suggesting that the presence in magnetic compounds of a spatially-dependent  intrinsic magnetic 
field 𝐡(𝐫), periodic with the crystal period, can lead to coupling of Pauli matrices 𝝈 to this 𝐡(𝐫). This 
would result in a magnetic mechanism of 𝒌-dependent spin splitting, suggestive of a new type of spin 
orbit coupling. Because the 𝒌 ∙ 𝒑 formalism used in Ref. [23] did not afford an atomistic definition of 
𝐡(𝐫) and its ensuing spin splitting, nor did it provide for guiding principles to select a target material for 
investigating such effects, examination of these 1964 ideas remained dormant for a long time.  

     In the present paper, inspired by Ref. [23], we demonstrate an AFM mechanism that creates 𝒌-
dependent spin splitting Δ(((𝒌) even in centrosymmetric, low Z compounds, persists even at time 
reversal invariant wave vectors, and has an unusual quadratic scaling on momentum 𝒌. The coupling 
of spin to lattice degrees of freedom via the periodic spatial dependent intrinsic magnetic field 𝐡(𝐫) is 
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analogous to a new form of spin orbit coupling; the fact that spin splitting can, however, exist even 
without the presence of spin orbit interaction in the Hamiltonian is noteworthy. We formulate the 
general magnetic space group conditions (“design principles”) for spin splitting in different AFM 
prototypes, either with or without SOC, and illustrate via detailed first principles calculations a case of 
purely AFM-induced spin splitting.  
 
II. Magnetic symmetry conditions for AFM-induced spin splitting 

 
A. Symmetries that enforce spin degeneracy 
 
     To select a compound for direct magnetic 𝒌-dependent spin splitting we inspect the underlying 
symmetry requirements. We first list the symmetries that keep spin degeneracy, preventing SS, then 
discuss how to violate those symmetries. (i) As is known[24], the combination	𝜃𝐼 of time reversal 𝜃 and 
spatial inversion 𝐼 symmetries ensures double degeneracy for arbitrary wave vector 𝒌. Likewise, (ii) 
when SOC is turned off, the spin and spatial degrees of freedom are decoupled, so there could exist pure 
spin rotation 𝑈, a spinor symmetry, that reverses the spin but keeps momentum invariance, thus 
preserving spin degeneracy for all wave vectors. The spin rotation 𝑈 does not exist in AFM when the 
alternating magnetic moments reside on different atomic sites, because such arrangement reverses the 
antiferromagnetic order. But in a specific types of AFM compound (referred to as magnetic space group 
(MSG) type IV[25], such as BiCoO3[20]) where there exists a translation 𝑇 that transforms the reversed 
antiferromagnetic order back, 𝑈𝑇 symmetry would still preserve spin degeneracy for all wave vectors. 
 	
B. Violating degeneracy-enforcing symmetries 
 
     (i) As expected, the appearance of spin splitting requires first the violation of 𝜃𝐼 symmetry. In 
magnetic crystals, where 𝜃 is already violated due to magnetic order, absence of the inversion 𝐼 
symmetry doesn’t mean breaking of 𝜃𝐼, hence does not necessarily lead to the removal of spin 
degeneracy. (Actually, even for a centrosymmetric magnetic structure, where 𝐼 is preserved but 𝜃𝐼 is 
broken, one can still have spin splitting). (ii) To have SOC-unrelated spin splitting, one needs also to 
violate 𝑈𝑇 symmetry. AFM structures that violate 𝑈𝑇 symmetry correspond to the so-called MSG type 
III or I such as rutile MnF2. Appendix A provides more detailed discussion of 𝑈𝑇 symmetries.  
 
C. The resulting prototypes of AFM SS 
 
     Based on whether the AFM compound in question has or lacks 𝜃𝐼 symmetry, and weather it belongs 
to MSG type IV or MSG type I / III, we have identified four distinct types of AFM spin splitting prototypes 
(Table I). The first two prototypes, (1) (2), have spin degeneracy at arbitrary 𝒌 point because of 
protection by 𝜃𝐼 symmetry. The prototypes (3) (4) have 𝜃𝐼 violation, allowing spin splitting in the 
presence of SOC. Prototype  (3) being MSG type IV has spin degeneracy when SOC is turned off (referred 
as “SOC induced spin splitting”) whereas prototype (4) being MSG type I or III allows spin splitting even 
when SOC is turned off (referred as “AFM induced spin splitting”). To find specific compound realizations 
of the four AFM prototypes (last line of Table I) we searched the listings of magnetic symmetries (such 
as the MAGNDATA in Bilbao listing[26]) for compliance with our symmetry conditions (top 2 lines in 
Table I). As a concrete example, we illustrate the identification of a specific realization of AFM SS 
prototype 4 compound selecting by the “design principle” (symmetry condition of prototype 4): (1) MSG 
has no 𝜃𝐼 symmetry and (2) MSG type is I or III.  We have identified a few AFM compounds as AFM SS 
prototype 4, e.g., MnF2 (MSG: P42’/mnm’)[27], La2NiO4 (MSG: Pc’c’n)[28], and ScFeO3 (MSG: Cc’)[29]. We 
found that tetragonal MnF2 – with only two formula units per magnetic unit cell and with magnetic 
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moment on Mn aligning along the principle four-fold axis to be a potential attractive compound for 
experimentalists to measure the new spin-splitting physics. Tetragonal MnF2 having magnetic space 
group P42’/mnm’ complies with the above noted design principles -- (1) has no 𝜃𝐼 symmetry despite the 
presence of inversion symmetry; (2) belongs to MSG type III, therefore it has no 𝑈𝑇 symmetry. 
 
TABLE I | Classification of four spin splitting prototypes in antiferromagnetic compounds in terms of symmetry 
conditions, consequences, and examples. Symmetry conditions: 𝜃 represents time reversal and 𝐼 represents 
spatial inversion, 𝜃𝐼 is the combination of these two operations. AFM can be MSG type I, III or IV. (For detail 
description of MSG and MSG type please refer to Appendix A). Consequences: No SS means no spin splitting either 
with or without SOC. SOC- induced SS means that one has spin splitting when SOC is non-zero, but no spin splitting 
when SOC is turned off. AFM induced SS means that one has spin splitting even when SOC is turned off. Note that 
the symmetry-based conditions generally apply not only to collinear but also to noncollinear AFM. For example, we 
would expect AFM-induced spin splitting in a non-collinear AFM Mn3Ir[30] which is also centrosymmetric but has 
no 𝜃𝐼 symmetry and belongs to MSG type III. 
 

AFM SS prototype 1 2 3 4 

Condition 1: Has 𝜃𝐼? Yes Yes No No 

Condition 2: MSG type III IV IV I or III 

Consequences No SS No SS SOC induced SS AFM induced SS 

Examples CuMnAs[31] NiO[32] BiCoO3[33] MnF2 

 
     Table I indicates that not all AFM compounds have the same SS behavior, and that the magnetic, not 
just spatial symmetries are important. For example, an AFM SS has been theoretically analyzed recently 
based on tight-binding models on the multipole description by Hayami et. al.[34,35]. However, their 
multipole analysis was based on point group symmetry not magnetic group symmetry, omitted the non-
magnetic atoms. This omission (e.g. MnF2 without F), however, restores the 𝑈𝑇 symmetry and results in 
the prediction of complete spin degeneracy in the absence of SOC, in sharp contrast with DFT predicted 
(below) giant spin splitting. (see Appendix B for detail discussion of these previous work) 
 
III. Illustration of the properties of an AFM-induced SS compound MnF2   

 
A The system 

 
     MnF2 is a wide gap insulator both below and above its Néel temperature of 67K.[36] It is a 
centrosymmetric rutile structure (conventional space group P42/mnm), with magnetic Mn ions 
occupying position (0, 0, 0) and (1/2, 1/2, 1/2) centered in an octahedral of non-magnetic F anions 
located at ±(u, u, 0) and ±(1/2+u, 1/2-u, 1/2) where u is the positional parameter. The refinement X-ray 
diffraction results[37] gave the positional parameter u=0.305, and lattice constants a=b=4.873 Å, 
c=3.311 Å. Erickson[27] found via neutron scattering measurements the AFM moment aligned along the 
tetragonal axis (i.e., [001]) with magnetic space group of P42’/mnm’. The magnetic crystal unit cell is 
shown in Figure 1(a). While concentrating on this specific material MnF2 as an illustration of a new 



	 5	

physical effect, we do not maintain that it is optimized for technological usage in a specific spintronics 
device application (size of band gap; dopability; value of Néel temperature). Optimization of such 
material constants might be possible by comparing different compounds belonging to a given AFM SS 
prototype. This is outside the scope of the current paper. 
 

 
Figure 1 | Crystal structure, band structure and spin splitting of the centrosymmetric AFM tetragonal 
MnF2. (a) Magnetic unit cell where red arrows indicate local magnetic moment; (b) contour plot of 
magnetization along z in 𝑧 = 𝑐/2 plane; (c) DFT calculated band structure with our calculated magnetic 
symmetry representations (see Appendix C), using the notations of Ref. [38] with numbers in 
parenthesis indicating the dimension of the representation (i.e., degeneracies).  The top four valence 
bands are denoted by V1, V2, V3, V4 and the yellow screen highlights the gaps between valence and 
conduction bands. Insert of (c) shows the BZ and the blow-up bands around R point. The blue to red 
color scale denotes the calculated out-of-plane spin polarization. Panels (d, e) show DFT calculated wave 
vector dependence of the spin splitting between pairs of valence bands V1-V2 (in (d)) and between V3-
V4 (in (e)) for different scaling of SOC 𝜆)*+  (numerical coefficient 0 < 𝜆)*+ < 1). Insert of (d) shows the 
spin splitting vs. the amplitude of the spin orbit coupling 𝜆)*+  at Γ (0, 0, 0), R (0, 0.5, 0.5) and the middle 
point of Γ-M (0.25, 0.25, 0). All DFT calculations use PBE exchange correlation functional[39] with on-site 
coulomb interaction on Mn-3d orbitals of U= 5eV, J= 0 eV and the experimental crystal structure[37]. 
 
B Six predicted characteristics of AFM-induced spin splitting in MnF2 

 

     We calculated the relativistic electronic structure of AFM MnF2 within density functional theory (DFT) 
(see description of DFT method in Appendix C). Figure 1(b) provides the calculated magnetization 
𝑚,(𝒓) = 𝑚↑(𝒓) − 𝑚↓(𝒓) in the z=c/2 plane, with 𝑚↑and	𝑚↓(𝒓) representing the up and down spin 
electron density. To assess the AFM magnetism effect, we also define a reference NM model, where the 
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magnetic moment on each site is zero, resulting in a metallic state. We emphasize that the NM model is 
not used to mimic the physical high temperature paramagnetic (PM) phase that has a distribution of 
non-vanishing local magnetic moments that creates an insulating gap even in the absence of long-range 
order.[40,41] Figure 1(c) gives the band structure of the AFM phase calculated with SOC in its 
experimental crystal structure. We find a z-oriented magnetic moment on Mn2+ of 4.7 𝜇/ , in good 
agreement with the neutron scattering measurement of 4.6 𝜇/. We also find calculated minimum direct 
gap at Γ of 4.02 eV and a smaller indirect gap between VBM at X and CBM at Γ	of 3.98 eV, comparable 
with the measured absorption gap[42] of 4.10 eV (estimated from the convergence limit of the observed 
series of discrete d-d* multiplet transitions into the onset of band-to-band continuum). The DFT (mean-
field) calculated band gap and DFT local moment both agree with experiment, providing strong evidence 
that the single-particle band structure picture with a 5 eV wide band width as advanced in the DFT 
calculations holds well, supporting the notion of well-defined coherent bands.	
 
     To assist future measurements of the predicted AFM-induced 𝒌-dependent spin splitting (e.g. via 
angle-resolved photoemission spectroscopy (ARPES) and spin-ARPES) as well as potential applications in 
novel spintronics we next describe the main predicted features of the AFM-induced spin splitting:   

(i) The spin splitting has a typical atomic-like energy scale (“giant splitting”): Despite rather small atomic 
numbers in MnF2 (Z(Mn)=25 and Z(F)=9), the magnitude of the spin splitting (up to 300 meV seen 
between V3 and V4 along Γ-M in Figure 1(e)) arising from the AFM mechanism can be comparable to 
some of the largest known spin splitting of conventional electric mechanism for heavy atom high Z 
compounds, such as the ‘giant SOC’ induced spin splitting in BiTeI[43] and GeTe[44,45]. The reason for 
the difference is that the magnetic field which induces the splitting in AFM reflects the local magnetic 
moments localized about atomic sites, not as in the SOC effect where the inducing magnetic field 
reflects the asymmetry in the inter-atomic regions of the unit cell.	 The locality of magnetic moments 
needed for obtaining large spin splitting does not contradict the requirement to introduce itinerant 
carriers. Local magnetic moments of 4-5 𝜇𝐵 are common in Mn-salts with broad (4-5 eV) bands and high 
electronic mobility, e.g., La1-xSrxMnO3 [46]. We find that the spin split bands in MnF2 occur about 40 meV 
below the VBM (bands V1-V2 in Figure 1) and about 500 meV below the VBM (bands V3-V4 in Figure 1). 
Either should be amenable to photoemission detection for validating the theory. In general, for 
transport application requiring the creation of free carriers, one should place the Fermi level in the 
proximity of the split band, e.g., by doping. For MnF2, the spin-active band V1 with dispersion along the 
M-Γ direction is just 1 meV below VBM at X (see Figure 1(c)), so in this case it does not pose a problem. 
The V3-V4 bands in MnF2 are not optimal for creation of free carriers as they are rather deep. 
 
 
(ii) The splitting persists even if SOC= 0: The spin splitting along the Γ-M and Z-A lines is present even 
when SOC is turned off in the Hamiltonian (black line in Figure 1(d) and (e); also shown in the insert of 
(d)). This is very different from prototype 3 AFM (Table I) BiCoO3[20], where spin splitting disappears if 
SOC vanishes. Thus, the AFM-induced spin splitting mechanism delivers the long-standing hope for wave 
vector dependent spin splitting mechanism in thermodynamically stable, low Z compounds.  
 
(iii) Relative to the NM case, AFM induces a highly anisotropic and k-dependent spin splitting: We show 
in Figure 2 the band structures of centrosymmetric MnF2 in two cases: (a) NM without SOC; (b) AFM 
without SOC. In both cases we indicate the degeneracies of states, calculated by DFT shown as integer 
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values. An important manifestation of the AFM-induced spin splitting (Figure 1(c)) is that whereas in the 
NM structure, the whole BZ, including directions Γ-X and Γ-M, have doubly degenerate (non-split) bands, 
in the AFM structure spin splitting arises even in the absence of SOC but it is wave vector dependent. 
Bands remain degenerate along the Γ-X directions, but become spin split along the Γ-M direction. Such 
anisotropic spin splitting was already hinted by the asymmetry in magnetization in coordinate space as 
shown in Figure 1(b) between 𝒙 + 𝒚, 𝒙 − 𝒚 and 𝒙, 𝒚 directions. This behavior is understandable on the 
basis of magnetic symmetry (See Appendix D for discussion of unitary and antiunitary symmetries): the 
AFM ordering does not lead to symmetry reduction along the Γ-X paths, relative to its NM counterpart. 
The resulting spin degeneracy along 𝑘0 (or 𝑘1) direction of Γ-X in AFM is protected by its group of 𝒌 
symmetries 𝜃{𝐶!0|𝝉} and 𝜃{𝜎21|𝝉} (or 𝜃{𝐶!1|𝝉} and 𝜃{𝜎20|𝝉}). In contrast, along the Γ-M paths, in AFM 
the combined symmetries of 𝜃{𝐶!3|0} and 𝜃{𝐶!4|0} (or 𝜃{𝜎53|0} and 𝜃{𝜎54|0}) are broken, which 
creates spin splitting. Here, 𝐶!0, 𝐶!1,	𝐶!3, 𝐶!4 are 𝜋 rotations about the [100], [010], [110], [1-10] axes, 
respectively; 𝜎20, 𝜎21,	𝜎53, 𝜎54 are mirror reflections in (100), (010), (1-10), (110) planes; and vector 𝛕	= 
(1/2,1/2,1/2) is half lattice translation, directed along the spatial diagonal [111] of the unit cell. Similar 
arguments (given in Appendix D) apply for spin degeneracy along Z-R and spin splitting along Z-A in 
Figure 1(b). 

 
(iv) The AFM mechanism gives rise to even powers of k in the spin splitting: Of special interest in Figure 1 
(c) is the diagonal Γ-M and Z-A lines showing large spin splitting while at the end of these 𝒌-lines the 
splitting vanishes. It is of interest therefore, to establish how the splitting changes near its 𝒌-space end 
points. By fitting the DFT calculated spin splitting Δ(((𝒌) to the power of k, we found a quadratic-in-k 
dependence at Γ678	(i.e., near the Γ-end along Γ − M path) and M876 (see details of fitting in Appendix 
E and effective model in Appendix F). Thus, near degeneracy points Δ(((𝒌)  has a quadratic k 
dependence compared with odd powers typical of the electrically induced SOC effect.  
 

 
Figure 2 | DFT band structures of centrosymmetric (CS) MnF2 in NM and AFM without SOC. In all cases 
we use the experimentally observed centrosymmetric tetragonal structure[37]: (a) NM with SOC set to 
zero; (b) AFM with SOC set to zero. Out-of-plane spin polarizations are mapped to color scale from blue 
to red. The integer number attached to each band and 𝒌 point is the degeneracies. 
 
(v) A Dresselhaus in-plane spin texture results from a cooperative SOC and AFM effect: The coupling 
between spin space and position space results not only in spin-splitting of the energy spectrum, but also 
in developing “spin-momentum locking”, where the spin orientation is locked with momentum 𝒌. The 
vector field of the spin states in momentum space is called spin texture, being helical for the 
conventional Rashba SOC mechanism[2] and non-helical for the Dresselhaus mechanism[1]. The spin 
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texture for AFM-induced spin splitting has its own fingerprints. Figure 3 shows the calculated spin 
textures of the V1 and V2 bands at the representative 𝒌-plane 𝑘, = 𝜋/2𝑐 where 𝑐 is the lattice constant 
along 𝑧 axis. We see that, electron spins are mostly aligned along the out-of-plane z direction, as can be 
surmised from the magnetic structure (see Figure 1(a)). This is seen in the four quadrants patterns on a 
fixed 𝑘, plane with positive (up arrow in Figure 3(a) and (b)) and negative (down arrow in Figure 3(a) 
and (b)) out-of-plane spin polarizations in the neighbor quadrants. The out-of-plane spin polarizations 
are opposite in sign between bands V1 and V2, as noted by the reversal of the red and blue patterns for 
V1 and V2. Similar four quadrants pattern of out-of-plane spin polarization is also found in the 𝑘, = 0 
and 𝑘, = 𝜋/𝑐 planes (see corresponding spin texture results in Appendix G).  
     Interestingly, inspecting the 𝑘, = 𝜋/2𝑐 plane, Figure 3 shows a pronounced (i) in-plane (ii) non-
helical Dresselhaus-like spin texture. These features are unexpected given that the crystal structure of 
MnF2 is magnetized in the z-direction and centrosymmetric, while normally to assure Dresselhaus 
features[3] we need non-centrosymmetric symmetry. We find that the Dresselhaus spin texture in MnF2 
requires for its existence the SOC term (i.e. the texture vanishes if the SOC is removed from the 
Hamiltonian).  Thus, the texture represents the combined effect of coexistence of SOC with AFM (see 
cooperative effect on spin splitting in Appendix H). 
 

 
Figure 3 | Spin textures in AFM MnF2 with SOC on 𝑘, = 𝜋/2𝑐 plane. (a) Out-of-plane spin texture of V1 
band, (b) out-of-plane spin texture of V2 band, (c) in-plane spin texture of V1 band, and (d) in-plane spin 
texture of V2 band. 
 
(vi) Different wavevectors can have different dependence on SOC strength:  The insert of Figure 1(d) 
shows different characteristic behaviors of the dependence of spin splitting Δ(((𝒌) on spin-orbit 
strength at different 𝒌 points:  (1) The trivial case (e.g. Γ point) is that neither magnetic nor SOC induces 
any splitting; (2) the R point shows zero spin splitting when 𝜆)*+ = 0 and linear dependence of 𝜆)*+  , 
illustrating a cooperation of both magnetic and SOC mechanism; notice that despite R being a TRIM 
point, it shows spin splitting, unlike the case of purely SOC induced effects; (3) the non-trivial case of 
purely magnetic induced spin splitting occurs along Γ-M (as well as A-Z) line, where non-zero spin 
splitting is present even at 𝜆)*+ = 0  and is almost independent of  𝜆)*+ . The appearance of such 
distinct spin splitting behaviors at different wave vectors in a single compound would be advocated for 
multifunctional spintronic applications.  
 
IV. Discussion  
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     This study uncovers the design principles of spin splitting in AFM compounds based on magnetic 
symmetry analysis and shows a very rich set of fingerprint fundamental physical effects ((i)-(vi) above) in 
a specific prototype, including the giant spin splitting that characterizes the AFM mechanism and could 
aid its future experimental observation.  

     While the present paper focuses on the fundamental physics of a prototype case of 
antiferromagnetically induced k-dependent spin splitting even without the presence of SOC or absence 
of inversion, we might discuss general anticipated connections with experiment and applications. 
Nevertheless, a number of recent experimental papers may have future connections to the current 
theory.  As an example, active research is currently taking place on 2D layered systems consisting of two 
layers, of which one is an AFM and the other a heavy metal such as Pt, with the SOC of Rashba-type 
developing on their interface and controlled by electric bias applied across it[47,48]. Using instead 
antiferromagnets with spin-split bands described in the current paper, which in addition are either 
magneto-electric or piezoelectric, might eliminate the need for heavy-metal layer, as the current AFM 
mechanism provides giant magnitude of spin-orbit splitting even with light elements. Similarly, the 
observation by Tazaki et. al.[49] of large current- induced magnetic torque in low Z magnet suggests the 
possibility worth perhaps examining of the existence of the magnetic mechanism such as described in the 
current paper as alternative to conventional SOC mechanism. Recently, Geprägs et. al.[50] showed that spin 
Hall magnetoresistance allows obtaining valuable information on the spin texture via straightforward 
electrical transport measurements, a technique that could be applicable to detect our predicted AFM-
induced spin texture (Figure 3). Högl et. al.[51] studied graphene on antiferromagnet substrate 
expecting strong quantum anomalous Hall effect from the antiferromagnet substrate, raising the 
possibility that the currently explored 3D AFM systems could be suitable interesting substrates. We also 
note a few transport effects that are likely associated with the AFM-induced spin splitting effect. These 
include finite spin current predicted by Železný et. al.[52], anomalous Hall conductivity predicted by 
Chen et. al.[53] and Suzuki et. al.[54], and crystal Hall effect proposed[55] by Šmejkal et. al. and verified 
[56] by Feng et. al. 

 
Acknowledgments 
 
The National Science Foundation (NSF) Grant NSF-DMR-CMMT No DMR-1724791 supported the theory 
development of this work by L.-D.Y., Z.W., and A.Z. at the University of Colorado Boulder. The ab initio 
calculations of this work were supported by the U.S. Department of Energy, Office of Science, Basic 
Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE-SC0010467. J.-W. L. 
was supported by the National Natural Science Foundation of China (NSFC) under Grant Number 
61888102. This work used resources of the National Energy Research Scientific Computing Center, which 
is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. We thank Dr. Carlos Mera Acosta for fruitful discussions. 
 
 
APPENDIX A: Additional symmetry considerations beyond 𝜽𝑰 for selecting compounds having 
non-zero magnetic-induced spin splitting 
 

To select magnetic crystals that have non-zero contribution from the magnetic mechanism means 
to find the crystals that still have k-dependent spin splitting even in the absence of SOC (i.e., when there 
is no contribution from the electric mechanism). To do so one must violate 𝑈𝑇 symmetry, where 𝑈 is a 



	 10	

spinor symmetry of SU(2) which reverses the spin state and 𝑇 is a translation of the primitive lattice. 
This requirement stems from the fact that the existence of 𝑈𝑇 symmetry preserves the double 
degeneracy in the whole Brillouin zone, as it transfers any spin state to its opposite spin state while 
keeping 𝒌-invariant for arbitrary wavevector. Such 𝑈𝑇 symmetry exists in AFM compounds whose 
magnetic unit cell is not equivalent to its non-magnetic unit cell: the primitive lattice translation 𝑇 
translate those up-spin (down-spin) atoms to occupy the down-spin (up-spin) atom sites while 𝑈 
reverses the spin, thus 𝑈𝑇 symmetry preserves the crystal structure.  

Antiferromagnets with primitive lattice translations that reverse the microscopic magnetic 
moments are formally known as having black-and-white Bravais lattice and type IV in terms of magnetic 
space group (MSG). Formally, the MSG includes not only the unitary symmetries (US), i.e., spatial 
symmetries, but also antiunitary symmetries (AS), that are time reversal 𝜃 and its combination with 
spatial operations.  

In terms of its construction of the unitary and antiunitary part from the space group (G), MSG can 
be classified into four types.  

• MSG that has no antiunitary symmetries (i.e., AS = ∅) are identified as MSG type I.  
• MSG that has the unitary part equivalent to G and an equal number of antiunitary symmetries, 

i.e., US = G, AS = 𝜃G belongs to MSG type II. Since all NM cases have time reversal symmetry, 
they all belong to this category;  

• MSG that has the unitary part composed of half of its magnetic space group symmetries (spatial 
operations that keep the atomic structure invariant) are MSG type III or type IV: If the system 
has a normal Bravais lattice (magnetic unit cell equivalent to its NM primitive unit cell) it is MSG 
type III; if the system has a black and white Bravais lattice (magnetic unit cell being supercell of 
its NM primitive unit cell) it is MSG type IV.  

AFM with antiferromagnetic order spontaneously breaks time reversal symmetry, therefore can’t be 
MSG type II but can be MSG type I, III or IV. 

Our selected AFM compound MnF2 has magnetic space group of P42’/mn’m without SOC and the 
space group P42’/mnm’ with SOC, both of which belong to MSG type III with equivalent AFM unit cell 
(Mn2F4) to the NM primitive unit cell (Mn2F4). Therefore, it is expected to have spin splitting in such AFM 
compound from symmetry perspective. 
 
APPENDIX B: Previous studies on spin splitting in AFM compounds 
 

There are many previous works on spin splitting in AFM compounds. While most of the studies 
mentioned the occurrence of spin splitting, only a few literatures tried to establish a causal 
understanding of such phenomenon. To give a clear view of the conceptional advance of this paper, 
here we list several previous studies on the spin splitting in AFM and compare them to this work. 

 
(a) Previous studies on the occurrence of spin splitting in AFM compounds.  

Hu et al. [17] predicted that iron-pnictide AFM BaCrFeAs2 could be half-metallic due to the spin 
splitting, by first-principles and tight-binding calculations. Gao et al. [18] predicted AFM Mn3Al and 
Mn3Ga to have spin splitting by first-principles calculation. Gong et al. [19] showed that 2D van der 
Waals AFM materials could have spin splitting under density functional theory. In this work, we are not 
satisfied with only showing the existence of spin splitting in AFM without the need of SOC (to aid 
experimental testing); more importantly, we formulate the fundamental magnetic space group 
conditions (“design principles”) for spin splitting in the absence of SOC – violation of both 𝜃𝐼 and 𝑈𝑇 
symmetries. 
 



	 11	

(b) Previous studies on the causal understanding of spin splitting in AFM.  
As far as we know, the first literature of the causal understanding was from one of our coworker 

Emmanuel Rashba[23], which has already been discussed in the main text. Other previous works include: 
Hayami et al.[34] examined AFM spin splitting when SOC is absent, by using tight-binding model on the 
multipole description based on point group symmetry of the magnetic element. In this work we have 
found that the complete symmetry analysis should also include non-magnetic atoms and the 
translational symmetry, meaning the magnetic group symmetry. For example, in the case of tetragonal 
MnF2, removing the non-magnetic F- anions will restore the 𝑈𝑇 symmetry and result in a complete spin 
degeneracy in the absence of SOC, in sharp contrast our DFT predicted giant spin splitting. To address 
the real-life case where SOC is finite, in this work we also have discussed both cases when SOC is present 
and absent. 

Another previous work by Naka et al. [35] shows in a specific type of organic antiferromagnet the 
spin splitting effect can be used for spin current generation. The authors described the spin splitting 
effect as originating from unspecified AFM order induced by real space molecular arrangement 
anisotropy in a class of organic antiferromagnets. However, the descriptive understanding is specific to 
organic antiferromagnet with checker-plate-type lattice. While in this work we have offered more 
general design principles, not specialized for any specific systems; the design principles are based on the 
magnetic symmetry hence are easy to apply to predictions of real compound with the properties 
discussed.  
 
APPENDIX C: DFT Calculation methods and parameters 
 

3.1 DFT calculation parameters: We have studied the electronic and spin properties of MnF2 using 
DFT with the experimental crystal structure[37] and the experimental spin configuration[27]. In the DFT 
calculations, we use Perdew-Burke-Ernzerhof (PBE) exchange correlation functional[39] with plane wave 
basis (energy cutoff of 500 eV and 10 × 10 × 14 Monkhorst-pack 𝒌-mesh sampling[57]). We use the on-
site potentials of U=5 eV and J=0 eV on Mn 3d orbitals following Liechtenstein approach[58]. 

3.2 Controlling SOC strength in AFM and NM: Band structures under different (artificial) SO 
strengths are calculated by introducing a numerical pre-factor 𝜆)*+  (0 < 𝜆)*+ < 1 ) to the SO 
Hamiltonian term 𝜆)*+ ^

ℏ
!&"

!'!
9(𝒓)
𝒓

5=(𝒓)
5𝒓

𝑳̀ ⋅ 𝑺bc in the DFT formalism[59], where 𝑳̀ = 𝒓d × 𝒑e is the orbital 

angular momentum operator, 𝑺b is the spin operator, 𝑉(𝒓) is the spherical part of the effective all-
electron potential within the projector augmented plane wave (PAW) sphere, and 𝐾(𝒓) = ^1 −
=(>)
!&"'!

c
7!

. Hamiltonian (as well as wavefunctions, charge density, and 𝑉(𝒓), etc.) are still calculated self-

consistently. To study the effect of magnetic mechanism we use a reference NM model where the 
magnetic moment on each atomic site is zero. We emphasize that the NM model is not used to mimic 
the physical high temperature paramagnetic phase that has zero total moment but a distribution of non-
vanishing local magnetic moments that creates an insulating gap even in the absence of long-range 
order.[40,41] 

 
3.3 Spin polarization and spin texture calculations: The spin polarization for Bloch state |𝒌⟩ is 

calculated via the definition of 〈𝒌|𝑺b|𝒌〉, which can be decomposed into two components: the out-of-
plane spin polarization 〈𝒌|𝑺b,|𝒌〉 and the in-plane spin polarization 〈𝒌|(𝑺b0 , 	𝑺b1)|𝒌〉. Spin texture of 
selected band on 𝒌 -plane is calculated by evaluating both the out-of-plane and in-plane spin 
polarizations for each |𝒌⟩ on the 𝒌-plane. 
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3.4 Representations for bands: The double group irreducible (co) representation for each 
degenerate state at the high symmetry 𝒌 point of the AFM phase with SOC is derived by: (a) we first 
calculate the transformation properties of selected Bloch basis states under the relevant group of 𝒌 
symmetries; the Bloch basis is constructed to have the same spin and orbital character (obtained from 
DFT) and the ensuring transformation properties of the degenerate states; (b) we then identify and label 
the degenerate bands at such 𝒌 points adopting the names of irreducible (co) representations for MnF2 
from Ref. [38]; (c) whether additional degeneracy will be induced by antiunitary symmetries is 
determined using Wigner’s test[25] given in Ref. [38]. 
 
APPENDIX D: Symmetry analysis of band eigenstates in MnF2 
 

The spin degeneracy and splitting are direct consequences of symmetry preservations and 
reductions upon introducing AFM and SOC. We see that it is the introducing of antiferromagnetic order 
from NM to AFM phase of MnF2 that breaks the four-fold axial symmetry and makes directions <100> 
and <110> non-equivalent. Such symmetry breaking manifests itself dramatically in the anisotropic spin 
splitting of electron bands; see in Figure 1 (c).  

 
4.1 Symmetry protected spin degeneracy: Given the Hamiltonian 𝐻b and one of its eigenvectors 𝜓 

with eigenvalue 𝐸, for any symmetry 𝑔d of 𝐻b (that has m𝑔d, 𝐻bn = 0), 𝑔d𝜓 is also an eigenvector of 𝐻b with 
the same eigenvalue 𝐸. This is easily verified as: 

𝐻b𝑔d𝜓 = 𝑔d𝐻b𝜓 = 𝐸𝑔d𝜓 (𝑆1) 
When 𝜓 and 𝑔d𝜓 are linear independent states, they form a pair of degenerate states; the spin 

degeneracy at specific 𝒌 points can then be protected if 𝑔d also keeps 𝒌 invariant, i.e., 𝑔d𝒌 = 𝒌 + 𝑮 
(where 𝑮 is the reciprocal lattice vector). For example, for 𝑔d being the TR symmetry and m𝑔d, 𝐻bn = 0, 𝑔d 
enforces doubly spin degeneracy at TRIM points. 

 
4.2 Space groups and symmetry operators for MnF2 NM and AFM phases, with and without SOC: 

If one does not consider the time reversal symmetry 𝜃, the space group 𝐺 of NM MnF2 is P42/mnm, 
consisting of 16 unitary symmetries. Using the subgroup 𝐻 = {𝐸, 𝐶!, 𝐼, 𝜎?} of 𝐺 (index [𝐺:𝐻] = 4), we 
can write the partition of 𝐺 using 𝐻 and its three left cosets 𝐿𝐻1, 𝐿𝐻2, and 𝐿𝐻3 as listed in Table SII: 
 
Table SI | Explicit lists of space group symmetries of NM MnF2. 
 
𝐻 
{𝐸|0}: (𝑥, 𝑦, 𝑧) → (𝑥, 𝑦, 𝑧) 
{𝐶!|0}: (𝑥, 𝑦, 𝑧) → (−𝑥,−𝑦, 𝑧) 
{𝐼|0}: (𝑥, 𝑦, 𝑧) → (−𝑥,−𝑦,−𝑧) 
{𝜎"|0}: (𝑥, 𝑦, 𝑧) → (𝑥, 𝑦, −𝑧) 

𝐿𝐻1 = {𝐶!#|0}𝐻 
{𝐶!#|0}: (𝑥, 𝑦, 𝑧) → (𝑦, 𝑥, −𝑧) 
{𝐶!$|0}: (𝑥, 𝑦, 𝑧) → (−𝑦,−𝑥,−𝑧) 
{𝜎%#|0}: (𝑥, 𝑦, 𝑧) → (𝑦, 𝑥, 𝑧) 
{𝜎%$|0}: (𝑥, 𝑦, 𝑧) → (−𝑦,−𝑥, 𝑧) 
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𝐿𝐻2 = {𝐶!&|𝝉}𝐻 

{𝐶!&|𝝉}: (𝑥, 𝑦, 𝑧) → 8𝑥 +
1
2 ,−𝑦 +

1
2 ,−𝑧 +

1
2: 

;𝐶!'<𝝉=: (𝑥, 𝑦, 𝑧) → 8−𝑥 +
1
2 , 𝑦 +

1
2 ,−𝑧 +

1
2: 

{𝜎(&|𝝉}: (𝑥, 𝑦, 𝑧) → 8−𝑥 +
1
2 , 𝑦 +

1
2 , 𝑧 +

1
2: 

;𝜎('<𝝉=: (𝑥, 𝑦, 𝑧) → 8𝑥 +
1
2 ,−𝑦 +

1
2 , 𝑧 +

1
2: 

𝐿𝐻3 = {𝐶)|𝝉}𝐻  

{𝐶)|𝝉}: (𝑥, 𝑦, 𝑧) → 8−𝑦 +
1
2 , 𝑥 +

1
2 , 𝑧 +

1
2: 

{𝐶)*|𝝉}: (𝑥, 𝑦, 𝑧) → 8𝑦 +
1
2 ,−𝑥 +

1
2 , 𝑧 +

1
2: 

{𝑆)|𝝉}: (𝑥, 𝑦, 𝑧) → 8𝑦 +
1
2 ,−𝑥 +

1
2 ,−𝑧 +

1
2: 

{S)*|𝝉}: (𝑥, 𝑦, 𝑧) → 8−𝑦 +
1
2 , 𝑥 +

1
2 ,−𝑧 +

1
2: 

 
Here 𝐸 is the identity; 𝐼 is the spatial inversion; 𝐶!, 𝐶!0, 𝐶!1,	𝐶!3, 𝐶!4 are 𝜋 rotations about the 

[001], [100], [010], [110], [1-10] axes, respectively; 𝜎?, 𝜎20, 𝜎21,	𝜎53, 𝜎54 are reflections in (001), (100), 
(010), (1-10), (110) planes, respectively; 𝐶% and 𝐶%7 are counterclockwise and clockwise 𝜋/2 rotations 
about the (001) axis; 𝑆% and 𝑆%7 are counterclockwise and clockwise 𝜋/2 rotations about the (001) axis 
followed by an inversion; vector 𝛕	= (1/2,1/2,1/2) is half lattice translation, directed along the spatial 
diagonal [111] of the unit cell.  

When considering the time reversal symmetry 𝜃, the 16 unitary symmetries form an subgroup 
𝐺@ = 𝐻 + 𝐿𝐻1 + 𝐿𝐻2 + 𝐿𝐻3, while the NM system also has 𝜃 combined with all 16 unitary symmetries 
in 𝐺@, leading to an anti-unitary set 𝐺A@. Using the prime symbol to indicate time reversal symmetry, we 
have 𝐺A@ = 𝐺@B = 𝜃𝐺@ . The entire group now becomes 𝐺 = 𝐺@ + 𝐺A@ = 𝐺@ + 𝐺@B = 𝐻 + 𝐿𝐻1 +
𝐿𝐻2 + 𝐿𝐻3 + 𝐻B + 𝐿𝐻1B + 𝐿𝐻2B + 𝐿𝐻3′ 

Including SOC in NM couples the spatial rotation to spin rotation, which results in a double space 
group of P42/mnm composed of 𝐻, 𝐿𝐻1, 𝐿𝐻2, 𝐿𝐻3,𝐻′, 𝐿𝐻1′, 𝐿𝐻2′, 𝐿𝐻3′ and their combination with a 
rotation of 2𝜋 (𝐸v): 𝐻C = {𝐸v, 𝐶!vvv, 𝐼,̅ 𝜎?vvv}, 𝐿𝐻1C = {𝐶!3|0}𝐻C, 𝐿𝐻2C = {𝐶!0|𝝉}𝐻C, 𝐿𝐻3C = {𝐶%|𝝉}𝐻C, and 
𝐻CB , 𝐿𝐻1CB , 𝐿𝐻2CB , 𝐿𝐻3CB . In centrosymmetric MnF2, due to the presence of 𝜃𝐼 symmetry (𝜃𝐼 ∈ 𝐻CB ), all 
bands are spin degenerates within the whole BZ.  

Going from NM to AFM, the above P42/mnm space group reduces to a magnetic group 𝑀 
consisting of unitary 𝐺@ and antiunitary 𝐺A@ parts 𝑀 = 𝐺@ + 𝐺A@. In the absence of SOC in AFM, the 
unitary part 𝐺@ = 𝐻 + 𝐿𝐻1, while the antiunitary part is 𝐺A@ = 𝐿𝐻2′ + 𝐿𝐻3′. Including SOC in AFM 
couples the spatial rotation to spin rotation in the manner of one to two mapping from SO(3) to SU(2); 
thus, the rotations of 𝐿𝐻1 and 𝐿𝐻2 not only rotate the spatial space but also reverse the spin 
orientation. Consequently, the unitary part of the magnetic space group becomes 𝐺@ = 𝐻 + 𝐿𝐻2 +
𝐻C + 𝐿𝐻2C , and the antiunitary part becomes 𝐺A@ = 𝐿𝐻1′ + 𝐿𝐻3′ + 𝐿𝐻1CB + 𝐿𝐻3CB . The above 
symmetry analysis of MnF2 is summarized in Table SIII. 
 
Table SII | Unitary and anit-uniary symmetries of MnF2 with inclusion and exclusion of SOC in NM and 
AFM phases. 
 

MnF2 w/o SOC w/ SOC 

NM 
Space group: P42/mnm 
𝐺!:	𝐻, 𝐿𝐻1, 𝐿𝐻2, 𝐿𝐻3 
𝐺"!: 𝐻′, 𝐿𝐻1′, 𝐿𝐻2′, 𝐿𝐻3′ 

Double space group: P42/mnm 
𝐺!:	𝐻, 𝐿𝐻1, 𝐿𝐻2, 𝐿𝐻3,𝐻#, 𝐿𝐻1#, 𝐿𝐻2#, 𝐿𝐻3# 
𝐺"!:	𝐻′, 𝐿𝐻1′, 𝐿𝐻2′, 𝐿𝐻3′, 𝐻#$ , 𝐿𝐻1#$ , 𝐿𝐻2#$ , 𝐿𝐻3#$  

AFM 
Magnetic space group: P42’/mn’m 
𝐺!:	𝐻, 𝐿𝐻1 
𝐺"!:	𝐿𝐻2′, 𝐿𝐻3′ 

Magnetic double space group: P42’/mnm’ 
𝐺!:	𝐻, 𝐿𝐻2,𝐻#, 𝐿𝐻2# 
𝐺"!:	𝐿𝐻1$, 𝐿𝐻3$, 𝐿𝐻1#$ , 𝐿𝐻3#$  
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4.3 Different spin splitting behaviors along Γ-X, Γ-M, and Z-R directions in AFM MnF2: Along the 

spin degenerate k-path Γ-X, the coordinate of 𝒌 is (𝑢, 0, 0) with 𝑢 an arbitrary real value between 0 and 
1/2. The possible symmetries that keep 𝒌 invariant are (notice that all conclusions below also are 
applicable for 𝒌 = (0, 𝑢, 0) by interchanging 𝑥 with 𝑦): 

{𝐸|0}: (𝑢, 0, 0) → (𝑢, 0, 0) 
{𝜎?|0}: (𝑢, 0, 0) → (𝑢, 0, 0) 
{𝐶!0|𝝉}:		(𝑢, 0, 0) → (𝑢, 0, 0) (𝑆2) 
{𝜎21|𝝉}: (𝑢, 0, 0) → (𝑢, 0, 0) 
𝜃{𝐶!1|𝝉}: (𝑢, 0, 0) → (𝑢, 0, 0) 
𝜃{𝜎20|𝝉}: (𝑢, 0, 0) → (𝑢, 0, 0) 

(1) When SOC is ignored, the magnetic space group is P42’/mn’m, among above 6 symmetries only 
{𝐸|0}, {𝜎?|0}, 𝜃{𝐶!1|𝝉}, and 𝜃{𝜎20|𝝉} are symmetries of the magnetic system, where both 𝜃{𝐶!1|𝝉} and 
𝜃{𝜎20|𝝉} will transfer spin state to opposite spin state and enforce degeneracy between them.  

(2) When SOC is considered, the magnetic space group is P42’/mnm’, among above 6 symmetries 
only unitary symmetries {𝐸|0}, {𝜎?|0}, {𝐶!0|𝝉}, and ~𝜎21�𝝉} are symmetries of the magnetic system, 
where either {𝐶!0|𝝉} or ~𝜎21�𝝉} will transfer the spin eigenstate to a linearly independent spin state, 
therefore enforcing spin degeneracy between them. The same conclusion can also be obtained from the 
fact that the group of the wavevector formed by the four unitary symmetries has only one 2D double 
group irreducible representation ΔD (see Table III in Ref. [38]). 

 
Along the spin splitting k-path Γ-M, the coordinate of 𝒌 is (𝑢, 𝑢, 0). The possible symmetries that 

keep 𝒌  invariant are (notice that all conclusions below also are applicable for 𝒌 = (−𝑢, 𝑢, 0)  by 
interchanging a with b): 

{𝐸|0}: (𝑢, 𝑢, 0) → (𝑢, 𝑢, 0) 
{𝜎?|0}: (𝑢, 𝑢, 0) → (𝑢, 𝑢, 0) 
{𝐶!3|0}:		(𝑢, 𝑢, 0) → (𝑢, 𝑢, 0) (𝑆3) 
{𝜎54|0}: (𝑢, 𝑢, 0) → (𝑢, 𝑢, 0) 
𝜃{𝐶!4|0}: (𝑢, 𝑢, 0) → (𝑢, 𝑢, 0) 
𝜃{𝜎53|0}: (𝑢, 𝑢, 0) → (𝑢, 𝑢, 0) 

(1) When SOC is ignored, the group of the wavevector only has four unitary symmetries {𝐸|0}, 
{𝜎?|0}, {𝐶!3|0}, and {𝜎54|0}, none of these would reverse the spin state and therefore spin splitting is 
expected along this direction. 

(2) When SOC is considered, the group of the wavevector has two unitary symmetries {𝐸|0}, {𝜎?|0}, 
and two antiunitary symmetries	𝜃{𝐶!4|0}, 𝜃{𝜎53|0}. Again, none of these symmetries would reverse the 
spin up (down) state to its opposite, therefore spin splitting is expected in this case. 
 

The situation becomes a bit more complicated for k-path on the boundary of BZ. Along Z-R with 
𝒌 = (𝑢, 0, 1/2), the possible symmetries that keep 𝒌 invariant are: 

{𝐸|0} : (𝑢, 0, 1/2) → (𝑢, 0, 1/2) 
{𝜎?|0}:	(𝑢, 0, 1/2) → (𝑢, 0, 1/2) − (0, 0, 1) 

{𝐶!0|𝝉}:		�𝑢, 0,
1
2� → �𝑢, 0,

1
2� −

(0, 0, 1) (𝑆4) 

{𝜎21|𝝉}: (𝑢, 0, 1/2) → (𝑢, 0, 1/2) 
𝜃{𝐶!1|𝝉}: (𝑢, 0, 1/2) → (𝑢, 0, 1/2) 

𝜃{𝜎20|𝝉}: (𝑢, 0, 1/2) → (𝑢, 0, 1/2) − (0, 0, 1) 
and their combination with a primitive translation along z axis of {𝐸|(0,0,1)}. 
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(1) When SOC is ignored, the group of the wavevector are composed of {𝐸|0}, {𝜎?|0}, 𝜃{𝐶!1|𝝉} and 
𝜃{𝜎20|𝝉} symmetries and their combination with {𝐸|(0,0,1)}, where either 𝜃{𝐶!1|𝝉} or 𝜃{𝜎20|𝝉} will 
protect a double degeneracy. 

(2) When SOC is considered, the group of the wavevector have only unitary symmetries {𝐸|0}, 
{𝜎?|0}, {𝐶!0|𝝉}, and {𝜎21|𝝉} and their combination with {𝐸|(0,0,1)}. {𝐸|0} and {𝜎?|0} both are unit 
2 × 2 matrix in the spin space hence will not introduce any spin degeneracy; while by selecting basis as 
spin polarization along 𝑦 , neither {𝐶!0|𝝉}  nor {𝜎21|𝝉}  will reverse the spin polarization. As the 
consequence, one would expect spin splitting along Z-R when SOC is included. 
 
APPENDIX E: Power of k dependence of spin splitting in AFM MnF2 with SOC 
 
   We have calculated the scaling of the spin splitting with wave vector from DFT calculation: Nearby Γ 
(progressing along Γ-Μ), the splitting between the V1 and V2 bands shows a quadratic relation to 
wavevector as 𝒌E with a numerically fitted value of 𝜂 = 1.98, while nearby Z (progressing along Z-R), 
such splitting shows a linear relation as 𝒌E with numerical 𝜂 = 0.98, ; the same quadratic and linear 
relations also hold for the splitting between V3 and V4. (see Table SI) 
 
Table SIII | Power of k dependence of spin splitting in AFM MnF2 with SOC. The spin splitting near given 
high symmetry 𝒌F point and (𝒌F + ∆𝒌) are fitted to 𝛼G#|𝒌|

E for the top two valence bands V1, V2 and 
the third and fourth valence bands V3, V4. Row captions like 𝚪𝚪7𝐌 are used to note spin splitting near Γ 
along Γ-M. 
 

k point 𝚫𝐒𝐒𝐕𝟏(𝐕𝟐(𝒌) 𝚫𝐒𝐒𝐕𝟑(𝐕𝟒(𝒌) Linear or Quadratic? 

𝚪𝚪(𝐌 0.45𝑘..01 3.72𝑘..02 Quadratic 

𝐌𝐌(𝚪 0.44𝑘..01 3.86𝑘..02 Quadratic 

𝐙𝐙(𝐑 0.04k5.01 0.02k..5. Linear 

𝐀𝐀(𝐑 0.01k..57 0.05k5.01 Linear 

 
APPENDIX F: EFFECTIVE TWO-BAND MODEL HAMILTONIAN AT SPECIFIC 𝒌 POINTS MODEL IN AFM 
MNF2 
 

In AFM MnF2, one can define two spin-related AFM local atomic basis states[24] with one spin-up 
state localized mostly on Mn1 at (0, 0, 0) and one spin-down state mostly localized on Mn2 at (1/2, 1/2, 
1/2). The AFM ordering is thus embedded in the inequivalence distribution on Mn1 and Mn2 of the spin-
related basis. The effective two-band model Hamiltonian at specific 𝒌 points can then be determined by 
the constrains imposed by the symmetries of the group of wavevector on the basis. 

 
6.1 Effective model at 𝚪: At the	Γ point, the group of wavevector inherits all the symmetries that 

the AFM magnetic space group has. Upon applying the symmetries (only symmetry generators are 
needed) on the AFM basis one can find the representations and transformation properties of the Pauli 
matrix 𝝈 and tensor operator 𝒌.  

(1) When the SOC is ignored, the spin orientation is enforced to align along the magnetization 
direction, i.e., z-axis. The corresponding magnetic space group is P42’/mn’m, which can be generated by 
three unitary symmetries {𝐶!3|0}, {𝐶!4|0}, {𝐼|0} and one antiunitary symmetry 𝜃{𝐶!0|𝝉}. Table SIV lists 
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the transformation properties of the Pauli matrix 𝝈 and tensor operator 𝒌 under these symmetry 
operations, the only possible invariant spin splitting term that could exists in Hamiltonian is 𝜎,𝑘0𝑘1, 
indicating quadratic dependence of spin splitting to displacement in 𝒌 along the diagonal Γ-M direction, 
and spin degeneracy along Γ-X direction in agreement with our DFT results seen in Figure 2(b). 
 
Table SIV | The transformation properties of symmetrized matrix and irreducible tensor up to the 
second order in 𝒌 under symmetry operations of the group of wavevector at 𝚪 (without SOC). 
 

Symmetrized matrix Irreducible tensor {𝐶89|0} {𝐶8:|0} {𝐼|0} 𝜃{𝐶8;|𝝉} 

𝜎5 𝐶, 𝑘;8 + 𝑘<8, 𝑘=8 1 1 1 1 

𝜎= 𝑘;𝑘< 1 1 1 -1 

 
(2) When including SOC, the corresponding magnetic space group becomes P42’/mnm’, which can 

be generated by three unitary symmetries {𝐶!0|𝝉} , {𝐶!1|𝝉} , {𝐼|0}  and one antiunitary symmetry 
𝜃{𝐶!3|0}. The transformation properties of the Pauli matrix 𝝈 and tensor operator 𝒌 are listed in Table 
SV: 
 
Table SV | The transformation properties of symmetrized matrix and irreducible tensor up to the 
second order in 𝒌 under symmetry operations of the little point group at 𝚪 (with SOC) 
 

Symmetrized matrix Irreducible tensor {𝐶8;|𝝉} {𝐶8<|𝝉} {𝐼|0} 𝜃{𝐶89|0} 

𝜎5 𝐶, 𝑘;8 + 𝑘<8, 𝑘=8 1 1 1 1 

𝜎= 𝑘;𝑘< -1 -1 1 1 

(𝜎;,	𝜎<) - E1 0
0 −1G E−1 0

0 1G E1 0
0 1G E 0 −1

−1 0 G 

 
We see from Table SV that the only possible invariant spin splitting term up to second order in 𝒌 is 

𝜎,𝑘0𝑘1, indicating quadratic dependence of spin splitting on variations in 𝒌 along the diagonal Γ-M 
direction when SOC is included. (see DFT results in Figure 1(c)) The effective Hamiltonian term 𝜎,𝑘0𝑘1 
also captures the four-quadrant pattern of the out-of-plane spin polarization as 𝑘0𝑘1 having opposite 
signs in first and third quadrants and in second and fourth quadrants as seen in Figure 3. 
 

6.2 Effective model at 𝚲 
(1) When SOC is excluded, the spin splitting term takes exactly the form as at Γ, 𝜎,𝑘0𝑘1. So no spin 

splitting along Λ-W and quadratic spin splitting along Λ-V. 
(2) When SOC is included, from Table SVI, the effective spin splitting terms are linear combinations 

of 𝐻J = 𝐴𝜎,𝑘0𝑘1 + 𝐵(𝜎0𝑘1 + 𝜎1𝑘0), here A and B are real coefficients. One would then also expect 
quadratic dependence along the diagonal Λ-V direction from the first term and linear dependence along 
Λ-W direction from the second term. Also, the four quadrants pattern and Dresselhaus-like spin texture 
can be explicitly captured by the effective model Hamiltonian, the first term contributes to the four 
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quadrants pattern with out-of-plane spin polarization, where 𝑘0𝑘1 takes has opposite sign in first (𝑘0 >
0, 𝑘1 > 0) and third (𝑘0 < 0, 𝑘1 < 0) quadrants relative to the second (𝑘0 < 0, 𝑘1 > 0) and fourth 
(𝑘0 > 0, 𝑘1 < 0) quadrants. The second term resembles in analytical form to conventional Dresselhaus 
term and contributes the in-plane Dresselhaus spin texture. One should note that it is the distribution of 
the spin-related basis on two Mn that provides non-vanishing in-plane spin texture. If the spin up and 
spin down basis localized completely on Mn1 and Mn2, the in-plane spin texture would vanish and there 
would be no Dresselhaus spin texture at all. Larger mixing between the two local Mn atoms of the spin 
basis will lead to a stronger in-plane spin polarization. 
 
Table SVI | The transformation properties of symmetrized matrix and irreducible tensor under 
symmetry operations of the little point group at 𝚲 with SOC. 
 

Symmetrized matrix Irreducible tensor {𝜎>;|𝝉} {𝜎><|𝝉} 𝜃{𝐶89|0} 

𝜎5 𝐶, 𝑘;8 + 𝑘<8, 𝑘=8 1 1 1 

𝜎= 𝑘;𝑘< -1 -1 1 

(𝜎;,	𝜎<) (𝑘<, 𝑘;) E1 0
0 −1G E−1 0

0 1G E 0 −1
−1 0 G 

 
6.3 Effective model at 𝒁 
(1) When SOC is excluded, the spin splitting term takes exactly the form as at Γ, 𝜎,𝑘0𝑘1 and give 

rise to zero spin splitting along Z-R, and quadratic-in-k spin splitting along Z-A. (see DFT band structure in 
Figure 2(b)). 

(2) When SOC is included, from Table SVII, the spin splitting terms are linear combinations of 
𝐻K = 𝐴𝜎,𝑘0𝑘1 + 𝐵(𝜎0𝑘1 − 𝜎1𝑘0), here A and B are real coefficients. Once again, the spin splitting will 
have quadratic dependence along the diagonal Z-A direction and a four-quadrants out-of-plane spin 
polarization pattern from the first term, and linear dependence along the Z-R direction from the second 
term. Moreover, despite the fact that the second term resembles in form the conventional Rashba 
Hamiltonain[2], it will not create in-plane spin polarization (see Figure S1). The vanishing spin 
polarization is the consequence of zero mixing between the two spin-related Bloch basis of Mn1 and 
Mn2 for the same spin, that are |𝑀𝑛L, ↑⟩ and |𝑀𝑛!, ↑⟩ (also |𝑀𝑛L, ↓⟩ and |𝑀𝑛!, ↓⟩), which form a pair of 
zero in-plane spin polarized but non-zero splitting states, a|𝑀𝑛L, ↑⟩ + 𝑏|𝑀𝑛!, ↓⟩  and 	𝑎|𝑀𝑛L, ↑⟩ −
𝑏|𝑀𝑛!, ↓⟩ with a, b being the complex constant coefficients of the states satisfying the normalization 
condition |𝑎|! + |𝑏|! = 1. When 𝑎 = 𝑏, the out-of-plane spin polarization also vanishes. The zero 
mixing between |𝑀𝑛L, ↑⟩  and |𝑀𝑛!, ↑⟩  (and between |𝑀𝑛L, ↓⟩  and |𝑀𝑛!, ↓⟩ ) is enforced by {𝜎?|0} 
symmetry at Z, since |𝑀𝑛L, ↑⟩ (and |𝑀𝑛!, ↓⟩) takes opposite eigenvalue of {𝜎?|0} symmetry to |𝑀𝑛!, ↑⟩ 
(and |𝑀𝑛L, ↓⟩). The same reason accounts for the zero in-plane spin polarization but non-zero splitting 
observed at R when SOC is included, as {𝜎?|0} also being a symmetry of 𝒌 at R and forbids mixing 
between |MnL, ↑⟩  and |Mn!, ↑⟩  (and between |MnL, ↓⟩  and |Mn!, ↓⟩ ). The surprising effect of spin 
splitting with vanishing spin polarization was also reported recently in non-magnetic crystals (e.g., bulk 
GaAs[60] and graphene[61]). 
 
Table SVII | The transformation properties of symmetrized matrix and irreducible tensor under 
symmetry operations of the little point group at Z with SOC. 
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Symmetrized matrix Irreducible tensor {𝐶8;|𝝉} {𝐶8<|𝝉} {𝐼|0} 𝜃{𝐶89|0} 

𝜎5 𝐶, 𝑘;8 + 𝑘<8, 𝑘=8 1 1 1 1 

𝜎= 𝑘;𝑘< -1 -1 1 1 

(𝜎;,	𝜎<) (𝑘<, −𝑘;) E−1 0
0 1G E1 0

0 −1G E−1 0
0 −1G E0 1

1 0G 

 
APPENDIX G: In-plane Spin texture in MnF2 on the 𝒌-planes 𝒌𝒛 = 𝟎 and 𝒌𝒛 = 𝝅/𝒄 

 
Figure S1 shows the calculated spin textures of the V1 and V2 bands in MnF2 on 𝒌-planes 𝑘, = 0 

and 𝑘, = 𝜋/𝑐, where c is the lattice constant along (001). For the out-of-plane spin polarization, we find 
the same four-quadrant pattern as the one found on 𝑘, = 𝜋/2𝑐 plane (shown in Figure 3). While, in 
contrast to in-plane Dresselhaus spin texture observed on 𝑘, = 𝜋/2𝑐 plane, on the 𝒌-planes 𝑘, = 0 and 
𝑘, = 𝜋/𝑐, there is no in-plane spin polarization. 

 
Figure S1 | Spin textures of the top two valence bands (V1 and V2) in AFM MnF2 on two 𝒌𝒁 planes: (a) 
(b)	𝑘, = 0 plane, and (d) (e) 𝑘, = 𝜋/𝑐 plane. For each 𝑘, plane, the labels of the high symmetry 𝒌 
points are shown by a diagram on the left side of each horizonal panel. The in-plane spin polarizations 
are indicated by black arrows, while black dot means the in-plane polarization at this 𝒌 is zero; the out-
of-plane spin polarizations are mapped by colors from blue to red. 
 
APPENDIX H: The spin splitting induced by cooperative effects of AFM and SOC in MnF2 
 
  Allowing SOC in a NM model does not lead to any spin splitting since the 𝜃𝐼 symmetry is always 
preserved (see Figure S2 (a)). In contrast, introducing SOC to AFM leads to cooperative effects of AFM + 
SOC. For example, it creates additional spin splitting along certain 𝒌-paths, e.g., Z-R, R-A and X-R 
directions (see Figure S2(b)). This is because in the AFM phase described without SOC, the spin 
degeneracy along Z-R, R-A and X-R directions is guaranteed by the symmetry operations 𝜃{𝐶!0|𝝉}, 
𝜃{𝐶!1|𝝉},	𝜃{𝜎!0|𝝉}, and 𝜃{𝜎!1|𝝉}; adding SOC to pre-existing AFM couples the real space rotations to 
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spin operations and breaks all four anti-unitary symmetries, leading therefore to spin splitting along 
these directions (see full details about how SOC induces spin splitting in preexisting AFM along Z-R in 
Appendix E). An interesting fact is that we find spin splitting at the R point (which is TRIM) when adding 
SOC to AFM phase. This manifests the breaking of time reversal symmetry in the AFM phase. The lifting 
of spin degeneracy at TRIM point and its connected 𝒌 paths represents a cooperative effect of 
magnetism and SOC: neither AFM without SOC (Figure 2(b)) nor SOC without AFM (Figure S2(a)) shows 
spin splitting along these directions, but the coexistence of SOC and AFM leads to spin splitting. 
 

 
Figure S2 | DFT band structures of centrosymmetric MnF2 in NM and AFM with SOC. In all cases we use 
the experimentally observed centrosymmetric tetragonal structure[37]: (a) NM with SOC; (b) AFM with 
SOC. Out-of-plane spin polarizations are mapped to color scales from blue to red. The integer numbers 
attached to bands are degeneracy factors. 
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