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Abstract

The energy vs. crystal momentum E(k) diagram for a solid (band structure) constitutes the
road map for navigating its optical, magnetic, and transport properties. By selecting crystals
with specific atom types, composition and symmetries, one could design a target band
structure and thus desired properties. A particularly attractive outcome would be to design
energy bands that are split into spin components with a momentum-dependent splitting, as
envisioned by Pekar and Rashba [Zh. Eksperim. i Teor. Fiz. 47 (1964)], enabling spintronic
application. The current paper provides “design principles” for wavevector dependent spin
splitting (SS) of energy bands that parallels the traditional Dresselhaus and Rashba spin-orbit
coupling (SOC) -induce splitting, but originates from a fundamentally different source—
antiferromagnetism. We identify a few generic AFM prototypes with distinct SS patterns using
magnetic symmetry design principles. These tools allow also the identification of specific AFM
compounds with SS belonging to different prototypes. A specific compound -- centrosymmetric
tetragonal MnF; -- is used via density functional band structure calculations to quantitatively
illustrate one type of AFM SS. Unlike the traditional SOC-induced effects restricted to non-
centrosymmetric crystals, we show that antiferromagnetic-induced spin splitting broadens the
playing field to include even centrosymmetric compounds, and gives SS comparable in
magnitude to the best known (‘giant’) SOC effects, even without SOC, and consequently does
not rely on the often-unstable high atomic number elements required for high SOC. We
envision that use of the current design principles to identify an optimal antiferromagnet with
spin-split energy bands would be beneficial for efficient spin-charge conversion and spin orbit
torque applications without the burden of requiring compounds containing heavy elements.
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l. Introduction

An electron with momentum p and mass m moving in an inversion symmetry-breaking electric field E
in a solid experiences an effective magnetic field Bo4~E X p/mc? in its rest-frame, where c is the speed
of light. In bulk crystals[1] this symmetry breaking electric field is given by the gradient of the crystal
potential E = —VV, whereas in heterostructures[2] it can be produced by interfacial asymmetry, and in
centrosymmetric compounds by the local asymmetry of individual structural sectors[3]. This intrinsic
magnetic field couples the electron momentum to its spin, a relativistic effect leading to spin—orbit-
coupling (SOC) induced spin splitting of energy bands at wave vectors differing from the time reversal
invariant moments (TRIM). In the semi-relativistic Pauli equation, the SOC is described by the Thomas

eh
(T)[4] term Ht = T amzcz
momentum p, and its fully relativistic generalization. These seminal studies have formed the basis for
the development of spintronics[5-7], bringing k-dependent spin-orbit interaction to the forefront of
solid-state physics, including applications to spin transistor, spin—orbit torque, spin Hall effect,

topological insulators, and Majorana Fermions (see review in Ref. [8]).

[o- (VV(r) x p)] that couples electron spin ¢ to its coordinate r and

Since the relativistic SOC increases rapidly with atomic number Z, and since the strength of chemical
bonds in compounds decreases rapidly with increasing atomic number (e.g. in the sequence ZnTe-CdTe-
HgTe, or ZnS-ZnSe-ZnTe[9]), the ease of breaking such fragile high-Z bonds-- creating vacancies that
produce free carriers-- has been an unwelcome but constant companion of high SOC compounds both
for spin splitting and for topological insulators applications.[9-12] This double limitation of the Rashba
and Dresslhause[1,2] spin splitting effects to high-Z and non-centrosymmetric compounds has limited
the playing field, raising hopes for an alternative spin splitting mechanism in thermodynamically stable,
low Z compounds of more general symmetries.

More recently, the investigation of spin splitting of energy bands has been expanded to magnetic
systems, in particular, antiferromagnets (AFM), for eliminating stray fields.[13-16] For example, spin
splitting has been calculated in some high-Z AFM half-metallic compounds such as iron-pnictide AFM
BaCrFeAs;[17], MnsAl and MnsGa[18], and 2D van der Waals[19] AFM materials, but such occurrences
were not distinct from the traditional spin orbit effect[1,2]. Indeed, it is generally implied that such
splitting in the presence of background AFM may be treated just as SOC-induced splitting in non-
magnetic (NM) materials[1,2], through the usual Thomas term[4]. For example, allowing for
antiferromagnetism in calculations on BiCoO3[20] having SOC manifests but a small change in its spin
splitting; furthermore, if SOC is deliberately removed from the Hamiltonian, the predicted spin splitting
vanishes in the whole Brillouin Zone (BZ). Also, the field-free magnetic mechanism discussed in the
present paper differs from the anomalous spin-orbit coupling in antiferromagnets induced by applying
external magnetic field, discussed in Ref. [21,22].

A phenomenological theory of magnetic spin splitting has been proposed 1964 by Pekar and Rashba
[23], suggesting that the presence in magnetic compounds of a spatially-dependent intrinsic magnetic
field h(r), periodic with the crystal period, can lead to coupling of Pauli matrices @ to this h(r). This
would result in a magnetic mechanism of k-dependent spin splitting, suggestive of a new type of spin
orbit coupling. Because the k - p formalism used in Ref. [23] did not afford an atomistic definition of
h(r) and its ensuing spin splitting, nor did it provide for guiding principles to select a target material for
investigating such effects, examination of these 1964 ideas remained dormant for a long time.

In the present paper, inspired by Ref. [23], we demonstrate an AFM mechanism that creates k-
dependent spin splitting A.;(k) even in centrosymmetric, low Z compounds, persists even at time
reversal invariant wave vectors, and has an unusual quadratic scaling on momentum k. The coupling
of spin to lattice degrees of freedom via the periodic spatial dependent intrinsic magnetic field h(r) is



analogous to a new form of spin orbit coupling; the fact that spin splitting can, however, exist even
without the presence of spin orbit interaction in the Hamiltonian is noteworthy. We formulate the
general magnetic space group conditions (“design principles”) for spin splitting in different AFM
prototypes, either with or without SOC, and illustrate via detailed first principles calculations a case of
purely AFM-induced spin splitting.

1. Magnetic symmetry conditions for AFM-induced spin splitting
A. Symmetries that enforce spin degeneracy

To select a compound for direct magnetic k-dependent spin splitting we inspect the underlying
symmetry requirements. We first list the symmetries that keep spin degeneracy, preventing SS, then
discuss how to violate those symmetries. (i) As is known[24], the combination 61 of time reversal 8 and
spatial inversion I symmetries ensures double degeneracy for arbitrary wave vector k. Likewise, (ii)
when SOC is turned off, the spin and spatial degrees of freedom are decoupled, so there could exist pure
spin rotation U, a spinor symmetry, that reverses the spin but keeps momentum invariance, thus
preserving spin degeneracy for all wave vectors. The spin rotation U does not exist in AFM when the
alternating magnetic moments reside on different atomic sites, because such arrangement reverses the
antiferromagnetic order. But in a specific types of AFM compound (referred to as magnetic space group
(MSG) type IV[25], such as BiCo0s3[20]) where there exists a translation T that transforms the reversed
antiferromagnetic order back, UT symmetry would still preserve spin degeneracy for all wave vectors.

B. Violating degeneracy-enforcing symmetries

(i) As expected, the appearance of spin splitting requires first the violation of 81 symmetry. In
magnetic crystals, where 6 is already violated due to magnetic order, absence of the inversion
symmetry doesn’t mean breaking of 81, hence does not necessarily lead to the removal of spin
degeneracy. (Actually, even for a centrosymmetric magnetic structure, where I is preserved but 61 is
broken, one can still have spin splitting). (ii) To have SOC-unrelated spin splitting, one needs also to
violate UT symmetry. AFM structures that violate UT symmetry correspond to the so-called MSG type
Il or I such as rutile MnF,. Appendix A provides more detailed discussion of UT symmetries.

C. The resulting prototypes of AFM SS

Based on whether the AFM compound in question has or lacks 81 symmetry, and weather it belongs
to MSG type IV or MSG type | / lll, we have identified four distinct types of AFM spin splitting prototypes
(Table 1). The first two prototypes, (1) (2), have spin degeneracy at arbitrary k point because of
protection by 81 symmetry. The prototypes (3) (4) have 81 violation, allowing spin splitting in the
presence of SOC. Prototype (3) being MSG type IV has spin degeneracy when SOC is turned off (referred
as “SOC induced spin splitting”) whereas prototype (4) being MSG type | or Ill allows spin splitting even
when SOC is turned off (referred as “AFM induced spin splitting”). To find specific compound realizations
of the four AFM prototypes (last line of Table 1) we searched the listings of magnetic symmetries (such
as the MAGNDATA in Bilbao listing[26]) for compliance with our symmetry conditions (top 2 lines in
Table 1). As a concrete example, we illustrate the identification of a specific realization of AFM SS
prototype 4 compound selecting by the “design principle” (symmetry condition of prototype 4): (1) MSG
has no 81 symmetry and (2) MSG type is | or lll. 'We have identified a few AFM compounds as AFM SS
prototype 4, e.g., MnF, (MSG: P4,’/mnm’)[27], La2NiO4 (MSG: Pc’c’n)[28], and ScFeOs; (MSG: Cc’)[29]. We
found that tetragonal MnF, — with only two formula units per magnetic unit cell and with magnetic



moment on Mn aligning along the principle four-fold axis to be a potential attractive compound for
experimentalists to measure the new spin-splitting physics. Tetragonal MnF, having magnetic space
group P4;’/mnm’ complies with the above noted design principles -- (1) has no 61 symmetry despite the
presence of inversion symmetry; (2) belongs to MSG type I, therefore it has no UT symmetry.

TABLE | | Classification of four spin splitting prototypes in antiferromagnetic compounds in terms of symmetry
conditions, consequences, and examples. Symmetry conditions: 6 represents time reversal and [ represents
spatial inversion, 81 is the combination of these two operations. AFM can be MSG type |, Ill or IV. (For detail
description of MSG and MSG type please refer to Appendix A). Consequences: No SS means no spin splitting either
with or without SOC. SOC- induced SS means that one has spin splitting when SOC is non-zero, but no spin splitting
when SOC is turned off. AFM induced SS means that one has spin splitting even when SOC is turned off. Note that
the symmetry-based conditions generally apply not only to collinear but also to noncollinear AFM. For example, we
would expect AFM-induced spin splitting in a non-collinear AFM Mnslr[30] which is also centrosymmetric but has
no 61 symmetry and belongs to MSG type Il

AFM SS prototype 1 2 3 4
Condition 1: Has 61? Yes Yes No No
Condition 2: MSG type Il \Y) v lorll
Consequences No SS No SS SOCinducedSS  AFM induced SS
Examples CuMnAs[31] NiO[32] BiCo05[33] MnF;

Table | indicates that not all AFM compounds have the same SS behavior, and that the magnetic, not
just spatial symmetries are important. For example, an AFM SS has been theoretically analyzed recently
based on tight-binding models on the multipole description by Hayami et. al.[34,35]. However, their
multipole analysis was based on point group symmetry not magnetic group symmetry, omitted the non-
magnetic atoms. This omission (e.g. MnF, without F), however, restores the UT symmetry and results in
the prediction of complete spin degeneracy in the absence of SOC, in sharp contrast with DFT predicted
(below) giant spin splitting. (see Appendix B for detail discussion of these previous work)

1R lllustration of the properties of an AFM-induced SS compound MnF2
A The system

MnF, is a wide gap insulator both below and above its Néel temperature of 67K.[36] It is a
centrosymmetric rutile structure (conventional space group P4,/mnm), with magnetic Mn ions
occupying position (0, 0, 0) and (1/2, 1/2, 1/2) centered in an octahedral of non-magnetic F anions
located at +(u, u, 0) and *(1/2+u, 1/2-u, 1/2) where u is the positional parameter. The refinement X-ray
diffraction results[37] gave the positional parameter u=0.305, and lattice constants a=b=4.873 A,
c=3.311 A. Erickson[27] found via neutron scattering measurements the AFM moment aligned along the
tetragonal axis (i.e., [001]) with magnetic space group of P4,’/mnm’. The magnetic crystal unit cell is
shown in Figure 1(a). While concentrating on this specific material MnF; as an illustration of a new



physical effect, we do not maintain that it is optimized for technological usage in a specific spintronics
device application (size of band gap; dopability; value of Néel temperature). Optimization of such
material constants might be possible by comparing different compounds belonging to a given AFM SS
prototype. This is outside the scope of the current paper.
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Figure 1 | Crystal structure, band structure and spin splitting of the centrosymmetric AFM tetragonal
MnF,. (a) Magnetic unit cell where red arrows indicate local magnetic moment; (b) contour plot of
magnetization along z in z = ¢/2 plane; (c) DFT calculated band structure with our calculated magnetic
symmetry representations (see Appendix C), using the notations of Ref. [38] with numbers in
parenthesis indicating the dimension of the representation (i.e., degeneracies). The top four valence
bands are denoted by V1, V2, V3, V4 and the yellow screen highlights the gaps between valence and
conduction bands. Insert of (c) shows the BZ and the blow-up bands around R point. The blue to red
color scale denotes the calculated out-of-plane spin polarization. Panels (d, e) show DFT calculated wave
vector dependence of the spin splitting between pairs of valence bands V1-V2 (in (d)) and between V3-
V4 (in (e)) for different scaling of SOC Ago (numerical coefficient 0 < Agpc < 1). Insert of (d) shows the
spin splitting vs. the amplitude of the spin orbit coupling Agp at T (0, 0, 0), R (0, 0.5, 0.5) and the middle
point of I'-M (0.25, 0.25, 0). All DFT calculations use PBE exchange correlation functional[39] with on-site
coulomb interaction on Mn-3d orbitals of U= 5eV, J= 0 eV and the experimental crystal structure[37].

B Six predicted characteristics of AFM-induced spin splitting in MnF,

We calculated the relativistic electronic structure of AFM MnF, within density functional theory (DFT)
(see description of DFT method in Appendix C). Figure 1(b) provides the calculated magnetization
m,(r) = m'(r) —m*() in the z=c/2 plane, with m'and m!(r) representing the up and down spin
electron density. To assess the AFM magnetism effect, we also define a reference NM model, where the



magnetic moment on each site is zero, resulting in a metallic state. We emphasize that the NM model is
not used to mimic the physical high temperature paramagnetic (PM) phase that has a distribution of
non-vanishing local magnetic moments that creates an insulating gap even in the absence of long-range
order.[40,41] Figure 1(c) gives the band structure of the AFM phase calculated with SOC in its
experimental crystal structure. We find a z-oriented magnetic moment on Mn?* of 4.7 ug, in good
agreement with the neutron scattering measurement of 4.6 ug. We also find calculated minimum direct
gap at ' of 4.02 eV and a smaller indirect gap between VBM at X and CBM at I" of 3.98 eV, comparable
with the measured absorption gap[42] of 4.10 eV (estimated from the convergence limit of the observed
series of discrete d-d* multiplet transitions into the onset of band-to-band continuum). The DFT (mean-
field) calculated band gap and DFT local moment both agree with experiment, providing strong evidence
that the single-particle band structure picture with a 5 eV wide band width as advanced in the DFT
calculations holds well, supporting the notion of well-defined coherent bands.

To assist future measurements of the predicted AFM-induced k-dependent spin splitting (e.g. via
angle-resolved photoemission spectroscopy (ARPES) and spin-ARPES) as well as potential applications in
novel spintronics we next describe the main predicted features of the AFM-induced spin splitting:

(i) The spin splitting has a typical atomic-like energy scale (“giant splitting”): Despite rather small atomic
numbers in MnF; (Z(Mn)=25 and Z(F)=9), the magnitude of the spin splitting (up to 300 meV seen
between V3 and V4 along I'-M in Figure 1(e)) arising from the AFM mechanism can be comparable to
some of the largest known spin splitting of conventional electric mechanism for heavy atom high Z
compounds, such as the ‘giant SOC’ induced spin splitting in BiTel[43] and GeTe[44,45]. The reason for
the difference is that the magnetic field which induces the splitting in AFM reflects the local magnetic
moments localized about atomic sites, not as in the SOC effect where the inducing magnetic field
reflects the asymmetry in the inter-atomic regions of the unit cell. The locality of magnetic moments
needed for obtaining large spin splitting does not contradict the requirement to introduce itinerant
carriers. Local magnetic moments of 4-5 uB are common in Mn-salts with broad (4-5 eV) bands and high
electronic mobility, e.g., La1xSr«MnOs [46]. We find that the spin split bands in MnF; occur about 40 meV
below the VBM (bands V1-V2 in Figure 1) and about 500 meV below the VBM (bands V3-V4 in Figure 1).
Either should be amenable to photoemission detection for validating the theory. In general, for
transport application requiring the creation of free carriers, one should place the Fermi level in the
proximity of the split band, e.g., by doping. For MnF,, the spin-active band V1 with dispersion along the
M-I direction is just 1 meV below VBM at X (see Figure 1(c)), so in this case it does not pose a problem.
The V3-V4 bands in MnF, are not optimal for creation of free carriers as they are rather deep.

(ii) The splitting persists even if SOC= 0: The spin splitting along the I'M and Z-A lines is present even
when SOC is turned off in the Hamiltonian (black line in Figure 1(d) and (e); also shown in the insert of
(d)). This is very different from prototype 3 AFM (Table 1) BiCoOs[20], where spin splitting disappears if
SOC vanishes. Thus, the AFM-induced spin splitting mechanism delivers the long-standing hope for wave
vector dependent spin splitting mechanism in thermodynamically stable, low Z compounds.

(iii) Relative to the NM case, AFM induces a highly anisotropic and k-dependent spin splitting: We show
in Figure 2 the band structures of centrosymmetric MnF; in two cases: (a) NM without SOC; (b) AFM
without SOC. In both cases we indicate the degeneracies of states, calculated by DFT shown as integer



values. An important manifestation of the AFM-induced spin splitting (Figure 1(c)) is that whereas in the
NM structure, the whole BZ, including directions I'-X and I'-M, have doubly degenerate (non-split) bands,
in the AFM structure spin splitting arises even in the absence of SOC but it is wave vector dependent.
Bands remain degenerate along the I'-X directions, but become spin split along the I'-M direction. Such
anisotropic spin splitting was already hinted by the asymmetry in magnetization in coordinate space as
shown in Figure 1(b) between x + y, x — y and x, y directions. This behavior is understandable on the
basis of magnetic symmetry (See Appendix D for discussion of unitary and antiunitary symmetries): the
AFM ordering does not lead to symmetry reduction along the I'-X paths, relative to its NM counterpart.
The resulting spin degeneracy along k, (or k,,) direction of I'-X in AFM is protected by its group of k
symmetries 8{C,|7} and 8{0y,, |t} (or 8{C3, |7} and 8{a,,|T}). In contrast, along the I'-M paths, in AFM
the combined symmetries of 8{C,,|0} and 6{C,,|0} (or 8{c;,|0} and 8{a,4,|0}) are broken, which
creates spin splitting. Here, C,y, Cyy, C34, C3p are m rotations about the [100], [010], [110], [1-10] axes,
respectively; 0y, Opy, O4q, Oqp are mirror reflections in (100), (010), (1-10), (110) planes; and vector T =
(1/2,1/2,1/2) is half lattice translation, directed along the spatial diagonal [111] of the unit cell. Similar
arguments (given in Appendix D) apply for spin degeneracy along Z-R and spin splitting along Z-A in
Figure 1(b).

(iv) The AFM mechanism gives rise to even powers of k in the spin splitting: Of special interest in Figure 1
(c) is the diagonal '-M and Z-A lines showing large spin splitting while at the end of these k-lines the
splitting vanishes. It is of interest therefore, to establish how the splitting changes near its k-space end
points. By fitting the DFT calculated spin splitting A (k) to the power of k, we found a quadratic-in-k
dependence at [T_y (i.e., near the I'-end along I' — M path) and My_r (see details of fitting in Appendix
E and effective model in Appendix F). Thus, near degeneracy points A..(k) has a quadratic k
dependence compared with odd powers typical of the electrically induced SOC effect.
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Figure 2 | DFT band structures of centrosymmetric (CS) MnF, in NM and AFM without SOC. In all cases
we use the experimentally observed centrosymmetric tetragonal structure[37]: (a) NM with SOC set to
zero; (b) AFM with SOC set to zero. Out-of-plane spin polarizations are mapped to color scale from blue
to red. The integer number attached to each band and k point is the degeneracies.

(v) A Dresselhaus in-plane spin texture results from a cooperative SOC and AFM effect: The coupling
between spin space and position space results not only in spin-splitting of the energy spectrum, but also
in developing “spin-momentum locking”, where the spin orientation is locked with momentum k. The
vector field of the spin states in momentum space is called spin texture, being helical for the
conventional Rashba SOC mechanism[2] and non-helical for the Dresselhaus mechanism[1]. The spin



texture for AFM-induced spin splitting has its own fingerprints. Figure 3 shows the calculated spin
textures of the V1 and V2 bands at the representative k-plane k, = m/2c where c is the lattice constant
along z axis. We see that, electron spins are mostly aligned along the out-of-plane z direction, as can be
surmised from the magnetic structure (see Figure 1(a)). This is seen in the four quadrants patterns on a
fixed k, plane with positive (up arrow in Figure 3(a) and (b)) and negative (down arrow in Figure 3(a)
and (b)) out-of-plane spin polarizations in the neighbor quadrants. The out-of-plane spin polarizations
are opposite in sign between bands V1 and V2, as noted by the reversal of the red and blue patterns for
V1 and V2. Similar four quadrants pattern of out-of-plane spin polarization is also found in the k, = 0
and k, = /c planes (see corresponding spin texture results in Appendix G).

Interestingly, inspecting the k, = m/2c plane, Figure 3 shows a pronounced (i) in-plane (ii) non-
helical Dresselhaus-like spin texture. These features are unexpected given that the crystal structure of
MnF, is magnetized in the z-direction and centrosymmetric, while normally to assure Dresselhaus
features[3] we need non-centrosymmetric symmetry. We find that the Dresselhaus spin texture in MnF2
requires for its existence the SOC term (i.e. the texture vanishes if the SOC is removed from the
Hamiltonian). Thus, the texture represents the combined effect of coexistence of SOC with AFM (see
cooperative effect on spin splitting in Appendix H).

| spin texture of V1 band | | spin texture of V2 |
[0]
c
©
2
B
5
S
w
N e SR
2 : AnTv e S
5] 5 0 TR I
S owe A cw we A W
& . - P
c 2 NN ony, o
G . T boo 000" 20 o0 o
Ve w NV Vi w TV

Figure 3 | Spin textures in AFM MnF, with SOC on k, = m/2c plane. (a) Out-of-plane spin texture of V1
band, (b) out-of-plane spin texture of V2 band, (c) in-plane spin texture of V1 band, and (d) in-plane spin
texture of V2 band.

(vi) Different wavevectors can have different dependence on SOC strength: The insert of Figure 1(d)
shows different characteristic behaviors of the dependence of spin splitting Agc(k) on spin-orbit
strength at different k points: (1) The trivial case (e.g. I" point) is that neither magnetic nor SOC induces
any splitting; (2) the R point shows zero spin splitting when Agpc = 0 and linear dependence of Agoc ,
illustrating a cooperation of both magnetic and SOC mechanism; notice that despite R being a TRIM
point, it shows spin splitting, unlike the case of purely SOC induced effects; (3) the non-trivial case of
purely magnetic induced spin splitting occurs along I'-M (as well as A-Z) line, where non-zero spin
splitting is present even at Agoc = 0 and is almost independent of Agyc. The appearance of such
distinct spin splitting behaviors at different wave vectors in a single compound would be advocated for
multifunctional spintronic applications.

V. Discussion



This study uncovers the design principles of spin splitting in AFM compounds based on magnetic
symmetry analysis and shows a very rich set of fingerprint fundamental physical effects ((i)-(vi) above) in
a specific prototype, including the giant spin splitting that characterizes the AFM mechanism and could
aid its future experimental observation.

While the present paper focuses on the fundamental physics of a prototype case of
antiferromagnetically induced k-dependent spin splitting even without the presence of SOC or absence
of inversion, we might discuss general anticipated connections with experiment and applications.
Nevertheless, a number of recent experimental papers may have future connections to the current
theory. As an example, active research is currently taking place on 2D layered systems consisting of two
layers, of which one is an AFM and the other a heavy metal such as Pt, with the SOC of Rashba-type
developing on their interface and controlled by electric bias applied across it[47,48]. Using instead
antiferromagnets with spin-split bands described in the current paper, which in addition are either
magneto-electric or piezoelectric, might eliminate the need for heavy-metal layer, as the current AFM
mechanism provides giant magnitude of spin-orbit splitting even with light elements. Similarly, the
observation by Tazaki et. al.[49] of large current- induced magnetic torque in low Z magnet suggests the
possibility worth perhaps examining of the existence of the magnetic mechanism such as described in the
current paper as alternative to conventional SOC mechanism. Recently, Geprags et. al.[50] showed that spin
Hall magnetoresistance allows obtaining valuable information on the spin texture via straightforward
electrical transport measurements, a technique that could be applicable to detect our predicted AFM-
induced spin texture (Figure 3). Hogl et. al.[51] studied graphene on antiferromagnet substrate
expecting strong quantum anomalous Hall effect from the antiferromagnet substrate, raising the
possibility that the currently explored 3D AFM systems could be suitable interesting substrates. We also
note a few transport effects that are likely associated with the AFM-induced spin splitting effect. These
include finite spin current predicted by Zelezny et. al.[52], anomalous Hall conductivity predicted by
Chen et. al.[53] and Suzuki et. al.[54], and crystal Hall effect proposed[55] by Smejkal et. al. and verified
[56] by Feng et. al.

Acknowledgments

The National Science Foundation (NSF) Grant NSF-DMR-CMMT No DMR-1724791 supported the theory
development of this work by L.-D.Y., Z.W., and A.Z. at the University of Colorado Boulder. The ab initio
calculations of this work were supported by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE-SC0010467. J.-W. L.
was supported by the National Natural Science Foundation of China (NSFC) under Grant Number
61888102. This work used resources of the National Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. We thank Dr. Carlos Mera Acosta for fruitful discussions.

APPENDIX A: Additional symmetry considerations beyond 01 for selecting compounds having
non-zero magnetic-induced spin splitting

To select magnetic crystals that have non-zero contribution from the magnetic mechanism means
to find the crystals that still have k-dependent spin splitting even in the absence of SOC (i.e., when there
is no contribution from the electric mechanism). To do so one must violate UT symmetry, where U is a



spinor symmetry of SU(2) which reverses the spin state and T is a translation of the primitive lattice.
This requirement stems from the fact that the existence of UT symmetry preserves the double
degeneracy in the whole Brillouin zone, as it transfers any spin state to its opposite spin state while
keeping k-invariant for arbitrary wavevector. Such UT symmetry exists in AFM compounds whose
magnetic unit cell is not equivalent to its non-magnetic unit cell: the primitive lattice translation T
translate those up-spin (down-spin) atoms to occupy the down-spin (up-spin) atom sites while U
reverses the spin, thus UT symmetry preserves the crystal structure.

Antiferromagnets with primitive lattice translations that reverse the microscopic magnetic
moments are formally known as having black-and-white Bravais lattice and type IV in terms of magnetic
space group (MSG). Formally, the MSG includes not only the unitary symmetries (US), i.e., spatial
symmetries, but also antiunitary symmetries (AS), that are time reversal 8 and its combination with
spatial operations.

In terms of its construction of the unitary and antiunitary part from the space group (G), MSG can
be classified into four types.

e MSG that has no antiunitary symmetries (i.e., AS = @) are identified as MSG type .

e MSG that has the unitary part equivalent to G and an equal number of antiunitary symmetries,
i.e., US = G, AS = 6G belongs to MSG type Il. Since all NM cases have time reversal symmetry,
they all belong to this category;

e MSG that has the unitary part composed of half of its magnetic space group symmetries (spatial
operations that keep the atomic structure invariant) are MSG type Ill or type IV: If the system
has a normal Bravais lattice (magnetic unit cell equivalent to its NM primitive unit cell) it is MSG
type llI; if the system has a black and white Bravais lattice (magnetic unit cell being supercell of
its NM primitive unit cell) it is MSG type IV.

AFM with antiferromagnetic order spontaneously breaks time reversal symmetry, therefore can’t be

MSG type Il but can be MSG type |, lll or IV.

Our selected AFM compound MnF, has magnetic space group of P4,’/mn’m without SOC and the
space group P4,’/mnm’ with SOC, both of which belong to MSG type Il with equivalent AFM unit cell
(MnyF4) to the NM primitive unit cell (Mn;F4). Therefore, it is expected to have spin splitting in such AFM
compound from symmetry perspective.

APPENDIX B: Previous studies on spin splitting in AFM compounds

There are many previous works on spin splitting in AFM compounds. While most of the studies
mentioned the occurrence of spin splitting, only a few literatures tried to establish a causal
understanding of such phenomenon. To give a clear view of the conceptional advance of this paper,
here we list several previous studies on the spin splitting in AFM and compare them to this work.

(a) Previous studies on the occurrence of spin splitting in AFM compounds.

Hu et al. [17] predicted that iron-pnictide AFM BaCrFeAs, could be half-metallic due to the spin
splitting, by first-principles and tight-binding calculations. Gao et al. [18] predicted AFM MnsAl and
MnsGa to have spin splitting by first-principles calculation. Gong et al. [19] showed that 2D van der
Waals AFM materials could have spin splitting under density functional theory. In this work, we are not
satisfied with only showing the existence of spin splitting in AFM without the need of SOC (to aid
experimental testing); more importantly, we formulate the fundamental magnetic space group
conditions (“design principles”) for spin splitting in the absence of SOC — violation of both 61 and UT
symmetries.
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(b) Previous studies on the causal understanding of spin splitting in AFM.

As far as we know, the first literature of the causal understanding was from one of our coworker
Emmanuel Rashba[23], which has already been discussed in the main text. Other previous works include:
Hayami et al.[34] examined AFM spin splitting when SOC is absent, by using tight-binding model on the
multipole description based on point group symmetry of the magnetic element. In this work we have
found that the complete symmetry analysis should also include non-magnetic atoms and the
translational symmetry, meaning the magnetic group symmetry. For example, in the case of tetragonal
MnF,, removing the non-magnetic F- anions will restore the UT symmetry and result in a complete spin
degeneracy in the absence of SOC, in sharp contrast our DFT predicted giant spin splitting. To address
the real-life case where SOC is finite, in this work we also have discussed both cases when SOC is present
and absent.

Another previous work by Naka et al. [35] shows in a specific type of organic antiferromagnet the
spin splitting effect can be used for spin current generation. The authors described the spin splitting
effect as originating from unspecified AFM order induced by real space molecular arrangement
anisotropy in a class of organic antiferromagnets. However, the descriptive understanding is specific to
organic antiferromagnet with checker-plate-type lattice. While in this work we have offered more
general design principles, not specialized for any specific systems; the design principles are based on the
magnetic symmetry hence are easy to apply to predictions of real compound with the properties
discussed.

APPENDIX C: DFT Calculation methods and parameters

3.1 DFT calculation parameters: We have studied the electronic and spin properties of MnF; using
DFT with the experimental crystal structure[37] and the experimental spin configuration[27]. In the DFT
calculations, we use Perdew-Burke-Ernzerhof (PBE) exchange correlation functional[39] with plane wave
basis (energy cutoff of 500 eV and 10 X 10 X 14 Monkhorst-pack k-mesh sampling[57]). We use the on-
site potentials of U=5 eV and J=0 eV on Mn 3d orbitals following Liechtenstein approach[58].

3.2 Controlling SOC strength in AFM and NM: Band structures under different (artificial) SO

strengths are calculated by introducing a numerical pre-factor Agpc (0 < Agoc < 1) to the SO

R_K@D)dvir) L- 3) in the DFT formalism[59], where L = # x P is the orbital

Hamiltonian term A (—
socC 2m2c2 r dr

angular momentum operator, S is the spin operator, V(r)is the spherical part of the effective all-
electron potential within the projector augmented plane wave (PAW) sphere, and K(r) = (1—
v(r)
2Mmec?
consistently. To study the effect of magnetic mechanism we use a reference NM model where the
magnetic moment on each atomic site is zero. We emphasize that the NM model is not used to mimic
the physical high temperature paramagnetic phase that has zero total moment but a distribution of non-
vanishing local magnetic moments that creates an insulating gap even in the absence of long-range
order.[40,41]

-2
) . Hamiltonian (as well as wavefunctions, charge density, and V (1), etc.) are still calculated self-

3.3 Spin polarization and spin texture calculations: The spin polarization for Bloch state |k) is
calculated via the definition of (k|S|k), which can be decomposed into two components: the out-of-
plane spin polarization (k|S,|k) and the in-plane spin polarization (k|(S,, §y)|k). Spin texture of
selected band on k-plane is calculated by evaluating both the out-of-plane and in-plane spin
polarizations for each |k) on the k-plane.
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3.4 Representations for bands: The double group irreducible (co) representation for each
degenerate state at the high symmetry k point of the AFM phase with SOC is derived by: (a) we first
calculate the transformation properties of selected Bloch basis states under the relevant group of k
symmetries; the Bloch basis is constructed to have the same spin and orbital character (obtained from
DFT) and the ensuring transformation properties of the degenerate states; (b) we then identify and label
the degenerate bands at such k points adopting the names of irreducible (co) representations for MnF;
from Ref. [38]; (c) whether additional degeneracy will be induced by antiunitary symmetries is
determined using Wigner’s test[25] given in Ref. [38].

APPENDIX D: Symmetry analysis of band eigenstates in MnF»

The spin degeneracy and splitting are direct consequences of symmetry preservations and
reductions upon introducing AFM and SOC. We see that it is the introducing of antiferromagnetic order
from NM to AFM phase of MnF; that breaks the four-fold axial symmetry and makes directions <100>
and <110> non-equivalent. Such symmetry breaking manifests itself dramatically in the anisotropic spin
splitting of electron bands; see in Figure 1 (c).

4.1 Symmetry protected spin degeneracy: Given the Hamiltonian H and one of its eigenvectors P
with eigenvalue E, for any symmetry § of H (that has [g, ﬁ] = 0), gy is also an eigenvector of H with
the same eigenvalue E. This is easily verified as:

Hgy = gy = Egy (S1)

When 1) and gy are linear independent states, they form a pair of degenerate states; the spin
degeneracy at specific k points can then be protected if § also keeps kinvariant, i.e., gk=k+ G
(where G is the reciprocal lattice vector). For example, for § being the TR symmetry and [g, ﬁ] =0,4
enforces doubly spin degeneracy at TRIM points.

4.2 Space groups and symmetry operators for MnF, NM and AFM phases, with and without SOC:
If one does not consider the time reversal symmetry 6, the space group G of NM MnF; is P4,/mnm,
consisting of 16 unitary symmetries. Using the subgroup H = {E, C,, 1,03} of G (index [G: H] = 4), we
can write the partition of G using H and its three left cosets LH1, LH2, and LH3 as listed in Table SlI:

Table SI | Explicit lists of space group symmetries of NM MnF,.

H LH1 = {C,,|0}H

{E|0}: (x,y,2) - (x,¥,2) {C2al0}: (x,,2) = (v, x,—2)
{C210}: (x,y,2) > (—x,—y,2) {C2p10}: (0,3, 2) > (—=y,—x,—2)
{110}: (x,y,2) > (—x, -y, —2) {04a10}: (x,y,2) > (¥, %, 2)
{onl0}: (x,y,2) > (x,y,—2) {04p10}: (x,¥,2) > (=y,—x,2)
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LH2 = {Cop|T}H LH3 = {C4|T}H
1 1 1 1
{CZX|T}:(x'YrZ) (x+ y+_r_Z+E> {C4|T}:(x:}’;z)_>(_3’+E:X+E;Z+E>
1 1 1 1
{CZylr}:(x;y,Z) ( —X+ J’+_:_Z+E> {Czl_lr}(er;Z)_)(Y'Fz —X+2,Z+2>
1 1 1 1
{O'vxl‘[}: (x:y;z) ( —X + 'y + %4 +§> {S4|T}: (x;y'z) - (3’+§: 2: Z+E>
1 1 1 1
{a,,y|‘t}: (x,y,z) » (x += ,Z + E) {S7lt}: (x,y,2) —» ( -y += 2 2, —z+ E)

Here E is the identity; [ is the spatial inversion; C;, Cy, Cyy, Cyq, Cyp are m rotations about the
[001], [100], [010], [110], [1-10] axes, respectively; oy, Oy, Oy, Ogqa, Ogp are reflections in (001), (100),
(010), (1-10), (110) planes, respectively; C, and C, are counterclockwise and clockwise /2 rotations
about the (001) axis; S4 and S, are counterclockwise and clockwise /2 rotations about the (001) axis
followed by an inversion; vector T = (1/2,1/2,1/2) is half lattice translation, directed along the spatial
diagonal [111] of the unit cell.

When considering the time reversal symmetry 8, the 16 unitary symmetries form an subgroup
Gy = H+ LH1 + LH2 + LH3, while the NM system also has 8 combined with all 16 unitary symmetries
in Gy, leading to an anti-unitary set G4y . Using the prime symbol to indicate time reversal symmetry, we
have G,y = G; = 6G, . The entire group now becomes G = Gy + Gy = Gy + G, = H+ LH1 +
LH2 + LH3 + H'+ LH1' + LH2' + LH3'

Including SOC in NM couples the spatial rotation to spin rotation, which results in a double space
group of P42/mnm composed of H,LH1,LH2,LH3,H',LH1',LH2', LH3' and their combination with a
rotation of 2m (E): Hp = {E, C,,1,6,}, LH1p = {C54|0}Hp, LH2}, = {Cy,|T}Hp, LH3, = {C4|T}Hp, and
H}, LH1p, LH2},, LH3],. In centrosymmetric MnF2, due to the presence of 81 symmetry (61 € Hp), all
bands are spin degenerates within the whole BZ.

Going from NM to AFM, the above P42/mnm space group reduces to a magnetic group M
consisting of unitary Gy and antiunitary G,y parts M = Gy + G4y. In the absence of SOC in AFM, the
unitary part Gy = H + LH1, while the antiunitary part is G,y = LH2' + LH3'. Including SOC in AFM
couples the spatial rotation to spin rotation in the manner of one to two mapping from SO(3) to SU(2);
thus, the rotations of LH1 and LH2 not only rotate the spatial space but also reverse the spin
orientation. Consequently, the unitary part of the magnetic space group becomes Gy = H + LH2 +
Hp + LH2p, and the antiunitary part becomes G4y = LH1'+ LH3' + LH1},, + LH3,,. The above
symmetry analysis of MnF; is summarized in Table SllI.

Table SlI | Unitary and anit-uniary symmetries of MnF, with inclusion and exclusion of SOC in NM and
AFM phases.

MnF; w/o SOC w/ SOC
Space group: P4,/mnm Double space group: P4,/mnm

NM Gy:H,LH1,LH2,LH3 Gy:H,LH1,LH2,LH3,H,,LH1,,LH2},LH3,
Guy:H',LH1',LH2',LH3' Guy:H',LH1',LH2',LH3',H}, LH1},, LH2},, LH3},
Magnetic space group: P4,’/mn’m Magnetic double space group: P4,’/mnm’

AFM Gy:H,LH1 Gy:H,LH2,Hp, LH2],
Gyy:LH2',LH3' Guy: LH1',LH3',LH1}, LH3}
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4.3 Different spin splitting behaviors along I'-X, -M, and Z-R directions in AFM MnF,: Along the
spin degenerate k-path I'-X, the coordinate of k is (u, 0, 0) with u an arbitrary real value between 0 and
1/2. The possible symmetries that keep k invariant are (notice that all conclusions below also are
applicable for k = (0, u, 0) by interchanging x with y):

{E|0}: (u,0,0) - (u,0,0)
{on|0}: (1, 0,0) - (u,0,0)
{Coxlt}: (u,0,0) - (u,0,0) (52)
{opy|T}: (0,0,0) - (1,0,0)
6{Czy|7}: (1,0,0) » (1,0,0)
0{o,.|t}: (0, 0,0) - (u,0,0)

(1) When SOC is ignored, the magnetic space group is P4,’/mn’m, among above 6 symmetries only
{E|0}, {010}, 6{C;, |7}, and 8{0,,|T} are symmetries of the magnetic system, where both 8{C5, |t} and
0{0,, |t} will transfer spin state to opposite spin state and enforce degeneracy between them.

(2) When SOC is considered, the magnetic space group is P4,’/mnm’, among above 6 symmetries
only unitary symmetries {E|0}, {0,|0}, {C,x|T}, and {J,,y|1:} are symmetries of the magnetic system,
where either {C,, |t} or {va|t} will transfer the spin eigenstate to a linearly independent spin state,
therefore enforcing spin degeneracy between them. The same conclusion can also be obtained from the
fact that the group of the wavevector formed by the four unitary symmetries has only one 2D double
group irreducible representation Ag (see Table Il in Ref. [38]).

Along the spin splitting k-path I'-M, the coordinate of k is (u,u, 0). The possible symmetries that
keep k invariant are (notice that all conclusions below also are applicable for k = (—u,u,0) by
interchanging a with b):

{E|0}: (u,u,0) - (u,u,0)
{on0}: (u,u,0) = (u,u,0)
{C,410}: (u,u,0) = (u,u,0) (53)
{o4p]|0}: (W, u,0) = (u,u,0)
0{C,p|0}: (w,u,0) - (u,u,0)
0{04410}: (u,u,0) - (u,u,0)

(1) When SOC is ignored, the group of the wavevector only has four unitary symmetries {E|0},
{01103}, {C54]03}, and {a45|0}, none of these would reverse the spin state and therefore spin splitting is
expected along this direction.

(2) When SOC is considered, the group of the wavevector has two unitary symmetries {E |0}, {07,|0},
and two antiunitary symmetries 8{C,,|0}, 8{0,,|0}. Again, none of these symmetries would reverse the
spin up (down) state to its opposite, therefore spin splitting is expected in this case.

The situation becomes a bit more complicated for k-path on the boundary of BZ. Along Z-R with
k = (u,0,1/2), the possible symmetries that keep k invariant are:
{E|0}: (u,0,1/2) - (u,0,1/2)
{o,]0}: (u,0,1/2) - (u,0,1/2) — (0,0,1)

(CalT): (u 0, %) - (u, 0, %) ~0,0,1) (54)

{opy|T}: (0,0,1/2) - (u,0,1/2)
6{Czy|7}: (0,0,1/2) - (1,0,1/2)
O{valr}: (ul 01 1/2) - (ul Or 1/2) - (O: 0; 1)
and their combination with a primitive translation along z axis of {£(0,0,1)}.
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(1) When SOC is ignored, the group of the wavevector are composed of {E|0}, {5, |0}, 6{C;, |t} and
8{0yx|T} symmetries and their combination with {E](0,0,1)}, where either 8{C;, |t} or 8{c,,|T} will
protect a double degeneracy.

(2) When SOC is considered, the group of the wavevector have only unitary symmetries {E|0},
{0110}, {C2x|T}, and {o,,|T} and their combination with {£](0,0,1)}. {E|0} and {5 |0} both are unit
2 X 2 matrix in the spin space hence will not introduce any spin degeneracy; while by selecting basis as
spin polarization along y, neither {C,.|t} nor {0, |t} will reverse the spin polarization. As the
consequence, one would expect spin splitting along Z-R when SOC is included.

APPENDIX E: Power of k dependence of spin splitting in AFM MnF; with SOC

We have calculated the scaling of the spin splitting with wave vector from DFT calculation: Nearby I
(progressing along -M), the splitting between the V1 and V2 bands shows a quadratic relation to
wavevector as k7 with a numerically fitted value of n = 1.98, while nearby Z (progressing along Z-R),
such splitting shows a linear relation as k" with numerical = 0.98, ; the same quadratic and linear
relations also hold for the splitting between V3 and V4. (see Table Sl)

Table SlIl | Power of k dependence of spin splitting in AFM MnF, with SOC. The spin splitting near given
high symmetry k, point and (ko + Ak) are fitted to @y |k|" for the top two valence bands V1, V2 and
the third and fourth valence bands V3, V4. Row captions like I't_y are used to note spin splitting near I'
along I'-M.

k point A¥VZ(k)  AY¥V*(k)  Linear or Quadratic?
Tr_m 0.45k198 3.72k%95 Quadratic

Mpy_r 0.44k18 3.86k195 Quadratic

Z; r 0.04K0%-98 0.02k%01 Linear

Ap g 0.01k1-04 0.05k%8 Linear

APPENDIX F: EFFECTIVE TWO-BAND MODEL HAMILTONIAN AT SPECIFIC k POINTS MODEL IN AFM
MNF2

In AFM MnF,, one can define two spin-related AFM local atomic basis states[24] with one spin-up
state localized mostly on Mn1 at (0, 0, 0) and one spin-down state mostly localized on Mn2 at (1/2, 1/2,
1/2). The AFM ordering is thus embedded in the inequivalence distribution on Mn1 and Mn2 of the spin-
related basis. The effective two-band model Hamiltonian at specific k points can then be determined by
the constrains imposed by the symmetries of the group of wavevector on the basis.

6.1 Effective model at I': At the I" point, the group of wavevector inherits all the symmetries that
the AFM magnetic space group has. Upon applying the symmetries (only symmetry generators are
needed) on the AFM basis one can find the representations and transformation properties of the Pauli
matrix o and tensor operator k.

(1) When the SOC is ignored, the spin orientation is enforced to align along the magnetization
direction, i.e., z-axis. The corresponding magnetic space group is P4,’/mn’m, which can be generated by
three unitary symmetries {C,,|0}, {C,,|0}, {I|0} and one antiunitary symmetry 8{C,,|t}. Table SIV lists
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the transformation properties of the Pauli matrix 6 and tensor operator k under these symmetry
operations, the only possible invariant spin splitting term that could exists in Hamiltonian is g, kyk,,
indicating quadratic dependence of spin splitting to displacement in k along the diagonal I'-M direction,
and spin degeneracy along I'-X direction in agreement with our DFT results seen in Figure 2(b).

Table SIV | The transformation properties of symmetrized matrix and irreducible tensor up to the
second order in k under symmetry operations of the group of wavevector at I' (without SOC).

Symmetrized matrix Irreducible tensor {C5,10} {C,, 103 {110} 0{C,. |t}
o C.ki +k;, kZ 1 1 1 1
o, k.k, 1 1 1 -1

(2) When including SOC, the corresponding magnetic space group becomes P4,’/mnm’, which can
be generated by three unitary symmetries {C,,|T}, {C2y|T}, {I|0} and one antiunitary symmetry
0{C,,|0}. The transformation properties of the Pauli matrix o and tensor operator k are listed in Table
SV:

Table SV | The transformation properties of symmetrized matrix and irreducible tensor up to the
second order in k under symmetry operations of the little point group at I' (with SOC)

Symmetrized matrix Irreducible tensor {Co|T} {CyylT} {110} 6{C,.10}
o C.ki +k;, kZ 1 1 1 1
7, ke ke -1 -1 1 1

1 0 -1 0 1 0 0 -1
(0x, 0y) - [0 _1] [ 0 1] [o 1 [—1 0 |

We see from Table SV that the only possible invariant spin splitting term up to second order in k is
o,kxk,, indicating quadratic dependence of spin splitting on variations in k along the diagonal I'-M
direction when SOC is included. (see DFT results in Figure 1(c)) The effective Hamiltonian term o, kk,,
also captures the four-quadrant pattern of the out-of-plane spin polarization as k,k, having opposite
signs in first and third quadrants and in second and fourth quadrants as seen in Figure 3.

6.2 Effective model at A

(1) When SOC is excluded, the spin splitting term takes exactly the form as at T, o,k k,,. So no spin
splitting along A-W and quadratic spin splitting along A-V.

(2) When SOC is included, from Table SVI, the effective spin splitting terms are linear combinations
of Hy = Aokyk, + B(oyk, + 0,k,), here A and B are real coefficients. One would then also expect
guadratic dependence along the diagonal A-V direction from the first term and linear dependence along
A-W direction from the second term. Also, the four quadrants pattern and Dresselhaus-like spin texture
can be explicitly captured by the effective model Hamiltonian, the first term contributes to the four
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quadrants pattern with out-of-plane spin polarization, where k,k,, takes has opposite sign in first (k, >
0,ky, > 0) and third (k, < 0,k, < 0) quadrants relative to the second (k, < 0,k, > 0) and fourth
(kx > 0,k, < 0) quadrants. The second term resembles in analytical form to conventional Dresselhaus
term and contributes the in-plane Dresselhaus spin texture. One should note that it is the distribution of
the spin-related basis on two Mn that provides non-vanishing in-plane spin texture. If the spin up and
spin down basis localized completely on Mn1 and Mn2, the in-plane spin texture would vanish and there
would be no Dresselhaus spin texture at all. Larger mixing between the two local Mn atoms of the spin
basis will lead to a stronger in-plane spin polarization.

Table SVI | The transformation properties of symmetrized matrix and irreducible tensor under
symmetry operations of the little point group at A with SOC.

Symmetrized matrix Irreducible tensor {0,,|T} {ouy|T} 6{C,.10}
0o C k2 + k2, kZ 1 1 1
o, kxky -1 -1 1

1 0 -1 0 0 -1
(0, 9,) ey ) Y I et R e

6.3 Effective model at Z

(1) When SOC is excluded, the spin splitting term takes exactly the form as at T, g, kyk, and give
rise to zero spin splitting along Z-R, and quadratic-in-k spin splitting along Z-A. (see DFT band structure in
Figure 2(b)).

(2) When SOC is included, from Table SVII, the spin splitting terms are linear combinations of
Hy = Aojkyk, + B(oxk, — o,k,), here A and B are real coefficients. Once again, the spin splitting will
have quadratic dependence along the diagonal Z-A direction and a four-quadrants out-of-plane spin
polarization pattern from the first term, and linear dependence along the Z-R direction from the second
term. Moreover, despite the fact that the second term resembles in form the conventional Rashba
Hamiltonain[2], it will not create in-plane spin polarization (see Figure S1). The vanishing spin
polarization is the consequence of zero mixing between the two spin-related Bloch basis of Mn1 and
Mn2 for the same spin, that are |[Mn4, T) and |Mn,, T) (also [Mn4, L) and [Mn;,, 1)), which form a pair of
zero in-plane spin polarized but non-zero splitting states, a|Mnq,T) + b|Mn,,l) and a|Mn,,T) —
b|Mn,, 1) with a, b being the complex constant coefficients of the states satisfying the normalization
condition |a|? + |b|?> = 1. When a = b, the out-of-plane spin polarization also vanishes. The zero
mixing between |[Mn,,T) and |Mn,,T) (and between |Mny,!) and |[Mn,, 1)) is enforced by {o,|0}
symmetry at Z, since |[Mny, T) (and |Mn,, l)) takes opposite eigenvalue of {a},|0} symmetry to |[Mn,, T)
(and |[Mn4,1)). The same reason accounts for the zero in-plane spin polarization but non-zero splitting
observed at R when SOC is included, as {0,,|0} also being a symmetry of k at R and forbids mixing
between [Mn4, T) and |Mn,, T) (and between [Mn4,l) and |Mn,,l)). The surprising effect of spin
splitting with vanishing spin polarization was also reported recently in non-magnetic crystals (e.g., bulk
GaAs[60] and graphene[61]).

Table SVII | The transformation properties of symmetrized matrix and irreducible tensor under
symmetry operations of the little point group at Z with SOC.
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Symmetrized matrix Irreducible tensor {Cor|T} {CyylT} {110} 6{C,.10}

o C.ki +k;, kZ 1 1 1 1

o, kyk, -1 -1 1 1
-1 0 1 0 -1 0 0 1

(0%, 0y) (ey, —ky) [0 1] [o —1] [0 —1] 10

APPENDIX G: In-plane Spin texture in MnF; on the k-planes k, = 0and k, = t/c

Figure S1 shows the calculated spin textures of the V1 and V2 bands in MnF; on k-planes k, = 0
and k, = m/c, where c is the lattice constant along (001). For the out-of-plane spin polarization, we find
the same four-quadrant pattern as the one found on k, = /2c plane (shown in Figure 3). While, in
contrast to in-plane Dresselhaus spin texture observed on k, = m/2c plane, on the k-planes k, = 0 and
k, = m/c, there is no in-plane spin polarization.

| Spin texture of V1 | | Spin texture of V2 |

k,= 0 plane
M X M
ky X T X

k, = 7/c plane
A R A
R

ky |R
A

4
R _A
kx

Figure S1 | Spin textures of the top two valence bands (V1 and V2) in AFM MnF; on two k; planes: (a)
(b) k, = 0 plane, and (d) (e) k, = m/c plane. For each k, plane, the labels of the high symmetry k
points are shown by a diagram on the left side of each horizonal panel. The in-plane spin polarizations
are indicated by black arrows, while black dot means the in-plane polarization at this k is zero; the out-
of-plane spin polarizations are mapped by colors from blue to red.

APPENDIX H: The spin splitting induced by cooperative effects of AFM and SOC in MnF;

Allowing SOC in a NM model does not lead to any spin splitting since the 81 symmetry is always
preserved (see Figure S2 (a)). In contrast, introducing SOC to AFM leads to cooperative effects of AFM +
SOC. For example, it creates additional spin splitting along certain k-paths, e.g., Z-R, R-A and X-R
directions (see Figure S2(b)). This is because in the AFM phase described without SOC, the spin
degeneracy along Z-R, R-A and X-R directions is guaranteed by the symmetry operations 6{C,,|t},
0{Cyy |7}, 0{02x|T}, and B8{0,,|T}; adding SOC to pre-existing AFM couples the real space rotations to
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spin operations and breaks all four anti-unitary symmetries, leading therefore to spin splitting along
these directions (see full details about how SOC induces spin splitting in preexisting AFM along Z-R in
Appendix E). An interesting fact is that we find spin splitting at the R point (which is TRIM) when adding
SOC to AFM phase. This manifests the breaking of time reversal symmetry in the AFM phase. The lifting
of spin degeneracy at TRIM point and its connected k paths represents a cooperative effect of
magnetism and SOC: neither AFM without SOC (Figure 2(b)) nor SOC without AFM (Figure S2(a)) shows
spin splitting along these directions, but the coexistence of SOC and AFM leads to spin splitting.

a NM Centrosymmetric MnF, w/ SOC l b | AFM Centrosymmetric MnF, w/ SOC | (S2>
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Figure S2 | DFT band structures of centrosymmetric MnF, in NM and AFM with SOC. In all cases we use
the experimentally observed centrosymmetric tetragonal structure[37]: (a) NM with SOC; (b) AFM with
SOC. Out-of-plane spin polarizations are mapped to color scales from blue to red. The integer numbers
attached to bands are degeneracy factors.
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