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Abstract

The undisturbed flow of a particle is of fundamental importance since it controls both the
undisturbed flow force and the perturbation force (that includes quasi-steady, added-mass and
history forces). Here we use the pairwise interaction extended point particle (PIEP) framework
to evaluate the undisturbed flow of each particle through superposition of the perturbation flow
induced by all its neighbors. This approach allows calculation of various statistics related to
undisturbed fluid velocity under conditions of both stationary and non-stationary particles. In
a random distribution of stationary particles, while the macroscale undisturbed flow is slowly
varying, the microscale undisturbed flow that arises due to the perturbation flow of neighbors,
varies substantially from one particle to another, and this in turn leads to large variation in the
hydrodynamic force exerted on the particles. The effect of particle motion is generally to increase
the particle-to-particle variation in the undisturbed fluid velocity of the particles. We observe
this increase is greater for the transverse component than for the streamwise component. As
a result, with increasing random particle motion, the distribution of undisturbed fluid velocity
fluctuation becomes isotropic. Three different normalized forces have been defined: ΦL is the
Lagrangian normalized force on an individual particle suitable for application in a microscale-
informed Euler-Lagrange simulation; ΦE is the Eulerian normalized average force suitable for
application in an Euler-Euler simulation; ΦLE is the Lagrangian normalized force on an indi-
vidual particle suitable for application in the standard Euler-Lagrange simulation. We establish
precise relations between these different definitions. The drag laws developed based on PR-DNS
results and experiments are appropriate for application only as the Eulerian normalized average
force. We introduce the force consistency relation and use it to obtain an expression for ΦL,
which when applied to each particle and averaged over all the particles equals ΦE . The results
are first obtained in the limit of stationary particles and then extended to the general case of
non-stationary particles.

1 Introduction

The three commonly used computational approaches in multiphase flow problems are the
particle-resolved (PR), Euler-Lagrange (EL) and Euler-Euler (EE) simulations. Among these,
the PR direct numerical simulations (PR-DNS) are the most accurate, since the governing Navier–
Stokes equations for the fluid and the Newton–Euler rigid body equations of motion for the particles,
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along with boundary conditions that couple their motion, are solved without making any additional
closure or modeling assumption, besides inter-particle collision models. In contrast, the EL and EE
approaches are necessarily approximate, since their governing equations are obtained by averaging
or filtering the fundamental Navier–Stokes and Newton–Euler equations. The resulting averaged
equations include additional terms that require closure modeling assumptions.

In the Euler-Lagrange (EL) approach, if the dynamics of all the particles within the system
are followed, then there is no averaging over the particulate phase. The fluid phase is averaged
or filtered over a length scale that is typically an order of magnitude or more larger than the
particle diameter. The filtering process removes the pseudo turbulent component of the fluid phase
by averaging out the perturbation flow induced by all the boundary layers and wakes around the
particles. Depending on the filter size, some of the ambient turbulence may be filtered out as well.
Nevertheless, the details of fluid pressure and stress distribution around each particle is lost and as
a result, force and torque on the particles cannot be directly computed. They must be modeled in
terms of the particle and the filtered fluid motion. The force and torque represent the momentum
exchange between the particle and the surrounding flow and therefore must be applied in reverse
back on the fluid. The small-scale velocity fluctuations that have been filtered out in the averaging
process contribute to subgrid stress, whose closure model must account for the effect of the filtered
microscale fluid motion on the dynamics of the larger fluid scales. Thus, in the EL approach, the
filtering of the fluid phase has important consequences in the governing equations of both the fluid
and the particulate phases.

In the Euler-Euler approach not only the fluid phase is averaged or filtered over a length scale
larger than the particle diameter. The particulate phase is also suitably averaged over this length
scale and this results in a continuum representation for the particulate phase. Instead of the
Newton–Euler equations of motion for the individual particles in the Lagrangian frame, we now
have continuum equations for the collective dynamics of the locally-averaged state of the particles
in the Eulerian frame. Hence the EE approach is also known as the two-fluid approach. In the EE
approach, the averaging of both phases introduces the need for additional closure models. Even the
closure models of force and torque that account for interphase momentum coupling become more
complex, and must be distinguished from the force and toque models that are employed in the EL
approach. This distinction will be a focus of the present paper.

To explore this further, let us consider an EL simulation and a companion EE simulation of the
same problem. In the EL simulation, the simplest approach to evaluating the force on each particle
is to use the standard drag relation that is based on the relative velocity between the particle
and the interpolated fluid velocity evaluated at the particle location [40]. Several improvements
to this basic closure have been advanced and widely used in EL simulations. Most relevant to
the present discussion is the finite volume fraction correction. As the local volume fraction of
particles increases, the finite Reynolds number correction of the standard drag can be augmented
to accounted for finite volume fraction [12,13,20,37,44,47,49,51,53].

The standard drag model and its improvements are designed to account for the net pressure
and viscous stress effects of the perturbation flow induced by the particle. It is important to note
that these models predict the force on a particle in terms of its undisturbed flow, which is the
source of the perturbation flow the particle induces. However, in an EL simulation, we do not
have direct access to the undisturbed flow of the particle. Only the macroscale flow is known
and its value interpolated to the center of the particle is typically used to compute the force.
While the macroscale part of the undisturbed flow is nearly the same for all the particles within
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an averaging volume, the microscale component of the undisturbed flow substantially varies from
particle-to-particle. This microscale variation is both due to differences in the arrangement and
motion of neighboring particles (i.e, pseudo turbulence), and due to the random nature of filtered
subgrid turbulence. Several recent efforts [1,2,4,22,31,33,41,48] have focused on understanding and
modeling the deterministic effect of pseudo turbulence. An alternate approach is to statistically
account for subgrid turbulence in the drag models by modifying the undisturbed fluid velocity at
the particle location (obtained from the EL simulation) with an additional stochastic component
obtained with a Langevin model [25].

Therefore, in order to develop proper force and torque models, we must distinguish the following
two different EL implementations. In the first, the fluid velocity at the particle is simply taken to
be the macroscale velocity interpolated to the particle center, which we call EL-mac. The second
approach attempts to approximate the fluid velocity at the particle more accurately by accounting
for the microscale contribution, either deterministically or stochastically using a Langevin model.
In either case, since the microscale variation in undisturbed fluid velocity is taken into account, we
will call this second approach EL-mic. 1

In the companion EE simulation, since the motion of individual particles is not being tracked,
particle-related Eulerian quantities, such as the particle volume fraction φ(xxx, t) and the particle
velocity field vvv(xxx, t), represent average properties that result from a spatial filter or average of the
underlying Lagrangian quantities. The microstructural details of how the particles are randomly
distributed in the neighborhood of a point xxx is not known in an EE simulation. The only available
information is the average number density of particles in a neighborhood, expressed as the particle
volume fraction field. The actual distribution of particles within the averaging volume around the
point xxx will be random. Thus, there is a fundamental difference in particle characterization between
the EL and EE approaches. In the EL approach, the particles are characterized in a deterministic
fashion, while in the EE approach the particle characterization is necessarily stochastic. Even
within the stochastic framework, φ(xxx, t) is only the leading order description in a hierarchy of
possible statistical information. Quantities beyond φ(xxx, t) are needed to properly characterize any
inhomogeneity or anisotropy in the local distribution of particles at the microscale. The above
description applies to particle velocity field vvv(xxx, t) and to all other particle-related quantities (such
as granular temperature field) as well. In other words, vvv(xxx, t) represents only the average particle
velocity and the actual velocity of individual particles within the filter volume will substantially
vary from the average value.

Thus, there are fundamental differences in what aspects of the hydrodynamic force on the
particles is being modeled in the EL-mac, EL-mic and EE approaches. In the EL-mac approach,
the force on an individual particle is calculated taking into account its velocity and the macroscale
fluid velocity at the particle location as

FFFi = 3πµd(uuumac@i − vvvi) ΦLE(Remac@i, φ@i) , (1)

where FFFi is the force on the ith particle of diameter d. Here µ is the dynamic viscosity of the fluid, vvvi
is the particle velocity and uuumac@i is the macroscale fluid velocity of the EL simulation interpolated

1In this work we will assume EL and EE simulations to be sufficiently coarse grained. In other words, the filter
width L � d, the particle diameter. As a result, Eulerian average drag will be an average over many particles that
lie within the averaging volume. The results of this paper thus will not directly apply to fine-grained EL and EE
simulations whose grid size is comparable to particle diameter. Similarly, in the EL approach the macroscale velocity
at the particle location will be taken to be not corrupted by self-induced perturbation. Otherwise, a self-induced
correction must be applied to recover the proper macroscale velocity (see [10,17,19,21,23,26,30,36]).
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to the location of the ith particle. Note that subscript “i” denotes a Lagrangian quantity and
subscript “@i” denotes an Eulerian quantity evaluated at the particle location. The function ΦLE

is the correction to the Stokes drag and it depends on both the macroscale Reynolds number of
the ith particle, which is evaluated as Remac@i = d|uuumac@i−vvvi|/ν, and the particle volume fraction
evaluated at the ith particle.

In the EL-mic approach, the force on an individual particle is again calculated as

FFFi = 3πµd(uuu@i − vvvi) ΦL(Re@i, φ@i) . (2)

However, the relative velocity of the ith particle is based on its velocity vvvi and the undisturbed fluid
velocity uuu@i . Here the undisturbed fluid velocity uuu@i includes both the macroscale contribution
uuumac@i and the microscale contribution from the perturbation flow of its neighbors and filtered
subgrid turbulence. The particle Reynolds number is also calculated based on this more accurate
relative velocity estimation.

In the EE approach, the mean hydrodynamic force on all the particles within the averaging
volume around the point xxx, denoted as FFF(xxx, t), is of primary interest. The traditional approach has
been to evaluate the average force FFF(xxx, t) based on the local volume fraction φ(xxx, t) and the average
velocity difference uuu(xxx, t) − vvv(xxx, t), where uuu(xxx, t) is the macroscale fluid velocity and vvv(xxx, t) is the
average particle velocity (both are part of EE solution). Here again, the average drag is expressed
as that according to Stokes drag law multiplied by the correction function as

FFF(xxx, t) = 3πµd(uuu(xxx, t)− vvv(xxx, t)) ΦE(Re(xxx, t), φ(xxx, t)) . (3)

In the above, Re(xxx, t) = d|uuu(xxx, t)−vvv(xxx, t)|/ν is the average particle Reynolds number based on the
average relative velocity (see footnote 1).

We first draw attention to the important fact that the functions ΦL, ΦLE and ΦE are not the
same, as indicated by differences in their superscript. Superscript “L” denotes its applicability
in the EL-mic simulation, which like a PR simulation tends to account for subgrid turbulence in
particle motion. Superscript “E” denotes applicability for the EE approach and superscript “LE”
denotes applicability in the EL-mac approach, where the fluid information for particle motion
remains averaged. Henceforth we will refer to ΦL, ΦLE and ΦE as

ΦL = Lagrangian normalized drag

ΦE = Eulerian normalized average drag

ΦLE = Macro− Lagrangian normalized drag .

All three functions have been normalized by their respective Stokes drag, and it must be stressed
that the definition of Stokes drag and therefore the normalization is different for the three functions.

The difference between ΦL, ΦLE and ΦE arises from their nonlinear dependence on the parame-
ters: Reynolds number and volume fraction. As pointed out earlier, there is substantial variation in
the relative velocity of the individual particles within the averaging volume, which results in a sub-
stantial variation in the Reynolds number. Furthermore, variation in the manner in which particles
are distributed within the averaging volume contributes to volume fraction variation [15,16]. As a
result of these variations, if we were to calculate the force on each particle using the Lagrangian
normalized drag ΦL and then average over all the particles within the average volume, the resulting
average force will not equal that obtained by evaluating ΦL based on the average Reynolds number
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and volume fraction. This clearly illustrates the fact why the Eulerian normalized average drag
correlation ΦE must necessarily be different from the Lagrangian counterpart ΦL. The Eulerian
normalized average force ΦE must additionally account for the variation in the Reynolds number
and volume fraction within the averaging volume.

The difference between ΦL, ΦLE and ΦE has been recognized by developers of various drag
correlations [38, 47, 53]. However, the difference has not been well appreciated in typical EL and
EE simulations. Often the standard drag correlation with the same finite Reynolds number and
volume fraction correction is used in both the EL and EE simulations, although in the former
to calculate the drag on an individual particle, while to calculate the average drag in the latter.
Also, the drag laws developed based on PR-DNS results of flow over a stationary random array of
particles [12,13,44,47,51,53] are fundamentally different from those developed based on experiments
with freely sedimenting particles [20, 37, 49]. Their difference is due to the distribution of particle
Reynolds number and volume fraction within the averaging volume. Nevertheless, these drag
correlations are directly appropriate for application only in EE simulations, owing to their average
nature. The goal of the paper is to establish firm theoretical relations between the Lagrangian
and the Eulerian normalized drag relations (i.e., between ΦL, ΦLE and ΦE) and relate them to
commonly used drag relations obtained from simulations and experiments.

We advance a force consistency relation between the ΦL, ΦLE and ΦE that must be satisfied
when they are properly defined. According to this consistency relation, ΦL when properly applied
to each particle based on its relative velocity and volume fraction, and averaged over all the particles
within the averaging volume must equal ΦE (for consistency between EL and EE approaches also
see [35]). Accordingly, while ΦL is only a function of the particle’s Reynolds number and volume
fraction (as defined in (2)), ΦE must be a function of not only the average Reynolds number
and average volume fraction, but its parameterization must also include proper quantification of
variation in particle Reynolds number and volume fraction within the averaging volume. A similar
consistency condition exists between ΦL and its macroscale counterpart ΦEL. Establishing these
consistency relations and elaborating on them is an important goal of the paper.

A technical difficulty arises in estimating the distribution of Reynolds numbers that will be
encountered within the averaging volume. The particle velocity variation can be easily assessed
in an EL simulation and can be obtained from the granular temperature equation in case of EE
simulation. In comparison it is not easy to estimate the level of particle-to-particle variation in
the undisturbed fluid velocity within the averaging volume. This difficulty is because only the
macroscale component of the undisturbed fluid velocity is available in EL and EE simulations. In
this work, we overcome this difficulty with the use of pairwise interaction extended point-particle
(PIEP) model [1, 2, 34]. This model provides a rational approximation for the pseudo turbulence
generated by the particles in terms of summation of superposable wakes of all the particles. The
PIEP model thus allows for the accurate evaluation of undisturbed fluid velocity uuu@i of all the
particles with the inclusion of the microscale component.

Towards our goal of establishing the appropriate ΦL, ΦLE and ΦE correlations, the strategy we
follow in this paper proceeds along the following steps:

• Eulerian Average drag of a stationary homogeneous system (section 3.3): we first take the
drag laws developed based on PR-DNS results of flow over a stationary random array of
particles [12,13,44,47,51,53] to be the Eulerian normalized average force ΦE

0 , where subscript
“0” indicates for stationary particles.
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• Lagrangian drag of individual particles in a stationary homogeneous system (section 3.4): Then
using the consistency relation, and PIEP model to estimate of the undisturbed fluid velocity
of a stationary random array of particles, we obtain the corresponding Lagrangian normalized
force correlation ΦL

0 .

• Lagrangian drag of individual particles in a non-stationary homogeneous system (section 4.5):
For lack of additional detailed information, we then make the assumption that for a given
particle Reynolds number Re@i and volume fraction φ@i, the Lagrangian normalized force ΦL

in a non-stationary system remains the same as that for stationary particles (i.e., we assume
ΦL = ΦL

0 ). This assumption can be justified in cases when relative particle motion is not very
rapid and therefore the time scale of particle rearrangement is long. Nevertheless the validity
of this assumption must be verified.

• Eulerian Average drag of a non-stationary homogeneous system (section 4.4): As the final

step, ΦL is used to evaluate the force on each particle in a random array of particles undergoing
random motion following Maxwellian statistics (here again PIEP model is used to evaluate
the undisturbed fluid velocity of each particle). By averaging the force on all the particles we
obtain the Eulerian normalized average force ΦE for non-stationary particles. For averaging
volumes much larger than the particle size, we recognize the fact that ΦLE will approach ΦE .

The two key quantitative results of the present study are: (i) the Lagrangian normalized force
correlation ΦL

0 given in equation (33) that is consistent with Tenneti et al. [47] Eulerian average
normalized force correlation ΦE

0 . Both these are appropriate only for stationary system. (ii) The
Eulerian average normalized force correlation ΦE given in (41) that extends the Eulerian average
normalized force correlation to non-stationary systems. While these results are of fundamental
importance, due to the restriction to homogeneous distribution of particles, their impact on practical
multiphase flow problems will be incomplete. Extension of the present study to inhomogeneous
and anisotropic distributions of particles is essential to obtain a complete parameterization.

2 Framework

Let us consider a multiphase flow that at time t consists of N particles that are located at xxxi
with velocity vvvi (where i = 1, 2, · · · , N). From the Lagrangian distribution of particles an Eulerian
volume fraction field can be defined as

φ(xxx, t) =

∫
Ω
G(xxx− xxx′) Ip(xxx

′, t) dV , (4)

where the integral is over the entire volume occupied by the multiphase flow and Ip is the particle
indicator function and it is equal to unity only in regions occupied by the particle and is otherwise
zero in regions occupied by the fluid. In the above G(xxx − xxx′) is the filter function that has been
assumed to be homogeneous and has been properly normalized to yield

∫
ΩGdV = 1. The filter

function is generally chosen to be a top-hat function or a Gaussian of width L and thus the filter
operation smoothens or averages-out all subgrid variations that are smaller than the filter scale
L. An Eulerian particle velocity field can similarly be constructed from the Lagrangian particle
velocity information as

vvv(xxx, t) =
1

φ(xxx, t)

∫
Ω
G(xxx− xxx′) Ip(xxx

′, t) vvvpr(xxx
′, t) dV , (5)
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where vvvpr(xxx
′, t) = vvvi if xxx′ falls within the volume of the ith particle, with similar definition applying

for all other particles. Particle velocity vvvpr(xxx
′, t) is undefined if xxx′ falls within the fluid volume.

Thus, vvv(xxx, t) is the average velocity of all the particles around the point xxx weighted by the filter
function. Similar definition applies to other particle properties and (5) can be used to convert any
Lagrangian quantity into an Eulerian field that has been smoothened over the length scale L.

Let uuupr(xxx, t) be the particle-resolved fluid flow around the particles. But in EL and EE simula-
tions we only have access to the macroscale flow, which can be formally defined through the filter
operation as

uuu(xxx, t) =
1

(1− φ(xxx, t))

∫
Ω
G(xxx− xxx′) If (xxx′, t) uuupr(xxx

′, t) dV , (6)

where the fluid indicator function is the complement of the particle indicator function (i.e., If (xxx, t) =
1−Ip(xxx, t)). Also, the normalization is with the fluid volume fraction, 1−φ(xxx, t). While the particle-
resolved velocity uuupr is defined only in the region outside the particles, provided L � d, the filtered
macroscale velocity uuu(xxx, t) is smoothly defined over the entire volume of the multiphase flow.

In a typical EL or EE simulation, the Eulerian fields are discretized and defined on a three-
dimensional grid. They can then be evaluated at the ith particle through interpolation as

uuumac@i = uuu(xxxi, t) and φ@i = φ(xxxi, t) . (7)

Other derived quantities can be defined either as Lagrangian quantities of the ith particle or as Eu-
lerian fields averaged over all the particles around the point xxx. Foremost among the derived quan-
tities is macroscale Reynolds number. The Lagrangian and Eulerian macroscale particle Reynolds
numbers2 are defined as

Remac@i =
d |uuumac@i − vvvi|

ν
and Remac(xxx, t) =

d |uuu(xxx, t)− vvv(xxx, t)|
ν

. (8)

The above two Reynolds numbers are termed macroscale with the subscript “mac”, since they
are based on the macroscale fluid velocity either as interpolated to the ith particle as uuumac@i or
evaluated at xxx as uuu(xxx, t). These definitions do not include the effect of the velocity perturbations
induced by the particles at the microscale.

2.1 Macro and Microscale Undisturbed Flow of the ith Particle

With the above preliminaries we now carefully address what determines the particle force and
how best to parameterize it in both the Lagrangian and Eulerian frameworks. We first note that
any parameterization of force on a particle (including the simplest Stokes drag) is in terms of the
undisturbed flow. Undisturbed flow of the ith particle is defined as the flow that would exist in the
absence of the ith particle, but with the presence of all other particles. With this definition, we can
distinguish the following flow fields

uuupr(xxx, t) = particle resolved flow around all the particles

uuu(xxx, t) = macroscale flow in the presence of all the particles

uuupr,6=i(xxx, t) = particle resolved flow without the ith particle

uuu6=i(xxx, t) = macroscale flow without the ith particle ,

2Here and everywhere else in this work the particle Reynolds number is defined in terms of fluid velocity within
the distribution of particles. We caution that in some papers Reynolds number is defined in terms of superficial fluid
velocity, which will be lower by the multiplicative factor (1− φ).
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where the macroscale flows are filtered versions of the PR flows and the last two flows are the same
as the first, but without the presence of the ith particle. Frame (a) of figure 1 shows an example
of uuupr(xxx, t) obtained from a PR simulation plotted on a small section of a vertical plane passing
through a periodic box containing a random distribution of monodispersed particles. Here the
macroscale flow is from the left to the right of the box and the wake behind the particles can be
clearly identified. Frame (b) shows the corresponding PR velocity field in the absence of particle
marked “i” (which is shown by dashed line in frame (b)). This flow field is uuupr,6=i(xxx, t) and it is non-
zero at the location of the ith particle. In a multiphase flow consisting of N particles, N such PR
flows can be constructed by removing one particle at a time. Thus, it will not be computationally
possible to evaluate uuupr,6=i(xxx, t) for all i using PR-DNS and an efficient approach to evaluating it
using PIEP model will be presented below.

In this example, the computational box is a triply-periodic cube, whose size normalized by
the particle diameter is (3π)3. The box contains about 160 randomly distributed particles at an
average volume fraction of about 10%. We define the filter to be a box-filter of size the same as
the triply-periodic cube and thus the macroscale flow uuu(xxx, t) is a uniform flow. The undisturbed
macroscale flow of the ith particle uuu6=i(xxx, t) that results from box filtering of uuupr,6=i(xxx, t) will also be
a uniform flow. Its magnitude will be slightly higher than uuu(xxx, t), since it is in the presence of one
fewer particle within the cubic box. But, due to the large number of particles within the box, we
make the assumption uuu6=i(xxx, t) ≈ uuu(xxx, t).

Based on the above definitions, the undisturbed flow of the ith particle can thus be separated
into macro and micro contributions as

uuupr,6=i(xxx, t) = uuu(xxx, t)︸ ︷︷ ︸
macro part

+ (uuupr,6=i(xxx, t)− uuu(xxx, t))︸ ︷︷ ︸
micro part =uuumic,i(xxx,t)

, (9)

where (i) the macroscale undisturbed flow accounts for the collective action of all the particles within
the multiphase flow. (ii) The microscale undisturbed flow of the ith particle is given by the second
term on the right and it accounts for the perturbation flow induced by the specific arrangement of
all the neighbors of the ith particle. In general, the filter width chosen such that the macroscale
undisturbed flow varies negligibly from one particle to its nearby neighbor, while the microscale flow
can dramatically change depending on the specific arrangement of the neighbors. In the example
shown in Figure 1b, the microscale undisturbed flow of the ith particle is due to the perturbation
velocity of all neighbors.
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Figure 1: (a) Contours of normalized streamwise velocity on a vertical plane computed in a particle-
resolved simulation of flow around a random distribution of stationary particles in a periodic box.
(b) Contours of normalized streamwise velocity on the same vertical plane in the absence of only
the particle marked “i”. The resulting velocity field at the location of the ith particle is called
the undisturbed velocity at the ith particle, whose complexity can be clearly associated with the
perturbation flow induced by its neighbors. Both these flows were obtained by superposition of
superposable wakes, which will be defined in section 2.4.

From the perspective of the ith particle we can separate the microscale perturbation flow induced
by all the particles into two parts as

uuupr(xxx, t)− uuu(xxx, t)︸ ︷︷ ︸
total perturbation

= (uuupr,6=i(xxx, t)− uuu(xxx, t))︸ ︷︷ ︸
neighbor perturbation

+ uuupr(xxx, t)− uuupr, 6=i(xxx, t)︸ ︷︷ ︸
self perturbation

, (10)

where the first term on the right is the perturbation flow due to all other particles and it is the
same as the microscale undisturbed flow of the ith particles. The second term on the right is the
perturbation flow induced by the ith particle in order to enforce its no-slip and no-penetration
boundary conditions. As we will discuss in Section 2.3 this separation between self-induced and
neighbor-induced perturbation flow is important in establishing the different forces that act on the
ith particle.

2.2 Reynolds number of the ith Particle

For the evaluation of particle force, the undisturbed flow field must be evaluated “at” the ith

particle. Based on the separation of the undisturbed flow velocity into its macro and microscale
contributions we write

uuu@i(t) ≈ uuu(xxxi, t)︸ ︷︷ ︸
=uuumac@i

+ uuumic,i(xxxi, t)︸ ︷︷ ︸
=uuumic@i

. (11)
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The macroscale contribution can be directly evaluated from the computed flow field of the EL
or EE simulation as given in (7). The microscale contribution uuumic@i is subgrid information and
therefore is not directly available in EL and EE simulations. As will be discussed in section 2.4,
in an EL simulation, uuumic@i can be approximated from the knowledge of the relative location and
motion of the neighboring particles, by modeling the neighbor-induced perturbation flow. In the EE
approach, the microscale information of both the fluid and particle motion have been averaged, since
the individual particles are not tracked. Nevertheless, the statistical influence of these microscale
fluctuations in both the fluid and particle velocities remains important in the EE approach, whose
modeling is the focus of this study.

As discussed before, the macroscale undisturbed flow varies slowly on the scale of the particle
diameter and thus the definition of uuumac@i given in the above equation is adequate. However, this
approximation is not appropriate for the microscale undisturbed flow. As can be seen in Figure 1b
the microscale flow varies substantially over the size of the particle. Thus, evaluating the microscale
contribution at the center of the ith particle may not be adequate. A better estimation of the
microscale undisturbed flow at the ith particle will be based on an average of the neighbor-induced
perturbation flow over the surface of the ith particle as given below

uuumic@i = (uuumic,i)
Si
, (12)

where ()
Si

denotes an average over the surface of the ith particle. The motivation for this improved
definition comes from Faxén’s law [27] and its extension in the form of Maxey-Riley-Gatignol
equation. Though its use at finite Reynolds number and in the presence of multiple neighbors has
not been rigorously established, we expect it to provide a better characterization of the undisturbed
flow than evaluation at the center of the ith particle as given in (11).

Based on the above estimate of the undisturbed fluid velocity, the particle Reynolds number of
the ith particle can be defined as

Re@i =
d |uuu@i − vvvi|

ν
. (13)

which includes contribution from both the macro and microscale flows. Thus, in the rest of the
manuscript we carefully distinguish the following two definitions of undisturbed flow and the cor-
responding Reynolds numbers:

uuu@i ,Re@i = total undisturbed flow and Reynolds number (see eqns. 11 and 13)

uuumac@i ,Remac@i = macroscale undisturbed flow and Reynolds number (see eqns. 7 and 8)

In contrast to the above two Reynolds number definitions, the volume fraction field has only the
macroscale contribution and the definition of φ@i for the average particle volume fraction at the ith

particle given in (7) remains applicable.

2.3 Undisturbed and Perturbation Flow Forces on the ith Particle

In relating the force on the ith particle to the undisturbed flow we distinguish the following two
contributions. The first is the direct contribution and will be termed the undisturbed flow force. It
is also often refereed to as the pressure-gradient, or stress-divergence, or Archimedes force. This
contribution is due to the net stress divergence that acts on the volume occupied by the particle
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and is given by

FFFun,i ≈ V(−∇p+ µ∇2uuu)@i︸ ︷︷ ︸
=FFFmac,un,i

+V(−∇pmic,i + µ∇2uuumic,i)
Vi︸ ︷︷ ︸

=FFFmic,un,i

, (14)

where V is the volume of a particle and ()
Vi

corresponds to an average over the volume of the
ith particle. Here again, in the first term on the right, the macroscale contribution has been
approximately evaluated at the center of the ith particle, due to the slow variation of the macroscale
flow. In the second term, the volume average Faxén form is used for the microscale contribution.
Even in the absence of the ith particle, the undisturbed flow force is experienced by the fluid that
occupies the volume of the ith particle.

In the presence of the ith particle, the actual flow in the neighborhood of the particle will ne-
gotiate around the particle and result in the self-induced perturbation flow (see eqn. 10). The
self-induced perturbation flow results in the perturbation flow force on the ith particle. As illus-
trated by the Basset-Boussinesq-Oseen (BBO) and the Maxey-Riley-Gatignol (MRG) equations,
the perturbation flow force can further be divided into (i) the quasi-steady force that depends on
the relative velocity, (ii) the added-mass force and (iii) the viscous history force, where the later
two depend on the relative acceleration between the particle and the undisturbed flow [8,32,40].

Here, we will restrict attention to non-accelerating condition and focus on the following approx-
imation of the force on the ith particle

FFFi ≈ FFFmac,un,i + FFFmic,un,i + FFFqs,i , (15)

where the quasi-steady force FFFqs,i accounts for the effect of self perturbation arising from both the
macro and micro components of the undisturbed flow. In fact, the self-induced perturbation flow
due to the ith particle will not only depend on the undisturbed flow of the ith particle, but also on
the presence and the motion of the neighboring particles. Thus, even the quasi-steady force due to
the macroscale undisturbed flow will be influenced by the microscale details of how the neighbors
are arranged around the ith particle.

The micro-portion of the undisturbed flow force can be evaluated only in an EL-mic simulation,
and that too only approximately with the use of the PIEP model. In both the EL-mac and
EE approaches, FFFmic,un,i cannot be directly calculated. Therefore in order to establish consistent
relations between the force expressions of the three approaches, we will consider parameterization
of the total force FFFi as a modified quasi-steady force that includes the macro and micro portions
of the undisturbed flow force. A discussion of the parameterization of the undisturbed flow force
alone in the EL and EE approaches is given in appendices A, B and C.

2.4 Superposable Wake Approximation of the Microscale Flow

In both the EL and EE approaches, only the macroscale flow uuu is being computed and therefore
there is no direct access to the microscale undisturbed flow uuumic,i of the ith particle. However, as
shown in [11,34] the microscale undisturbed flow of the ith particle can be approximated as a sum
over perturbation flow induced by each of the N − 1 neighbors taken one at a time to obtain

uuumic,i(xxx, t) ≈
N−1∑
j=1

uuusw(xxx− xxxj ; Re@j , φ@j) , (16)
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where the perturbation flow of each neighbor is taken to be given by its superposable wake (denoted
by the subscript “sw”). The superposable wake flow depends not only on the distance from the
perturbing jth neighbor, but also on the Reynolds number of the flow and the average particle
volume fraction at the neighbor. As discussed in [11,34] the superposable wakes are axisymmetric
flows and have been pre-computed and stored for varying values of Re@j and φ@j .

In the evaluation of the microscale undisturbed flow surface-averaged over the surface of the ith

particle we make the approximation

uuumic@i = (uuumic,i)
Si ≈

N−1∑
j=1

(uuusw)
Si

j . (17)

Due to the axisymmetric nature of the superposable wake, the surface average depends only on the
axial and radial distance between the (i− j) particle pair, and on Re@j and φ@j , which determine

the superposable wake. Axisymmetric maps of streamwise and transverse components of (uuusw)
Si

j

are pre-computed and stored for varying values of Re@j and φ@j . For each particle, the appropriate
contributions from its neighbors to the above sum are then read from the maps and added to obtain
the microscale undisturbed velocity. As a final point, it should be noted that the above sums need
not be carried out for all the N − 1 neighbors. The superposable wake maps decay rapidly and
are nearly zero when the distance between the ith and the jth particle exceeds more than a few
particle diameters [11,34]. So, for each particle, the above sums need to include only the few nearest
neighbors that fall within a distance of a few particle diameters.

2.5 Quasi-Steady Force Parameterization in the EL Approach

In our quest to parameterize the particle force, we will consider the three contributions listed
in (15) and address how their sum can be modeled in the EL approach. We normalize the total
force by the corresponding Stokes drag based on the undisturbed relative velocity as

ΦL =
FFFi

3πµd(uuu@i − vvvi)
, (18)

where superscript “L” denotes its applicability to each individual particle in an EL simulation. ΦL

will depend on the following non-dimensional factors:

• Reynolds number Re@i, which is a non-dimensional measure of relative velocity between the
ith particle and its undisturbed ambient flow.

• Volume fraction φ@i, which measures the average number density of particles around the ith

particle.

• The relative location of all the other particles in relation to the ith particle measured as
(xxxj − xxxi)/d for j = 1, 2, · · · , i− 1, i+ 1, · · · , N .

• The relative velocity of the neighboring particles measured in terms of their Reynolds num-
bers, Re@j .

The above listed dependencies are more complex than how ΦL is traditionally modeled. In the
traditional approach, considerable simplification of is achieved by limiting attention to only the
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average statistical influence of neighbors. This simplification leads to the EL-macro model ΦLE .
At this simplified level, the collective influence of neighbors is accounted for through the volume
fraction. The precise location of the neighbors and their motion are ignored in evaluating the
undisturbed flow of the ith particle. This simplification greatly reduces the dependency and ΦLE

is modeled as a function of only Remac@i and φ@i.
3

However, there is ample evidence that the simpler parameterization based on only Remac@i and
φ@i is not of sufficient accuracy [1,4,22,31,48]. It only accounts for the macroscale effects. Subgrid
variation in both particle relative velocity and local particle volume fraction strongly influence the
particle force. The complete dependency list presented above is needed to properly account for the
following two influences of the neighbors: (i) The effect of the precise arrangement of neighbors
around the ith particle in influencing the undisturbed flow at the ith particle. This effect can be
taken into account through the definition of Re@i by including the microscale flow induced by the
neighbors (see equations (11) to (13)). (ii) The effect of neighbors on the perturbation flow induced
by the ith particle, and therefore on the perturbation flow force. This latter effect requires the
position and velocity of the neighbors to be included in the complete list of dependencies. However,
for lack of detailed information, we will ignore the latter influence of neighbors and pursue force
parameterization based on only Re@i and φ@i.

2.6 Force Parameterization in the EE Approach

Due to the additional averaging of the particulate phase, force parameterization in the EE
approach is more challenging. In the EE approach, force on an individual particle is not the object
of interest. We are interested in the average drag on all the particles in the neighborhood of a
point xxx weighted by the filter function. We again consider the three contributions listed in (15)
and address how their sum is modeled in the EE approach. The total force normalized by the
corresponding Stokes drag based on the macroscale undisturbed relative velocity is defined as

ΦE =
FFF(xxx, t)

3πµd(uuu(xxx, t)− vvv(xxx, t))
, (19)

where superscript “E” denotes its applicability in the EE approach. The Eulerian force field is
defined as the weighted sum over all the particles within the system

FFF(xxx, t) ≈
N∑
i=1

G(xxx− xxxi) FFFi . (20)

The above approximation assumes a coarse-grid EE simulation where the particle size is much
smaller than the filter width [14]. From the above definition it is clear that the Eulerian force at a
point xxx represents the weighted average of force on many particles that are in the neighborhood of
the point (the extent of the neighborhood is defined by the length scale of the filter function).

Due to the nonlinear dependence of normalized force ΦL on Re@i and φ@i, the average force
obtained by averaging over all the particles within the neighborhood of a point xxx does not depend
only on the average Reynolds number and the average volume fraction. Additional knowledge of

3It should noted that at this level of simplification, uuu@i in the denominator of (18) must be consistently approxi-
mated as uuumac@i, without the microscale contribution.
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how Re@i and φ@i vary from particle-to-particle within the averaging volume is necessary in order
to properly evaluate the average force.

The added challenge of modeling ΦE can now be discussed in relation to the parameterization of
the EL counterpart. In going from the Lagrangian modeling of force of an individual particle to the
Eulerian modeling of the average force, the effect of the following three different fluctuations must
be additionally considered: (i) The Eulerian particle velocity vvv(xxx, t) accounts for only the average
motion of the particles, but the velocity of individual particles in the neighborhood of the point xxx

substantially varies from the average value. (ii) The velocity uuu(xxx, t) accounts only for the macroscale
undisturbed fluid velocity. The actual undisturbed fluid velocity of individual particles in the
neighborhood of the point xxx substantially varies from the average value due to the perturbing effect
of the neighboring particles. (iii) The particle volume fraction field φ(xxx, t) provides an adequate
measure only in the limit where the micro-structural distribution is homogeneous and isotropic. In
many applications, the distribution of particles can locally be anisotropic and inhomogeneous [31].

Therefore, it is not sufficient to parameterize ΦE only in terms of Remac(xxx, t) and φ(xxx, t). The
following additional information are needed:

• The nature of particle-to-particle variation in particle velocity must be characterized (i.e,
whether the distribution of particle velocity in the neighborhood of the point xxx is Gaussian,
log-normal). The magnitude of subgrid particle velocity variation is characterized in terms
of particle velocity fluctuation Reynolds number:

ReTpx(xxx, t) =
d vrms,x

ν
, ReTpy(xxx, t) =

d vrms,y
ν

, ReTpz(xxx, t) =
d vrms,z

ν
, (21)

where vrms,x, vrms,y and vrms,z are rms particle velocity variation. The rms variation in
particle velocity along the streamwise (x) and transverse (y and z) directions can be formally
defined as

v2
rms,x(xxx, t) =

1

φ(uuu, t)

∫
ΩG(xxx− xxx′) Ip(xxx

′, t) ((vvvpr(xxx
′, t)− vvv(xxx, t)) · eeex)2 dV

v2
rms,y(xxx, t) =

1

φ(uuu, t)

∫
ΩG(xxx− xxx′) Ip(xxx

′, t) ((vvvpr(xxx
′, t)− vvv(xxx, t)) · eeey)2 dV (22)

with similar definition along the z-direction. In granular mechanics, collision-modulated par-
ticle velocity fluctuation is often taken to be isotropic, and this leads to the further assumption
ReTpx = ReTpy = ReTpz. Here we make the assumption that the particle velocity fluctuation
statistics are axisymmetric about the direction of mean relative velocity uuu(xxx, t)−vvv(xxx, t), which
is taken to be along the x-direction. As a result of axisymmetry, ReTpy = ReTpz.

• The nature of particle-to-particle variation in the undisturbed fluid velocity evaluated at the
particle must be characterized. Its magnitude can be quantified in terms of undisturbed fluid
velocity fluctuation Reynolds number:

ReTfx(xxx, t) =
d urms,x

ν
, ReTfy(xxx, t) =

d urms,y
ν

, ReTfz(xxx, t) =
d urms,z

ν
, (23)

where urms,x, urms,y and urms,z are rms undisturbed fluid velocity variation.

• The nature of particle-to-particle variation in particle volume fraction must be characterized
along with its magnitude quantified in terms of rms of volume fraction fluctuation, φrms(xxx, t)
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Case Volume Fraction Box Size (L/d) No of Particles Realizations Re0

1 0.11 30.57 1000 6 0 to 110

2 0.21 24.64 1000 6 0 to 160

3 0.45 19.11 1000 6 0 to 160

Table 1: Table showing the different volume fraction and Reynolds number ranges considered

• Correlation between particle and undisturbed fluid velocity variation is also of importance
(as will be seen in section 4), and can be measured in non-dimensional terms as

ReTfpx(xxx, t) =
dC

1/2
x

ν
, ReTfpy(xxx, t) =

dC
1/2
y

ν
, ReTfpz(xxx, t) =

dC
1/2
z

ν
, (24)

where Cx is the correlation between the x-component of the particle velocity variation with
the x-component of the corresponding undisturbed fluid velocity variation from the average
value. The definitions of Cy and Cz are similar.

3 Homogeneous Distribution of Stationary Particles

We begin with the simplest scenario of a random distribution of stationary particles in a large
triply-periodic box, inside which the spatial location of the particles have been chosen with uniform
probability. A uniform mean pressure gradient (∇p)0 is applied along the mean flow direction
(taken to be the x-axis) which results in a spatially varying flow around the stationary particles. We
consider a box-filter of size L the same as the triply-periodic box, so that the macroscale quantities
are spatially homogeneous. Let Remac = Re0 = U0d/ν be the macroscale Reynolds number, where
U0 is the uniform macroscale velocity along the x-direction. The problem is characterized by two
parameters: the macroscale Reynolds number Re0 and the uniform particle volume fraction φ0.
This scenario has been considered in several recent particle-resolved simulations [4,12,13,24,44,46,
47,51,53].

Since the particles are stationary, there is no particle velocity variation. Thus, this configuration
corresponds to the limit ReTpx = ReTpx = ReTpx = 0. Furthermore, due to the uniform random
distribution of particles and the choice of box filter, macroscale volume fraction is uniform and
φ′ = 0. Thus, the only particle-to-particle variation is in the undisturbed fluid velocity at the
particles. Here we restrict attention to modest values of mean Reynolds number, so that the flow is
steady. In the present problem, the macroscale undisturbed fluid velocity of all the particles is the
same as U0. As illustrated in Figure 1 the microscale undisturbed velocity of each particle depends
on the precise arrangement of its neighbors and therefore can be substantially different from one
particle to another. For example, the microscale undisturbed velocity of a particle which happens
to lie in the immediate wake of other upstream particles will be substantially negative, while that of
a particle that happens to be located in the high-speed flow channel will be substantially positive.

Three different configurations at volume fractions of 11%, 21% and 45% are considered. Each
system contains a triply-periodic box within which 1000 particles are randomly distributed with
uniform probability. The size of the triply-periodic box is chosen to yield the appropriate mean
volume fraction (the details are given in Table 1). The mean inter-particle distance for the three
volume fractions are 2.09, 1.68 and 1.30 particle diameters respectively. Each configuration is
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repeated with 6 realizations and the results to be presented are averaged over all the particles in
all the realizations. For each volume fraction, a range of Reynolds numbers between 0 and 160 are
considered. The choice of volume fraction and the range of Re0 are based on available superposable
wake maps.

The distribution of uuumic@i both along the flow direction and along the transverse direction is
of interest here. As presented in (17) the microscale contribution to undisturbed flow velocity is
approximated by a superposition of surface averages of superposable wakes of nearby neighbors to

define umic@i,x =
∑′N

j=1 (usw,x)j
Si

, with similar definitions that apply for the y and z components.

Here (usw,x)j represents the streamwise component of the jth neighbor’s superposable wake, whose
average over the surface of the ith particle is denoted by the overbar and the superscript Si. It

has been observed by [33] that the axisymmetric maps (usw,x)
S

and (usw,y)
S

decay rapidly and are
non-zero only over a cylinder of radius 4.3d whose axial length extends from −4.2d to 6.5d along
the flow direction. Thus, for each particle the contribution to the superposition of surface averages
of superposable wakes is limited to only those neighbors that are within this cylinder of influence.
Also, superposable wakes have been properly defined in order to render the microscale undisturbed
flow to be a true perturbation quantity and therefore not alter the undisturbed flow averaged over
all the particles. I.e., it is ensured that the mean values

〈umic@i,x〉 =
1

N

N∑
i=1

umic@i,x = 0, 〈umic@i,y〉 = 〈umic@i,z〉 = 0 . (25)

Thus, the microscale undisturbed flow of each particle can be considered as fluctuation away from
the mean macroscale undisturbed velocity, which in the present problem equals U0 along the x-axis.

Normalized histograms of umic@i,x/U0 and umic@i,y/U0 are shown in Figure 2 for three different
combinations of Re0 and φ0. The histogram of the z-component is the same as that of the y-
component. Also plotted as red lines in all the figures are best fitting pdf of the histogram. It
can be observed that the distribution of transverse component of undisturbed velocity fluctuation
at the particles follows a Gaussian pdf for all combinations of macroscale Reynolds number and
volume fraction. The width of the distribution appears to increase with Re0 and φ0. In the case
of streamwise component, the distribution follows a shifted-gamma distribution at lower volume
fraction, and tends to become a Gaussian pdf at higher volume fraction.

The asymmetric nature of the distribution at low volume fraction can be explained in terms
of the fore-aft asymmetry of the wake at finite Reynolds numbers. The strong negative velocity
perturbation in the wake and in the front stagnation point region of a particle is compensated by
a very broad region of weak positive velocity perturbation along its equatorial sides. This feature
of velocity perturbation is responsible for the positive skewness of umic@i,x distribution. With in-
creasing volume fraction, it was reported in [34] that the fore-aft asymmetry of the superposable
wake decreases, since the individual particle wakes are increasingly broken-up by the neighboring
particles. This is reflected in the more symmetric nature of umic@i,x distribution at the higher
volume fraction. Figure 3 shows scatter plots of normalized x-component plotted against normal-
ized y-component for the three combinations of Re0 and φ0 shown in Figure 2. From the plots
it is clear that there is no systematic correlation between the streamwise and transverse compo-
nents. This is to be expected both due to the uniform random distribution of particles and the
symmetries/periodicity of the problem.
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Figure 2: The top row shows the normalized histograms of the streamwise component of the surface
averaged undisturbed velocity fluctuation at the particles. The bottom row shows the normalized
histograms of the transverse component of the undisturbed velocity fluctuation at the particles. (a
and d) Re0 = 100, φ0 = 0.11; (b and e) Re0 = 60, φ0 = 0.21; (a and d) Re0 = 30, φ0 = 0.45; In all
the plots the red curve shows the best fitting analytical distribution. In frame (a) the best fit is a
Gamma distribution, while in all others a Gaussian fit is shown.

Figure 3: Scatter plot of streamwise component of the surface averaged undisturbed velocity fluc-
tuation versus the transverse component for all the particles within the system. (a) Re0 = 100,
φ0 = 0.11; (b) Re0 = 60, φ0 = 0.21; (c) Re0 = 30, φ0 = 0.45.
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Hitherto it has not been easy to estimate the level of fluid velocity fluctuation seen by the parti-
cles in a multiphase flow. The use of superposable wake with the pairwise interaction approximation
of the PIEP model has given us an opportunity to obtain such an estimate. From Figure 2 it is
clear that the level of particle-to-particle variation in the undisturbed fluid velocity at the particle
is substantial. In the case of streamwise component, the fluctuation can be as large as 100%, which
indicates that given a macroscale Reynolds number of Re0, the Reynolds number of an individual
particle could be as low as zero or can be as high as twice the macroscale value. Furthermore, it is
important to note that each particle within the array is subjected to substantial local fluid velocity
that is not aligned in the direction of the macroscale flow. The transverse velocity can be as large
as 40%. The resulting particle-to-particle transverse force variation is likely to play an important
role in transverse diffusion and dispersion.

It must however be noted that the distributions of undisturbed fluid velocities shown in Figure 2
are perhaps sightly underestimated. It has been shown in [34] that subgrid velocity fluctuation
evaluated using superposition of superposable wakes slightly underestimates the actual velocity
fluctuation computed in a particle-resolved simulation. The effect of this underestimation may
however be mollified by the fact that the undisturbed velocity has been averaged over its surface.
Furthermore, the superposable wakes account for only the pseudo turbulent component. Though
not important in the present demonstration, in other applications subgrid velocity fluctuations may
also include unresolved turbulence.

3.1 Fluid Velocity Induced Reynolds Number Fluctuation

The microscale undisturbed velocity of all the N particles within the system, computed via the
surface average in Eq. (12), can then be used to calculate the rms Reynolds number fluctuation in
the following way

ReTfx =
d

ν

√√√√ 1

N

N∑
i=1

[umic@i,x]2 . (26)

In the above, we have taken the mean value of umic@i,x to be zero. If similarly defined, due
to the axisymmetric nature of the statistics about the mean flow direction, we expect ReTfy =
ReTfz. Figure 4 shows plots of ReTfx/Re0, ReTfy/Re0 and ReTf/Re0 for a range of macroscale
Reynolds numbers for three different volume fractions. Frame (a) shows that particle-to-particle
variation in the normalized streamwise component of undisturbed velocity decreases with both
macroscale Reynolds number and volume fraction. It should be pointed out that in the zero volume
fraction limit of nearly isolated particles, each particle is uninfluenced by its neighbors and thus
ReTfx,ReTfy,ReTfz → 0. It is thus interesting to observe that the normalized streamwise velocity
variation rapidly increases in the modest volume fraction range of 0 to 11%. Decrease in ReTfx/Re0

with further increase in volume fraction is not entirely surprising, since as observed in [34], due to the
collective effect of increasing number of close-by neighbors, the extent of each particle’s superposable
wake greatly reduces with increasing volume fraction. Unfortunately, with the limited availability
of particle-resolved simulations it is not possible to identify at what macroscale volume fraction rms
fluctuation reaches its maximum value. It is nevertheless clear that the level of particle-to-particle
variation is substantial.

In Figure 4b the behavior of normalized transverse velocity fluctuation is somewhat more com-
plex. At higher Re0, ReTfy/Re0 tends to increase with increasing volume fraction. At lower Re0,
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there appears to be a non-monotonic trend, with the level of transverse velocity fluctuation first
increasing with increasing volume fraction, reaching a maximum, and then decreasing with further
increase in φ0. As with the streamwise component, the transverse component also decreases with
increasing Reynolds number. The rms of undisturbed fluid velocity fluctuation, which is the fluid
analog of granular temperature, can be defined as

ReTf =

[
1

3

(
Re2

Tfx + 2 Re2
Tfy

)]1/2

. (27)

Variation of ReTf/Re0 is presented in frame (c). From the figure it appears that with φ0 increasing
from 0 to ∼ 10% the fluctuation Reynolds number increases reaches a peak and remains invariant
to further increase in volume fraction to about 21% and then decreases with further increase in
volume fraction.

Figure 4: Frames (a), (b) and (c) show plot of rms normalized streamwise, transverse and total
particle-to-particle velocity fluctuation. The results are shown for a range of macroscale Reynolds
number. Three different volume fractions are shown. Red: φ0 = 11%, Blue: φ0 = 21%, and Black:
φ0 = 45%.

3.2 Eulerian Force Model (Stationary Particles)

In this section we use our newfound understanding of the particle-to-particle variation in undis-
turbed flow velocity to examine the existing drag models and advance new models as appropriate.
Again we restrict attention to a uniform macroscale flow through a uniform distribution of sta-
tionary particles. Thus the problem is statistically homogeneous and is characterized by the two
macroscale parameters: Re0 and φ0, which remain the same for all particles. First, we consider
the average streamwise drag on the particles - this is the information that is required in a typical
Euler-Euler simulation. In the present context, following (19) the average drag after normalization
can be expressed as

ΦE
0 =

1
N

∑N
i=1 FFFi · eeex

3πµdU0
, (28)

where FFFi·eeex corresponds to the streamwise component of the force on the ith particle and the average
is over all the particles within the homogeneous system. We now clarify the notation: In ΦE

0 , the
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subscript, “0” corresponds to stationary, homogeneous and isotropic distribution of particles. As
a result of these restrictions, ΦE

0 will depend only on the two macroscale parameters Re0 and φ0.
When evaluated in this manner, the resulting ΦE

0 will be inappropriate under conditions where the
distribution of particles is inhomogeneous and anisotropic, and when the particles are allowed to
freely move, which will introduce substantial particle velocity variation.

Several models of ΦE
0 (Re0, φ0) have been proposed in recent years, mainly based on results from

large collection of particle-resolved simulations [12,13,44,47,51,53]. We draw attention to the fact
that the above list does not include the classic drag correlations [20,37,49], since these correlations
are based on systems where the particles were allowed to freely move. As pointed out in [38], the
latter correlations must therefore account for the added effects of particle velocity and local volume
fraction variation. As an example, we present the average drag correlation of [47] in normalized
form as

ΦE
0 (Re0, φ0) =

1 + 0.15Re0.687
0

(1− φ0)2
+

5.81φ0

(1− φ0)2
+

0.48φ
1/3
0

(1− φ0)3︸ ︷︷ ︸
f1(φ0)

+φ3
0(1− φ0) Re0

(
0.95 +

0.61φ3
0

(1− φ0)2

)
︸ ︷︷ ︸

f2(Re0,φ0)

 .
(29)

The above correlation, and other similar ones proposed in [12, 13, 44, 51, 53] somewhat differ from
each other. Though differences in the numerical methodology (finite difference vs lattice Boltz-
mann), degree of resolution, and the manner in which particles are randomly distributed, are
expected to contribute, a complete explanation of differences is still lacking. Nevertheless, the
discussion to follow using the drag correlation of [47] can easily be replicated with any other cor-
relation.

Figure 5 shows plots of ΦE
0 (shown as the blue-solid line) calculated using the above correlation

as a function of Re0 for the three different volume fractions of φ0 = 0.11, 0.21 and 0.45. Also plotted
as black-dash line is the corresponding normalized drag evaluated using the standard drag relation
of an isolated particle, i.e., using (1+0.15Re0.687

0 ). Since the standard drag law is independent of φ,
the black-dash line is the same in all three frames. The large difference between the blue-solid and
the black-dash line highlights the profound effect of neighboring particles in substantially increasing
the average drag. There are two sources that contribute to this difference: (i) As discussed in
the previous section, the undisturbed fluid velocity varies from particle-to-particle with particle’s
relative velocity being sometimes substantially larger or lower than the average. Since drag force’s
dependence on the undisturbed fluid velocity is nonlinear, the true average force is larger than that
computed based on the average relative velocity. (ii) For the same undisturbed fluid velocity, the
drag force on a particle in the presence of neighbors is different from that of an isolated particle.
This later effect is due to the fact that the self-perturbation flow of a particle is influenced by the
presence of neighbors (as a result of their no-slip and no-penetration boundary conditions).

Since we can compute the undisturbed flow of each particle within the random distribution
using the superposition of nearby neighbor’s superposable wakes, the two effects can be separated
as follows. The first effect of particle-to-particle variation in the undisturbed flow can be taken into
account by computing the drag on each particle using its undisturbed fluid velocity in the standard
drag law, then averaging over all the particles to obtain

1
N

∑N
i=1(uuu@i · eeex)(1.0 + 0.15Re0.687

@i )

U0
. (30)
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By assuming the drag on each particle to be given by the standard drag law of an isolated particle,
the above ignores the second effect of the influence of neighboring particles on the self-perturbation
flow, and only accounts for the variation in the undisturbed fluid velocity. Plots of normalized
average drag computed as the summation given in (30) are shown in Figure 5 as the red-dash lines.
The undisturbed fluid velocity variation contributes only modestly to increase in the average drag
force - this influence is larger at lower volume fraction and progressively decreases with increasing
volume fraction.

The summation given in (30) can be carried out after expanding uuu@i about the mean velocity
U0eeex (see Appendix D) to obtain

1 + 0.15Re0.687
0︸ ︷︷ ︸

standard drag

+
(0.15)(0.687)

2Re1.313
0

(
1.687Re2

Tfx + 2.0Re2
Tfy

)
︸ ︷︷ ︸

leading effect of undisturbed flow variation

+H.O.T. (31)

The above expression provides an excellent approximation and explains the contribution of the
particle-to-particle variation in the undisturbed flow velocity. The variance of streamwise velocity
fluctuation measured in terms of Re2

Tfx contributes 68.7% more than the variance of each of the

transverse velocity fluctuation. Furthermore, as can be seen in Figure 4, Re2
Tfx is typically much

larger than Re2
Tfy. Nevertheless, at the level of undisturbed velocity fluctuation presented in

Figure 4, the increase in average drag is modest (i.e, the difference between the black and the red
dash lines is small). But equation (31) indicates that with further increase in fluctuation Reynolds
number, for example through particle velocity variation when particles are allowed to move, the
increase in average drag can be higher. In any case, in Figure 5 the major contributor to the
large difference between ΦE

0 (blue-solid) and the standard drag (black-dash) is the influence of
neighboring particles on the self-induced perturbation flow.

3.3 Lagrangian Force Model (Stationary Particles)

An important point of the earlier discussion is that when a nonlinear drag correlation, such as
the standard drag law, were to be applied for each individual particle and then averaged over all
the particle, the resulting average will be higher than when the correlation is applied to the average
particle motion. This has important implication in the application of Eulerian normalized average
drag correlation ΦE

0 , such as the one given in (29).
The difference between an EL-mac simulation of flow over a stationary random distribution

of particles and the corresponding EE simulation is small and therefore ΦE
0 can be applied for

each particle of the EL-mac simulation. The resulting force variation among the particles in a
neighborhood will be quite small. It is however inappropriate to use ΦE

0 in the evaluation of force
on individual particles in an EL-mic simulation. This is because, drag on individual particles
computed this way will vary within a neighborhood, which when averaged over all the particles will
be larger, and exceed the average drag correlation ΦE

0 .
We define ΦL

0 as the consistent Lagrangian normalized force correlation (for stationary particles
as indicated by the subscript “0”), which when applied to and averaged over all the particles will
correctly yield the appropriate Eulerian normalized force correlation ΦE

0 . This force consistency
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relation can be mathematically expressed as

U0 ΦE
0 (Re0, φ0) =

1

N

N∑
i=1

(uuu@i · eeex) ΦL
0 (Re@i, φ0) (32)

where we have canceled the common factor 3πµd on both sides. In the present context of a uniform
macroscale flow in a periodic box with a random distribution of stationary particles, the normalized
average force ΦE

0 is a function of the macroscale Reynolds number Re0 and volume fraction φ0.
On the other hand the Lagrangian normalized force ΦL

0 is a function of the Reynolds number of
the individual particle, whose undisturbed fluid velocity depends on the relative location of its
neighbors, while the volume fraction remains the same for all particles. From the above, it is clear
that in general ΦE

0 6= ΦL
0 and the equality applies only in the case when there is no particle-to-

particle variation in the undisturbed fluid velocity or in the Stokes limit of low Reynolds number
when the normalized force is linear in relative velocity.

The above consistency relation can be viewed as an inverse problem of finding the consistent
Lagrangian normalized force correlation ΦL

0 , which when averaged as given in the above equation
will yield the desired Eulerian normalized drag ΦE

0 , such as the one given in (29). By Taylor series
expansion of the right hand side of (32) about the macroscale Reynolds number Re0 and following
the steps of Appendix D it can be readily seen that ΦL

0 will be lower than ΦE
0 . An approximate

curve fit of the inverse problem yields the following expression:

ΦL
0 (Re@i, φ0) =

[
(1 + 0.15Re0.687

@i f3(Re@i, φ0))

(1− φ0)2
+ f1(φ0) + f2(Re@i, φ0)

]
. (33)

where the functions f1(φ0) and f2(Re0, φ0) are the same as in (29) and

f3(Re@i, φ0) = 1− 1.5φ1.217
0 e−5.44φ0(1.0− 0.0051Re@i + 1.71× 10−5Re2

@i) . (34)

The above is the Lagrangian counterpart of the Eulerian drag correlation given in (29). Both
apply only in the limit when the particles are not moving with respect to each other, i.e., when the
particles are stationary relative to each other.

Plots of ΦL
0 as a function of Re@i for the three different volume fractions are also shown in

Figure 5 as the blue-cross symbols. As expected, ΦL
0 is lower than ΦE

0 , which is the blue-solid
line. The difference, though noticeable, is not very large, and decreases with increasing volume
fraction. The small difference is again due to the limited range of particle-to-particle variation in
undisturbed fluid velocity (i.e., due to modest values ReTfx and ReTfy as given in Figure 4). As a
check, an average over all the particles was performed after calculating the normalized drag force
on each particle using ΦL

0 . This average is also shown in Figure 5 as the red-cross symbols. The
agreement between the red-cross symbols and ΦE

0 (blue-solid line) is quite good.
Clearly the Lagrangian correlation given in (33) and (34) is just one possible fit of the force

consistency relation. Here the drag on the particle has been parameterized only in terms of the
surface averaged undisturbed fluid velocity, through the dependence on Re@i. While ΦL

0 defined
this way matches the Eulerian counterpart ΦE

0 upon averaging, there is no guarantee that force on
individual particles will best match their PR-DNS values. Nor will higher order statistics such as
rms of particle-to-particle force variation will match those of PR-DNS. To achieve, more accurate
deterministic prediction, the force expression must additionally depend on volume average of the
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undisturbed stress divergence and on volume averaged vorticity. This will allow accurate accounting
other contributions from undisturbed flow force, added-mass force, and vorticity-induced lift force,
etc (see PIEP force modeling presented in [1, 2, 11]). Here we proceed with (33) and (34) for its
simplicity. Nevertheless, this correlation is of fundamental importance, since the difference between
the standard drag of an isolated particle (black-solid line) and ΦL

0 (blue-crosses) embody the effect
of neighbors in increasing the drag on an individual particle within a random stationary array.
Only upon further average over many particles we arrive at ΦE

0 (blue-solid line).
The difference between ΦL

0 and ΦE
0 has been accounted through the function f3. In the dilute

limit of φ0 → 0, the function f3 → 1, since each particle remains unaffected by the presence of
very distant neighbors and the undisturbed flow has no microscale component. In the Stokes limit
of Re → 0, the influence of f3 vanishes. Thus, in both these limits ΦL

0 = ΦE
0 . Eulerian drag

correlation, such as those given in (29), have been used in EL-mic simulations. Such application
of the average drag correlation to individual particles will result in a slight overestimation of the
overall drag force. This effect is shown in Figure 5 where the average

1

N

N∑
i=1

(uuu@i · eeex)

U0
ΦE
H,S(Re@i, φ0) (35)

is plotted as red-solid line. In this case, the Eulerian average drag correlation of (29) has been
inappropriately applied to each particle and then averaged to yield the red-solid line. As expected
this contributes to an increase in the average drag above the expected value of ΦE

0 .
The difference between ΦE

0 and ΦL
0 (i.e., the difference between the blue-solid line and the blue

crosses in Figure 5) is due to particle-to-particle variation in Re@i, which in turn is due to variation
in the streamwise and transverse components of the undisturbed fluid velocity at the particles.
We now separate the contribution of the streamwise and the transverse undisturbed fluid velocity
variation. Such separation will be exploited in the next chapter where we proceed to extend the
Eulerian drag correlation to non-stationary problems. Towards this goal we Taylor series expand
ΦL

0 (Re@i, φ0) about the macroscale state (Re0, φ0), and substitute the expansion into the right hand
side of (32). Rewriting the ratio (uuu@i · eeex)/U0 as Re@ix/Re0 we follow the steps of Appendix D to
obtain the following relation

ΦE
0 (Re0, φ0) = ΦL

0 (Re0, φ0) +

[
1

2

∂2Φ̂L
0

∂Re2
@ix

]
0

(
1

N

N∑
i=1

(Re@ix − Re0)2

)
+

[
∂2Φ̂L

0

∂Re2
@iy

]
0

(
1

N

N∑
i=1

Re2
@iy

)

= ΦL
0 (Re0, φ0) +

[
1

2

∂2Φ̂L
0

∂Re2
@ix

]
0

Re2
Tfx0 +

[
∂2Φ̂L

0

∂Re2
@iy

]
0

Re2
Tfy0 , (36)

where Φ̂ has been introduced in the appendix D. At small Re an exact integration over Maxwellian
distribution can be performed as discussed in [50]. In obtaining the second equality we have used
the Reynolds number definitions of streamwise and transverse undisturbed fluid velocity fluctuation
at the particles given in (26). We now define the fractional contribution to the difference between
the Eulerian and Lagrangian normalized drag from the streamwise component to be

gx(Re0, φ0) =

[
1
2
∂2Φ̂L

0

∂Re2@ix

]
0

Re2
Tfx0

ΦE
0 (Re0, φ0)− ΦL

0 (Re0, φ0)
. (37)
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A plot of gx as a function of Re0 for the three different values of φ0 is shown in Figure 6. It
can be seen that except at the intermediate volume fraction, gx is nearly independent of Re0.
At lower volume fraction nearly 86% of the increase comes from particle-to-particle streamwise
undisturbed fluid velocity variation and the contribution decreases with increasing volume fraction.
At φ0 = 0.45, streamwise undisturbed fluid velocity variation contributes 63%. A simple curve fit,
assuming gx to be approximately independent of Re0 is given by

gx = 0.927− 0.513φ0 − 0.337φ2
0 . (38)

By definition, the fractional contribution along the transverse directions is given by gy,z = 1− gx.

4 Homogeneous Distribution of Non-Stationary Particles

This section will consider particles in motion and our goals are to identity (i) an appropriate
Lagrangian model of the normalized drag that can be applied to each particle within the system
and (ii) an Eulerian model of the normalized average drag that is appropriate for a group of
particles that lie within the averaging volume. Two additional mechanisms make this problem more
complicated than the stationary particles considered in the previous section. When particles are
allowed to freely move, particle-to particle variation in relative velocity changes, since this variation
arises not only from the undisturbed fluid velocity, but also from the particle velocity [28, 38, 50].
In granular flows, it is well understood that inter-particle collisions lead to large departures in
the motion of individual particles away from the mean particle velocity. Even in the absence of
direct collisions between particles, fluid-mediated interaction between the particles will contribute
to particle velocity fluctuation away from the mean.

Another important effect of particle motion is that homogeneity of particle distribution and
the uniformity of particle volume fraction cannot be guaranteed. In addition, the micro-structure
of particle distribution as quantified by statistics such as radial distribution function may not be
isotropic. Variation in particle velocity, departure from uniform distribution of particles, and non-
isotropic micro-structure of neighboring particles will all contribute to determination of particle
force at the level of both an individual particle and as an average over the averaging volume. In the
present work, we will restrict attention to only the effect of particle-to-particle variation in particle
velocity. We will assume the particle distribution to remain homogeneous and the micro-structure
to remain isotropic.

4.1 EL-mic Viewpoint

Here we consider force on an individual particle, when particles are in free motion, but under
conditions of uniform random distribution. The macroscale state of the system must now be
characterized by the macroscale Reynolds number, Re0, the local particle volume fraction, φ0 and
the granular temperature or the level of particle velocity fluctuation, quantified by ReTpx and
ReTpy.

The particle velocity variation influences the drag on the ith particle in several ways: (i) The
deviation of the ith particle’s velocity from the macroscale value is easy to account for in the
Lagrangian framework. Since the velocity of each particle is being tracked, the drag force model
can properly account for the particle velocity. (ii) The deviation of neighbor’s velocity from the
macroscale value influences its perturbation flow. As a result, the undisturbed flow at the ith
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particle will be influenced by the motion of the neighboring particles. The effect of neighbors’
motion on the undisturbed flow of the ith particle can be taken into account with the use of PIEP
model and superposable wakes. (iii) The relative motion of the neighboring particles with respect
to the ith particle also influences the self-induced perturbation flow of the ith particle.

Based on above considerations, we pursue the following force modeling strategy in the EL-mic
framework: Step 1: For each particle calculate its surface-averaged undisturbed fluid velocity as
outlined in equation (17). Step 2: From the surface-averaged undisturbed fluid velocity and the
particle velocity calculate the Reynolds number Re@i of the particle. Step 3: From Re@i and φ@i

of the particle evaluate the force on the particle using the Lagrangian drag correlation ΦL
0 .

This three step process of evaluating the force on each particle is the same as that for station-
ary case. However, application of these steps to a non-stationary system involves two fundamental
assumptions. First, in the evaluation of the undisturbed fluid velocity, in equation (17), the super-
posable wakes should have been evaluated for the configuration of non-stationary particles. But
such information is not currently available. Therefore, the superposable wakes of the stationary
configuration, as obtained in [34], have be used in the non-stationary configuration as well. Second,
the Lagrangian force correlation ΦL

0 defined in section 3.3 has been developed based on results of
PR simulations of a stationary configuration. Thus, the use of ΦL

0 in the present context of mov-
ing particles is an assumption. In any case, without additional PR simulations of non-stationary
particles, the above strategy is the only viable option.

4.2 EE View Point

Here we consider modeling of the average force that has been averaged over a large number
of moving particles, but under conditions of uniform random distribution. The level of particle
velocity fluctuation measured in terms of ReTpx and ReTpy will be strongly dependent on particle
Stokes number [38,43,45]. Since particle Stokes number has been defined as the ratio of particle-to-
fluid time scale, in a turbulent flow, a range of Stokes numbers can be identified for each particle,
with the Stokes number based on the integral scales being the smallest and the Stokes number
based on Kolmogorov eddies being the largest. Three different regimes can be identified [9, 29].
Regime-I corresponds to when Stokes number based on Kolmogorov scale is much smaller than
unity (i.e., Stk � 1) and in this regime particles nearly follow the fluid. Regime-III is characterized
by large particles whose Stokes number based on integral scale is larger than unity (i.e., StL � 1)
and in this regime particles are ballistic and do not respond to turbulent eddies. Then by definition,
in the intermediate Regime-II there exists a turbulent eddy scale that matches the particle time
scale, and therefore the regime-II particles are most responsive to flow turbulence. Based on this
classification of particle response, we may expect the dependence of ReTpx and ReTpy on particle
Stokes number to be non-monotonic and complex.

The force on a particle is dependent on the difference between the undisturbed fluid velocity
and the particle velocity. Thus, particle-to-particle variation in force is related to variation in
the relative velocity and not just on ReTfx, ReTfy, ReTpx and ReTpy. In regime-III where particle
motion is uncorrelated with the fluid velocity fluctuations, the variance of relative velocity variation
can be taken to be the sum of variance of undisturbed fluid velocity and the variance of particle
velocity variation. Since the fluid and particle velocity fluctuations are additive, we expect the
Eulerian average to increase substantially over the Lagrangian counterpart. In contrast, in regime-
I, the particle velocity fluctuation will be highly correlated with the undisturbed fluid velocity
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fluctuation. Therefore, even when these fluctuations are large, force variation within the averaging
volume will not be large and the Eulerian average will be nearly the same as the Lagrangian
counterpart. This difference in the average force of large and small Stokes number particles has
been well illustrated in the work of [38].

In an EE simulation that does not employ additional equations for granular temperature, ReTpx
and ReTpy must be parameterized in terms of local values of Re(xxx, t), φ(xxx, t) and the Stokes number
St(xxx, t), which can be chosen to be that based on Kolmogorov eddies. While the first two parameters
dictate the level of microscale fluid velocity fluctuation seen by the particles, the last parameter
accounts for the particle’s ability to respond to these fluid velocity fluctuations. Since particle-to-
fluid density ratio, ρp/ρf is an important parameter that dictates the particle Stokes number, the
density ratio has also been used for parameterization instead of the Stokes number [38,45].

In this work we will neither attempt to predict ReTpx and ReTpy as a function of the macroscale
parameters nor obtain it from a granular temperature equation. Instead, we will assume ReTpx and
ReTpy to be given (say as a percentage of Re0) and investigate the consequences of such particle
velocity fluctuation on the average drag force.

4.3 Enhanced Undisturbed Fluid Velocity Fluctuation

First, we investigate the influence of particle velocity fluctuation on particle-to-particle variation
in the undisturbed fluid velocity. Consider the ith particle surrounded by its neighbors in the
stationary case versus the non-stationary case. Let the instantaneous location of the neighbors be
the same and let the macroscale fluid velocity be the same in both cases. In the stationary case,
the perturbation flow induced by the jth neighbor depends only on the undisturbed fluid flow at its
location, whereas in the non-stationary case the perturbation flow induced by the jth neighbor will
additionally depend on the velocity of the jth particle.4 Changes in the magnitude and orientation
of the perturbation flow of all the neighbors, due to their motion, will impact the undisturbed flow
of the ith particle.

As a simple example consider an upstream neighbor of the ith particle, under both stationary
condition and when the upstream neighbor is moving farther upstream (or downstream) relative
to the ith particle, on a sufficiently rapid time scale. Due to its upstream (or downstream) motion,
the relative velocity and the perturbation flow of the neighbor will be stronger (or weaker) in the
non-stationary scenario. In turn, the wake effect of the upstream neighbor on the ith particle will
be stronger (or weaker). However, when we superpose the perturbation flow of all the neighbors,
and consider the resulting undisturbed fluid flow of a distribution of particles, it is not readily
apparent by how much the resulting distribution of undisturbed fluid flow will differ from that of
the stationary particles presented in Figure 2.

We therefore revisit the scenario of a random distribution of particles in a large triply periodic
box considered in section 3. As before, the random spatial location of the particles within the
box are chosen with uniform probability. The different volume fractions and Reynolds numbers
considered are the same as those presented in Table 1. Though the distribution of particles in each
realization remains the same as in the stationary counterpart, the particles are now in motion and
therefore the chosen particle locations represent their position at one time instant. A uniform mean

4Technically, if the velocity of the ith and the jth particle are the same, jth particle is considered stationary with
respect to the ith particle.

26



pressure gradient is applied along the mean flow direction (x-axis). Again the length scale of the
box filter is the same as the periodic box and as a result the macroscale quantities are homogeneous.

Each particle within the periodic box is given a random velocity, obeying the following proper-
ties: (i) The mean particle velocity is zero. In other words, the frame of reference is attached to the
mean particle motion. (ii) Each component of each particle’s velocity is a random variable of Gaus-
sian distribution. The rms values of the normalized particle velocity variation are given by ReTpx,
ReTpy and ReTpz. (iii) Each particle’s velocity is uncorrelated from that of all others. (iv) For now
we will assume particle velocity variation to be isotropic (i.e., ReTpx = ReTpy = ReTpz = ReTp).
Such Maxwellian particle velocity distribution has been considered by others [24,50]. The problem
is then characterized by three parameters: the macroscale Reynolds number Re0, the constant par-
ticle volume fraction φ0 and ReTp. PR simulations of this scenario have been considered by [24,46],
where a steady flow solution was obtained around a random distribution of particles. Though the
particles did not move in the simulation, a non-zero random velocity was applied as boundary
condition at each particle.

The microscale undisturbed velocity of each particle now depends on the precise arrangement
of its neighbors and their velocities. Again, the distributions of uuumic@i both along the flow direction
and along the transverse direction are of interest. Following (17) the microscale contribution to
undisturbed flow velocity is approximated by a superposition of surface averages of superposable
wakes of nearby neighbors. Normalized histograms of umic@i,x/U0 and umic@i,y/U0 are shown in
Figure 7 for the same three different combinations of Re0 and φ0 considered earlier in Figure 2 for
the stationary particles. The figure shows the results for the particular case when ReTp/Re0 = 0.5.
Also plotted as red lines in all the figures are the best fitting pdf of the histograms.

It can be observed that compared to the stationary case the level of particle-to-particle variation
in the undisturbed flow velocity has increased substantially. The increase is observed in both the
streamwise and the transverse components. The width of the distribution increases with Re0

and φ0. While the distributions are closely Gaussian in shape at the higher volume fraction, the
streamwise distribution follows a shifted-gamma distribution at lower volume fraction with positive
skewness. The enhanced asymmetric nature of the distribution at low volume fraction is due to
increased fore-aft asymmetry of the wake at finite Reynolds numbers. Plots similar to Figure 3
were considered to establish that there is no systematic correlation between the streamwise and
transverse components.

The microscale undisturbed velocity of all the N particles within the system are then used to cal-
culate the rms Reynolds number fluctuation as given in (26). Figure 8 shows plots of ReTfx/ReTfx0

and ReTfy/ReTfy0 for a range of macroscale Reynolds numbers. The three frames show the results
for three different volume fractions considered. Here ReTfx0 and ReTfy0 correspond to rms nor-
malized undisturbed fluid velocity fluctuation in the stationary particle limit. Thus, in Figure 8
the ordinate corresponds to increase in undisturbed fluid velocity fluctuation due to particle mo-
tion. In each frame the three different colors correspond to ReTp/Re0 = 0.1, 0.3 and 0.5. From
the figure it appears that the increase is independent of the macroscale Reynolds number and the
increase of transverse component is larger than the streamwise component. In the dilute limit of
φ0 → 0 we expect microscale contribution to undisturbed fluid velocity of a particle to approach
zero, due to lack of neighbor influence. Thus, in this limit ReTfx,ReTfy → 0, independent of the
magnitude of particle velocity fluctuation. At finite volume fraction, the effect of particle velocity
fluctuation appears to initially increase with volume fraction and saturate above φ0 ≈ 0.2 in the
case of streamwise component. In the case of transverse component the variation with volume
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fraction is not significant. It can also be noted that the increase in ReTfy is substantially larger
than in ReTfx. Thus, compared to frames (a) and (b) of Figure 4 of the stationary case, where
the ratio of streamwise to transverse component was much larger than unity, in the case of non-
stationary particles the streamwise and transverse undisturbed fluid velocity components begin to
approach each other with increasing particle velocity variation. This can be anticipated, since the
preferred orientation of the particle wakes along the x-direction in the case of stationary particles is
substantially modified with the introduction of random particle motion and isotropy is recovered.

4.4 Eulerian Force Model (Non-Stationary)

We now consider the Eulerian modeling of force averaged over the local filter volume for the
case of moving particles. The definition of Eulerian normalized average force given in (28) still
applies (without the subscript “0”, since particles are not stationary). We now proceed to apply
the best available model for the force of the ith particle. We assume FFFi to be well modeled by

FFFi = 3πµd (uuu@i − vvvi) ΦL
0 (Re@i, φ0) . (39)

Here both the Stokes drag and the function ΦL
0 are based on the relative velocity between the

undisturbed fluid flow and the particle velocity. The above expression is an approximation, since
it uses the Lagrangian correlation ΦL

0 even in the present scenario of non-stationary particles. We
recall that ΦL

0 was earlier defined in the limit of stationary particles. In fact, the observation in [28]
that their DNS force on the particles is larger than that predicted with the EE force model of [12]
suggests that ΦL under non-stationary condition is likely to be higher than ΦL

0 , at least for the
specific case that they considered. Nevertheless, it must be stressed that in the present approach
particle-to-particle variation in both the particle velocity and the undisturbed fluid velocity are
taken into account through the proper definition of relative velocity.

We now revisit the cases considered in Figures 7 and 8. Since the particle velocity is imposed
(as opposed to being decided by free motion), the correlation between particle velocity and the
undisturbed fluid velocity is zero. This lack of correlation is appropriate only in the case of large
inertia particles, which do not respond to fluid velocity fluctuations, or when particle dynamics is
dominated by inter-particle collisions. At low values of particle inertia, particle velocity will be
correlated with its undisturbed fluid velocity. We now use the model presented in (33) for ΦL

0 in
(39) and evaluate the Eulerian normalized average force given in (28). Figure 9 shows plots of
ΦE thus calculated for a range of Re0, for ReTp/Re0 = 0.0, 0.1, 0.3 and 0.5. The results for four
different values of φ0 = 0.0, 0.11, 0.21, and 0.45 are shown in different frames.

Also shown in the figures as black dash-lines are the corresponding plots of ΦL
0 as a function

Re0, which corresponds to the Lagrangian drag on an individual particle whose Reynolds number
and local volume fraction are Re0 and φ0. The red line corresponds to the stationary limit of zero
particle velocity and thus is identical to the plot of ΦE

0 . As was discussed in the context of Figure 5,
the difference is due to averaging over the stationary particles whose Reynolds number varies due
to variation in the undisturbed fluid velocity. In the limit of zero volume fraction ΦL

0 and ΦE
0 are

identical.
With increasing particle velocity variation we see that there is substantial increase in the Eu-

lerian average. This increase vanishes in the Stokes limit of Re0 → 0 and is amplified at finite
Reynolds number. In the zero volume fraction limit, since each particle is unaffected by all other
particles, the difference between ΦE and ΦL

0 is entirely due to particle velocity variation. Whereas
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at finite φ0 the increase in Eulerian average is both due to particle velocity variation and undis-
turbed fluid velocity variation. Such increase in drag due to added particle motion has previously
been reported based on the results of finite-Re PR simulations [24,46,50]. It must however be cau-
tioned that this increase is when particle velocity variation is uncorrelated with the undisturbed
fluid velocity variation. Under conditions of freely moving particles of low Stokes number, the
correlation between the fluid and particle velocity variation greately reduces the relative velocity
variation. In fact, as a result of correlation, average drag can fall below that of stationary limit as
illustrated in the cases considered in [38].

The Eulerian average force under stationary condition ΦE
0 (represented by the Red solid-line in

Figure 9) is the appropriate quantity that should be compared with the average drag as obtained
in the PR-DNS simulations of [12, 13, 44, 47, 51, 53]. In contrast, classic drag laws such as those
given in [20, 37, 49] are based on freely moving particles, and therefore should be compared to one
of the ΦE curves given in Figure 9 with the appropriate value of particle velocity fluctuation. It
should be cautioned that for a proper comparison, however, one must also include non uniform
distribution of particles and anisotropy in the nature of particle velocity variation. Nevertheless, it
is clear that the Eulerian average of a freely moving assembly of particles will be higher than that
obtained under stationary condition.

Figure 10 presents scatter plots of variation in the normalized streamwise force of a particle
away from its average as a function of the streamwise component of particle velocity. Here ΦL′ =
ΦL − 〈ΦL〉, where the angle brackets represent an average aver all the particles. The results are
plotted for the four volume fractions considered at Re0 ≈ 100 and in all cases ReTp/Re0 = 0.3.
These results are in good agreement with those shown in [46] based on their PR simulations. As
can be expected there is a negative correlation between the streamwise particle velocity and the
streamwise drag, since as particle velocity increases the relative velocity decreases. In the zero
volume fraction limit, there is very good correlation between the streamwise velocity variation and
the streamwise force, and the lack of perfect correlation is due to particle velocity variation along
the transverse directions. But the correlation between ΦL′ and ReTp/Re0 weakens at finite volume
fraction. This is due to the fact that the undisturbed velocity of each particle is influenced by
the particle velocity of its neighbors. In fact, as pointed out in [46] there are instances when the
streamwise component of particle velocity is positive (or negative), the corresponding effect on
streamwise force is positive (or negative). Clearly for such particles the increase (or decrease) in
streamwise drag must be due to an increase (or decrease) in the undisturbed fluid velocity.

4.4.1 A Simple Model of ΦE

We now present a simple model for the non-stationary Eulerian average force ΦE as a function
of the macroscale parameters Re0, φ0, ReTpx, and ReTpy. We obtain this relation by substituting
equation (39) into (28) and following the steps pursued in (36) to get

ΦE = ΦL
0 (Re0, φ0) +

[
1

2

∂2Φ̂L
0

∂Re2
@ix

]
0

Re2
Tx +

[
∂2Φ̂L

0

∂Re2
@iy

]
0

Re2
Ty . (40)

In obtaining the above, we have defined the mean square fluctuation in streamwise Reynolds number
to be Re2

Tx = 1
N

∑N
i=1(Re@ix − Re0)2 with a similar definition for the transverse component. We
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now use (37) to replace the terms within the square parenthesis to obtain

ΦE = ΦL
0 (Re0, φ0) + (ΦE

0 − ΦL
0 ) gx

(
ReTx

ReTfx0

)2

+ (ΦE
0 − ΦL

0 ) (1− gx)

(
ReTy

ReTfy0

)2

, (41)

where the fractional contribution to force enhancement from streamwise undisturbed fluid velocity
variation of the stationary configuration (i.e., gx) was defined in (37). The second and third terms
on the right hand side account for the increase in Eulerian average over the Lagrangian estimation
due to averaging of the nonlinear drag relation. Part of it comes from variation in the streamwise
relative velocity, represented by the second term, and part comes from variation in the transverse
component of relative velocity, represented by the third term. In the limit of stationary particles,
ReTx → ReTfx0 and ReTy → ReTfy0 and as a result according to the above relation ΦE will
correctly approach ΦE

0 . In the case of freely moving particles, the difference ΦE − ΦE
0 will depend

not only on Re0 and φ0, but also on how much streamwise and transverse relative velocity variations
within the averaging volume have amplified over their values for the stationary limit.

Relative velocity variation is due to both the undisturbed velocity variation and the particle
velocity variation. It can be readily shown that(

ReTx
ReTfx0

)2

=

(
ReTfx
ReTfx0

)2

+

(
ReTpx
ReTfx0

)2

− 2

(
ReTfpx
ReTfx0

)2

(
ReTy

ReTfy0

)2

=

(
ReTfy
ReTfy0

)2

+

(
ReTpy
ReTfy0

)2

− 2

(
ReTfpy
ReTfy0

)2

, (42)

where the fluctuation Reynolds numbers of undisturbed fluid velocity variation (ReTfx and ReTfy),
particle velocity variation (ReTpx and ReTpy) and their correlations have been defined in (21) to
(24).

The general expression (41) for the Eulerian force correlation ΦE has been mechanistically
developed with the intension of broad applicability in a wide variety of multiphase flows. However,
its utility clearly depends on our ability to model the three ratios that appear on the right hand
side of (42). The ratios ReTfx/ReTfx0 and ReTfx/ReTfx0 measure amplification of rms streamwise
and transverse undisturbed fluid velocity variation due to particle motion. Based on the results
presented in Figure 8 these ratios are larger than unity and the increase is more substantial for
the transverse component. These ratios, when taken to be approximately independent of Re0, are
shown in Figure 11 as a function of ReTpx/Re0. The results are presented for the three different
volume fractions considered. The second term of the streamwise component can be better quantified
by rewriting it as

ReTpx
ReTfx0

=
ReTpx/Re0

ReTfx0/Re0
. (43)

In the example considered in Figure 9 the numerator is an input whose value was varied from 0%
to 50%. The denominator pertains to the stationary particle case and its variation with Re0 and
φ0 was presented in Figure 4.

The correlation between particle and undisturbed fluid velocity variation represented by the last
term is quite important, since a positive correlation can reduce the additive effect of particle and
undisturbed fluid velocity variation. The results presented in Figure 9 are based on the assumption
of zero correlation employed in that example problem. This assumption is applicable for regime-III
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particles of large Stokes number which do not respond to any of the turbulent eddies. As a result,
the particle velocity variation is uncorrelated from their undisturbed fluid velocity variation. But
in other applications involving freely moving particles of smaller Stokes number, the correlation
will be non-zero and its contribution can be so large that the Reynolds number of relative velocity
fluctuation can decrease below that of stationary limit. This point is tested in Figure 12 where
we reconsider the problem studied in Figure 9. Earlier, each particle of the random distribution
was given a random velocity of Maxwellian distribution that was completely uncorrelated from
the undisturbed fluid velocity of the particle. In the present test, each particle of the distribution
is given a random velocity of Maxwellian distribution, whose correlation with the undisturbed
fluid velocity was systematically changed (i.e., C = 0.0, 0.25, 0.5, 0.75 and 1.0). The Eulerian
normalized average force ΦE for these cases are shown as solid and dash lines in Figure 12. Also
plotted in the figure are (i) ΦL(Re0) plotted as the black crosses and (ii) ΦE(Re0) plotted as the
blue crosses. It is clear from the figure that with increasing correlation, the Eulerian average drag
decreases, since particle-to-particle variation of relative velocity decreases. As can be expected,
under perfect correlation (i.e, C = 1.0) the deviation of undisturbed fluid velocity of each particle
from the average is perfectly compensated by the deviation of its particle velocity and results in
very little deviation in its Reynolds number from the average value of Re0. This is the reason why
the red dash line of C = 1.0 is in excellent agreement with the black crosses of ΦL(Re0). Thus,
under perfect correlation, the Eulerian normalized average force of freely moving particles can be
lower than that for a stationary system. Such behavior was observed in the simulations of [38]. It is
interesting to note that at a correlation of around 0.75, ΦE for the non-stationary system becomes
approximately the same as ΦE

0 .
The increase in normalized Eulerian average force due to particle motion can be explicitly

expressed using (41) as

ΦE − ΦE
0 = (ΦE

0 − ΦL
0 ) gx

(
Re2

Tx

Re2
Tfx0

− 1

)
+ (ΦE

0 − ΦL
0 ) (1− gx)

(
Re2

Ty

Re2
Tfy0

− 1

)
, (44)

which can be compared with prior predictions based on PR simulations by [24,43]. Tang et al. [43]
considered freely moving suspensions of particles of varying particle-to-fluid density ratio and pre-
dicted the increase in normalized drag to be proportional to ReTp. However the value of ReTp/Re0

realized in their simulations were quite small. The PR simulations of [24] closely match the example
problem considered here. They propose a model where the increase in Eulerian normalized average
force is expressed as proportional to Re1.49

Tp . The quadratic dependence of the model presented in
equation (41) is a consequence of the Taylor series expansion, and this scaling corresponds well
with the low Reynolds number model advanced in [50]. However, ΦE in (41) depends on change
in the Reynolds number based on relative velocity variation, for which ReTp is only one of three
contributors (see (42)). The Eulerian normalized average force may increase or decrease depending
on the relation between particle velocity variation and the undisturbed fluid velocity variation. The
results of [24,43] are useful to the configurations they studied.

The relation between the ΦE model given in (41) and the granular temperature equation must
be recognized. Particle velocity fluctuation as predicted by the granular temperature equation
is the key input. Particle velocity fluctuation in turn influences the distribution of undisturbed
fluid velocity fluctuation, and their correlation also depends on the response time of the particles.
The resulting mean hydrodynamic force on the particles as predicted by ΦE is then the source
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of fluid-mediated dissipation in the granular temperature equation. Following [50] we define non-
dimensional dissipation of granular temperature as

Rdiss =
1

9πµdv2
rms

1

N

N∑
i=1

FFFi · vvvi , (45)

where the velocity of the ith particle is vvvi, whose mean is chosen to be zero and the rms particle
velocity fluctuation is taken to the same along all three directions (i.e., vrms,x = vrms,y = vrms,z =
vrms). Plots of Rdiss as a function of Re0 are shown in Figure 13 for the three different volume
fractions and for the three different values of ReTp/Re0 = 0.1, 0.3 and 0.5. These results can be
compared with the corresponding results of φ0 = 0 limit. In this very dilute limit, the undisturbed
flow of each particle is simply the macroscale uniform flow and thus fluctuation in force is entirely
due to particle velocity variation. Furthermore, in the dilute limit, standard drag correlation
applies. With these facts and using Taylor series expansion, the leading order expression of Rdiss
can be obtained as

for φ0 = 0 : Rdiss ≈ −2− 0.3687Re0.687
0 , (46)

which can be compared with the results presented in Figure 13. In the dilute limit Rdiss is indepen-
dent of the ratio ReTp/Re0 and this lack of dependency appears to hold at finite volume fractions
at lower values of ReTp/Re0. A small increase in Rdiss can be notices at the high fluctuation level
of ReTp/Re0 = 0.5. The increase in Rdiss with increasing volume fraction is due to both increase
in mean drag as well as increase in the distribution of relative velocity due to undisturbed fluid
velocity fluctuations. Figure 13 applies only in case of uncorrelated undisturbed fluid and parti-
cle velocity fluctuations. We expect the magnitude of Rdiss to decrease in the case of low inertia
particles whose undisturbed fluid and particle velocity fluctuations will be correlated.

4.5 Lagrangian Force Model (Non-Stationary)

We will finally consider Lagrangian force model for use in EL simulations of freely moving
particles. Here again we distinguish between the two different EL approaches: EL-mac and EL-
mic. As seen in Figure 8, as a result of particle motion, even the variation in undisturbed fluid
velocity increases. Particle-to-particle variation in both the particle velocity and the undisturbed
fluid velocity contributes to enhanced variation in particle Reynolds number based on relative
velocity and in turn to larger variation in particle force. In the EL-mic approach, each particle is
informed not only of its velocity but also of the undisturbed fluid velocity of the particle, including
the microscale contribution of its neighbors. In other words, both vvvi and uuu@i are known for each
particle being tracked in the EL-mic approach. The force of the particle can then be easily evaluated
using (33).

In the case of EL-mac approach, only the macroscale component of the undisturbed flow is
available. As a consequence, particle-to-particle variation in undisturbed flow is greatly underesti-
mated. Furthermore, we can expect the particle velocity variation to be lower than in a PR-DNS
or EL-mic simulation. Therefore, similar to (39) we define the Lagrangian force on a particle as

FFFi = 3πµd (uuumac@i − vvvi) ΦLE(Remac@i, φ0) . (47)

The function ΦLE in the above expression is different from ΦL
0 that appears in (39), since it must

account for the effect of enhanced variation in relative velocity. In particular, just like ΦE , ΦLE

32



must also be a function of ReTpx. The consistency requirement can be enforced by substituting the
above into the right hand side of (28) and requiring that it be equal to the non-stationary Eulerian
average drag ΦE obtained in the previous section and presented in Figure 9. In other words, we
demand that the macro-Lagrangian force ΦLE when applied to individual particles in an EL-mac
simulation and averaged over the distribution of particles within the averaging volume should equal
the Eulerian average. This is an inverse problem which can be solved to obtain the correct macro-
Lagrangian force. Provided the averaging filter length is much larger then the particle size, we can
expect ΦLE to approach the Eulerian average force model ΦE .

5 Discussion and Conclusions

One of the new insight presented in this work is information on undisturbed fluid velocity of
a random distribution of particles subjected to a uniform macroscale flow. The undisturbed flow
of a particle is of fundamental importance since it controls both the undisturbed flow force (also
known as pressure gradient or Archimedes force) and the quasi-steady force. Hitherto there has
not been an easy way to calculate the undisturbed flow of a particle, since it requires a particle-
resolved simulation in the absence of that particle, but in the presence of all other particles. Here
we use the pairwise interaction extended point particle (PIEP) framework of [1,2,34] to evaluate the
undisturbed flow of each particle through superposition of the perturbation flow induced by all its
neighbors. This approach has allowed us the unique opportunity to obtain various statistics related
to undisturbed fluid velocity under conditions of both stationary and non-stationary particles.

In a random distribution of particles, even though the macroscale flow of all the particles is the
same, it is observed that the microscale undisturbed flow that arises due to the perturbation flow of
neighbors, varies substantially from particle to particle, and this in turn leads to large variation in
the hydrodynamic force exerted on the particles. Even in the case of stationary particles, there is
substantial particle-to-particle variation in both the streamwise and transverse components of the
undisturbed fluid velocity. The variation in the streamwise velocity component is much larger than
the variation in the transverse component. The variation as a percentage of the macroscale velocity
decreases with increasing macroscale Reynolds number. When particles are allowed to move and
given random velocity, the effect of particle motion is to increase the particle-to-particle variation in
the undisturbed fluid velocity of the particles. This increase is greater for the transverse component
than for the streamwise component. As a result, with increasing random particle motion, the
influence of the preferred direction of the macroscale flow decreases and as a result the distribution
of undisturbed fluid velocity fluctuation approaches isotropy.

Three different normalized forces have been defined for the evaluation of the hydrodynamic force
on the particle: ΦL is the Lagrangian normalized force on an individual particle that is suitable for
application in an Euler-Lagrange simulation, where particle-to-particle variation in the undisturbed
fluid velocity has been accounted for either in a deterministic or in a stochastic manner. ΦE is
the Eulerian normalized average force on all the particles within the averaging volume suitable for
application in an Euler-Euler simulation. ΦLE is the Lagrangian normalized force on an individual
particle that is suitable for application in an Euler-Lagrange simulation, where only the macroscale
undisturbed fluid velocity is used in calculating the particle force.

An important result of the present work is establishment of precise relations between these
different definitions of normalized force and how they are related to commonly used drag laws.
The drag laws developed based on PR-DNS results of flow over a stationary random array of
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Simulation Methodology Force Law (Stationary) Force Law (non-stationary)

Euler-Euler ΦE
0 = Eqn. (29) ΦE = Eqn. (41)

Euler-Lagrange-Micro ΦL
0 = Eqn. (33) ΦL ≈ Eqn. (33)

Euler-Lagrange-Macro ΦLE
0 ≈ Eqn. (29) ΦLE ≈ Eqn. (41)

Table 2: List of all the normalized force expressions presented in this work. Here it is assumed that
in the EL-macro approach the filter length scale is sufficiently larger than the particle size so that
it is essentially similar to the EE approach.

particles [12,13,44,47,51,53] are appropriate for application only as the Eulerian normalized average
force ΦE

0 , where the subscript “0” has been added to indicate its applicability for a stationary system
of particle. The drag laws developed based on experiments on freely sedimenting particles [20,37,49]
are appropriate as Eulerian normalized average force ΦE . This however includes the added effect of
particle-to-particle variation in the particle velocity and as a result ΦE for non-stationary particles is
typically larger than ΦE

0 and the difference depends on the magnitude of particle velocity variation.
While the Eulerian normalized average force correlation can be obtained from direct numerical

simulations and experiments, the corresponding Lagrangian normalized force expressions cannot
be directly obtained. Here we introduce the force consistency relation (see (32)) according to
which ΦL when properly defined and applied to each particle based on its relative velocity and
volume fraction, and averaged over all the particles within the averaging volume must equal ΦE .
Accordingly, while ΦL is only a function of the particle’s Reynolds number and volume fraction (as
defined in (1)), ΦE must be a function of not only the macroscale Reynolds number and volume
fraction, but also particle velocity variation Reynolds number (also rms volume fraction variation
in case of nonuniform particle distribution).

A summary of all the Eulerian and Lagrangian force correlations discussed in this work are
presented in Table 1. The stationary limit presented in the second column is the limiting value of
those presented in the third column. We have used the drag correlation of Tenneti & Subramaniam
[47] as an example of ΦE

0 . It can be replaced with similar correlations advanced by others [12,
13, 44, 51, 53] and following the steps outlined in section 3 the companion ΦL

0 can be derived, so
that they satisfy the force consistency relation. While the Lagrangian force correlation ΦL and its
stationary limit ΦL

0 depend only on Re0 and φ0, the EE and EL-mac correlations will additionally
depend on fluctuation Reynolds number that parameterizes particle velocity variation. In the table
it is assumed that in the EL-macro approach the filter length scale is sufficiently larger than the
particle size so that it is essentially similar to the EE approach.

Finally, although the above drag correlations offer significant improvement over the use of the
same standard drag in both the EL and EE simulations, several limitations can be identified. These
limitations can be properly addressed with further research. (i) Free motion of particles will result
in inhomogeneous distribution of particles. The effect of volume fraction variation, in addition
to particle-to-particle variation in the Reynolds number, must also be considered. This can be
done in a similar manner. (ii) Equation (41) for the Eulerian force correlation is intended for
broader use in a wide variety of EE and EL-mac simulations. However, its use requires knowledge
of streamwise and transverse undisturbed fluid velocity variation, particle velocity variation and
their correlation. Such comprehensive knowledge is currently lacking. This requires further study
with particle Stokes number (or particle-to-fluid density ratio) as an important parameter. (iii)
Another fundamental assumption of the above approach is that the Lagrangian force correlation
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of an individual particle under conditions of free motion, i.e ΦL, has been taken to be the same as
that under stationary condition. This assumption is more appropriate than assuming ΦE = ΦE

0 ,
since the former only ignores the secondary effect of neighbors on self-induced perturbation flow.
This assumption of ΦL = ΦL

0 was required, since we do not know the perturbation flow in terms
of superposable wakes under conditions of freely moving particles. Thus, establishing ΦL under
conditions of freely moving particles will be an important future step. (iv) Here we have ignored
the effect of particle rotation and the torque induced on the particle. The effects of particle rotation
on both the particle force and torque variation have been studied [38,52,53], and these effects must
be incorporated into future models.
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A Stress Divergence Maps

Similar to the superposition given in (16) superposition applies to the microscale undisturbed
pressure field as well

pmic,i(xxx, t) ≈
N−1∑
j=1

psw(xxx− xxxj ; Re@j , φ@j) . (48)

With the above definitions, the undisturbed velocity and pressure fields of each particle within the
system can be explicitly calculated, but such a calculation as a sum over all the neighbors can be
computationally expensive. In order to reduce the computational burden, we first note that uuumic,i
and pmic,i are not needed in themselves in the force calculation. As seen in (14), in the evaluation
of FFFmic,un,i only the volume average is needed, which can be approximated as

(−∇pmic,i + µ∇2uuumic,i)
Vi ≈

N−1∑
j=1

(−∇psw + µ∇2uuusw)j
Vi
, (49)

where ()j
Vi

stands for the stress divergence of the superposable wake of the jth particle being
averaged over the volume occupied by the ith particle. Due to the axisymmetric nature of the
superposable wake, this volume average depends only on the axial and radial distance between
the (i− j) particle pair, and on Re@j and φ@j , which determine the superposable wakes. Thus, in
addition to the superposable wake velocity fields, the above volume average of stress divergence can
be pre-computed and stored as axisymmetric maps for varying Re@j and φ@j . Once computed and
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stored, the appropriate volume average contribution from each neighbor can be read and summed
over as given in the above summation.

B Undisturbed Flow Force Parameterization in the EL Approach

The macro-portion of the undisturbed flow force, FFFmac,un,i, can be readily evaluated from the
macroscale velocity and pressure fields of the EL simulation (see the first term on the right hand
side of (14)). If the macroscale flow is nearly homogeneous (or slowly varying in xxx), then the
viscous contribution is generally very small and can be ignored. Furthermore, in the absence of
acceleration effects, the macroscale pressure gradient that drives the flow must exactly balance the
net force on all the particles [47,50], which yields

−∇p =
φ(xxx, t)FFF(xxx, t)

V
. (50)

In the above V is the volume of a particle and FFF is the average force. Substituting the above in
the expression for FFFmac,un,i (14) and ignoring the negligible contribution from the viscous stress we
identify the relation that under non-accelerating conditions the macroscale undisturbed flow force
on a particle is simply φ times the average force.

The micro-portion of the undisturbed flow force, FFFmic,un,i, has generally been ignored in EL
simulations. Even though the precise location of all the neighboring particles are known in an EL
simulation, FFFmic,un,i, has been ignored mainly due to the fact that there has not been a method to
obtain the neighbor-induced microscale perturbation flow. The pairwise interaction extended point-
particle (PIEP) model provides a rational approximation in terms of summation of superposable
wakes of nearby neighbors. According to the PIEP model FFFmic,un,i can be evaluated in terms of
the pre-computed force maps as given by the sum (49).

C Macro Undisturbed Flow Force Parameterization in the EE
Approach

The macro-portion of the undisturbed flow force can be evaluated by spatially averaging the
corresponding EL quantity to obtain

V
φp

∫
Ω
G(xxx− xxx′) Ip(xxx

′, t) (−∇p+ µ∇2uuu) dV ≈ V(−∇p+ µ∇2uuu) . (51)

Here uuu(xxx, t) and p(xxx, t) are macroscale velocity and pressure fields of the EE simulation. In obtaining
the right hand side it is assumed that the macroscale stress divergence is slowly varying and therefore
can be moved out of the integral. As in the EL approach, under non-accelerating conditions the
macroscale undisturbed flow force on a particle is simply φ times the average force. In the EE
approach it is not possible to evaluate the microscale undisturbed flow, since the precise location
and motion of the neighbors is unavailable.
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D Approximation of Average Drag

Towards the goal of obtaining an approximate evaluation of the average drag over all the
particles given in (30), we first rewrite it as

1

N

N∑
i=1

Re@ix

Re0
(1.0 + 0.15Re0.687

@i )︸ ︷︷ ︸
Φ̂

, (52)

where Re@ix = (uuu@i · eeex)d/ν is Reynolds number based on streamwise x-component of undis-
turbed fluid velocity at the ith stationary particle and furthermore we have the relation Re2

@i =

Re2
@ix + Re2

@iy + Re2
@iz. We now Taylor series expand the function Φ̂ in the triplet variables

(Re@ix,Re@iy,Re@iz) about the macroscale value of (Re0, 0, 0) as

Φ̂ =
[
Φ̂
]

0
+
[

∂Φ̂
∂Re@ix

]
0

(Re@ix − Re0) +
[

∂Φ̂
∂Re@iy

]
0

Re@iy +
[

∂Φ̂
∂Re@iz

]
0

Re@iz +[
∂2Φ̂

∂Re2@ix

]
0

(Re@ix−Re0)2

2 +

[
∂2Φ̂

∂Re2@iy

]
0

Re2@iy

2 +
[

∂2Φ̂
∂Re2@iz

]
0

Re2@iz
2 + · · · , (53)

where the notation [()]0 indicates the quantity within the brackets being evaluated at the macroscale
state. The partial derivatives are then evaluated and the linear terms are ignored in anticipation
that they make zero contribution when averaged over all the particles. With these we obtain

Φ̂ = (1.0 + 0.15Re0.687
0 ) +

(0.15)(0.687)

2 Re1.313
0

[
1.687(Re@ix − Re0)2 + 2Re2

@iy

]
+ · · · , (54)

As the final step we average the above expression over all the particles. When carrying out the
average, averages of (Re@ix−Re0) and Re@iy are zero and therefore these terms were ignored in the
above equation. We also recognize averages of (Re@ix − Re0)2 and Re2

@iy to be Re2
Tfx and Re2

Tfy.
We thus obtain the final result given in equation (31).
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Figure 5: A comparison of various evaluations of normalized drag plotted as a function of Reynolds
number and the frames (a), (b) and (c) correspond to φ0 = 0.11, 0.21, and 0.45, respectively.
Black-dash line: The standard drag evaluated as a function of macroscale Reynolds number Re0.
Red-dash line: The standard drag evaluated at each particle based on its Reynolds number Re@i

and then averaged. Blue-solid line: The Eulerian normalized average drag calculated using (29)
as a function of the macroscale Reynolds number Re0. Blue-crosses: The Lagrangian normalized
drag calculated using (33) as a function of the macroscale Reynolds number Re0. Red-solid line:
Eulerian normalized drag (29) inappropriately calculated at each particle based on its Reynolds
number Re@i and then averaged. Red-crosses: Lagrangian normalized drag (33) properly calculated
at each particle based on its Reynolds number Re@i and then averaged. Note that the red-crosses
are in excellent agreement with the blue-solid line.38



Figure 6: A plot of fractional contribution to the difference between the Eulerian and Lagrangian
normalized drag (i.e., between ΦE

0 and ΦL
0 ) from the particle-to-particle streamwise undisturbed

fluid velocity variation in the case of flow past a uniform random distribution of stationary particles.
The three lines correspond to Red: φ0 = 0.11, Blue: φ0 = 0.21, and Black: φ0 = 0.45.
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Figure 7: The results for the non-stationary case with the normalized particle velocity fluctuation
ReTp/Re0 = 0.5. The top row shows the normalized histograms of the streamwise component of
the surface averaged undisturbed velocity fluctuation at the particles. The bottom row shows the
normalized histograms of the transverse component of the undisturbed velocity fluctuation at the
particles. (a and d) Re0 = 100, φ0 = 0.11; (b and e) Re0 = 60, φ0 = 0.21; (a and d) Re0 = 30,
φ0 = 0.45; In all the plots the red curve shows the best fitting analytical distribution. In frame (a)
the best fit is a Gamma distribution, while in others a Gaussian fit is shown.
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Figure 8: Plot of increase in rms normalized streamwise and transverse undisturbed fluid velocity
fluctuation due to particle motion. The ratio ReTfx/ReTfx0 (star symbol) and ReTfy/ReTfy0

(circle symbol) are plotted, where ReTfx0 and ReTfy0 correspond to rms normalized microscale
undisturbed fluid velocity fluctuation in the stationary particle limit. In each frame the colors red,
blue, and black correspond to ReTp/Re0 = 0.1, 0.3, and 0.5, respectively. Frames (a), (b) and (c)
present results for φ0 = 0.11, φ0 = 0.21, φ0 = 0.45.

Figure 9: Eulerian normalized average force ΦE plotted as a function of macroscale Reynolds
number Re0. The black dash-line corresponds to ΦL

0 . The different solid lines in each frame
correspond to different values of particle velocity fluctuation. Red solid: ReTpx/Re0 = 0.0, Blue
solid: ReTpx/Re0 = 0.1, Green solid: ReTpx/Re0 = 0.3, and Black solid: ReTpx/Re0 = 0.5. In
all these cases the particle velocity fluctuation is isotropic (i.e, ReTpx = ReTpy). The four frames
correspond to (a): φ0 = 0.0, (b): φ0 = 0.11, (c): φ0 = 0.21, and (d): φ0 = 0.45.
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Figure 10: Scatter plot of normalized streamwise force deviation of a particle away from the average
as a function of the streamwise component of the particle velocity. The four frames correspond to
(a): φ0 = 0%, (b): φ0 = 0, 11, (c): φ0 = 0.21, and (d): φ0 = 0.45.
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Figure 11: Plot of the ratios ReTfx/ReTfx0 and ReTfy/ReTfy0 as a function of ReTpx/Re0 =
ReTpx/Re0 for the three different volume fractions. Colors red, blue, and black correspond to
φ0 = 0.11, φ0 = 0.21, φ0 = 0.45. Stars correspond to streamwise component and circles correspond
to transverse component.

Figure 12: Plot of ΦE investigating the effect of correlation between the particle velocity variation
with the undisturbed fluid velocity variation. Red-solid, black, blue, green and red-dash lines
correspond to correlation values of C = 0.0, 0.25, 0.5, 0.75 and 1.0, respectively. Also plotted in
the figure are ΦL(Re0) as the black crosses and ΦE(Re0) as the blue crosses. The results are for
φ0 − 0.21.
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Figure 13: Plot of −Rdiss versus Re0 for three different values of ReTp/Re0 = 0.1, 0.3 and 0.5.
Frames (a), (b) and (c) correspond to the three different volume fraction values.

44



References

[1] Akiki, G., Jackson, T., and Balachandar, S., “Pairwise interaction extended point-particle
model for a random array of monodisperse spheres,” Journal of Fluid Mechanics, Vol. 813,
2017, pp. 882–928.

[2] Akiki, G., Moore, W., and Balachandar, S., “Pairwise-interaction extended point-particle
model for particle-laden flows,” Journal of Computational Physics, Vol. 351, 2017, pp. 329–357.

[3] Akiki, G. and Balachandar, S., “Immersed boundary method with non-uniform distribution
of Lagrangian markers for a non-uniform Eulerian mesh,” Journal of Computational Physics,
Vol. 307, 2016, pp. 34–59.

[4] Akiki, G., Jackson, T., and Balachandar, S., “Force variation within arrays of monodisperse
spherical particles,” Physical Review Fluids, Vol. 1, No. 4, 2016, pp. 044202.

[5] Annamalai, S. and Balachandar, S., “Faxén form of time-domain force on a sphere in unsteady
spatially varying viscous compressible flows,” Journal of Fluid Mechanics, Vol. 816, 2017,
pp. 381–411.

[6] Bagchi, P. and Balachandar, S., “Shear versus vortex-induced lift force on a rigid sphere at
moderate Re,” Journal of Fluid Mechanics, Vol. 473, 2002, pp. 379–388.

[7] Bagchi, P. and Balachandar, S., “Effect of free rotation on the motion of a solid sphere in
linear shear flow at moderate Re,” Physics of Fluids, Vol. 14(8), 2002, pp. 2719–2737.

[8] Balachandar, S. and Eaton, J., “Turbulent dispersed multiphase flow,” Annual review of fluid
mechanics, Vol. 42, 2010, pp. 111–133.

[9] Balachandar, S., “A scaling analysis for pointparticle approaches to turbulent multiphase
flows,” International Journal of Multiphase Flow, Vol. 35, 2009, pp. 801–810.

[10] Balachandar, S., Liu, K., and Lakhote, M., “Self-induced velocity correction for improved drag
estimation in Euler-Lagrange point-particle simulations,” Journal of Computational Physics,
Vol. 376, 2019, pp. 160–185.

[11] Balachandar, S., Moore, C., Akiki, G. and Liu, K., “Particle-Resolved Accuracy in Euler-
Lagrange Simulations of Multiphase Flow Using Machine Learning and Pairwise Interac-
tion Extended Point-particle (PIEP) Approximation,” Theoretical and Computational Fluid
Dynamics, Submitted, 2020.

[12] Beetstra, R., van der Hoef, M. A., and Kuipers, J., “Drag force of intermediate Reynolds
number flow past mono-and bidisperse arrays of spheres,” AIChE journal, Vol. 53, No. 2,
2007, pp. 489–501.

[13] Bogner, S., Mohanty, S., and Rüde, U., “Drag correlation for dilute and moderately dense fluid-
particle systems using the lattice Boltzmann method,” International Journal of Multiphase
Flow, Vol. 68, 2015, pp. 71–79.

45



[14] Capecelatro, J. and Desjardins, O., “An Euler-Lagrange strategy for simulating particle-laden
flows,” Journal of Computational Physics, Vol. 238, 2013, pp. 1–31.

[15] Capecelatro, J., Desjardins, O., and Fox, R.O., “On fluidparticle dynamics in fully developed
cluster-induced turbulence,” Journal of Fluid Mechanics, Vol. 780, 2015, pp. 578–635.

[16] Capecelatro, J., Desjardins, O., and Fox, R.O., “Strongly coupled fluid-particle flows in vertical
channels. I. Reynolds-averaged two-phase turbulence statistics,” Physics of Fluids, Vol. 28(3),
2016, 033306.

[17] Esmaily, M., and Horwitz, J.A.K., “A correction scheme for two-way coupled point-particle
simulations on anisotropic grids,” Journal of Computational Physics, Vol. 375, 2019, pp. 960–
982.

[18] Fevrier, P., Simonin, O., and Squires, K.D., “Partitioning of particle velocities in gassolid
turbulent flows into a continuous field and a spatially uncorrelated random distribution: theo-
retical formalism and numerical study,” Journal of Fluid Mechanics, Vol. 533, 2005, pp. 1–46.

[19] Fukada, T., Takeuchi, S., and Kajishima, T., “Estimation of fluid forces on a spherical particle
for two-way coupling simulation based on the volume averaging,” International Journal of
Multiphase Flow, Vol. 113, 2019, pp. 165–178.

[20] Gidaspow, D., “Multiphase flow and fluidization: continuum and kinetic theory descriptions,”
Academic press, 1994.

[21] Gualtieri, P., Picano, F., Sardina, G., and Casciola, C.M., “Exact regularized point particle
method for multiphase flows in the two-way coupling regime,” Journal of Fluid Mechanics,
Vol. 773, 2015, pp. 520–561.

[22] He, L. and Tafti, D., “A supervised machine learning approach for predicting variable drag
forces on spherical particles in suspension,” Powder technology, Vol. 345, 2019, pp. 379–389.

[23] Horwitz, J.A.K., and Mani, A. “Correction scheme for point-particle models applied to a non-
linear drag law in simulations of particle-fluid interaction,” International Journal of Multiphase
Flow, Vol. 101, 2018, pp. 74–84.

[24] Huang, Z., Wang, H., Zhou, Q. and Li, T., “Effects of granular temperature on inter-phase
drag in gas-solid flows,” Powder Technology, Vol. 321, 2017, pp. 435–443.

[25] Iliopoulos, I., Mito, Y. and Hanratty, T.J., “A stochastic model for solid particle dispersion
in a nonhomogeneous turbulent field,” International Journal of Multiphase Flow, Vol. 29(3),
2003, pp. 375–394.

[26] Ireland, P. and Desjardins, O., “Improving particle drag predictions in Euler-Lagrange simula-
tions with two-way coupling,” Journal of Computational Physics, Vol. 338, 2017, pp. 405–430.

[27] Kim, S. and Karrila, S.J., “Microhydrodynamics: principles and selected applications,” Courier
Corporation, 2013.

46



[28] Kriebitzsch, S.H.L., Van der Hoef, M.A. and Kuipers, J.A.M., “Fully resolved simulation of
a gas-fluidized bed: a critical test of DEM models,” Chemical Engineering Science, Vol. 91,
2013, pp. 1–4.

[29] Ling, Y., M. Parmar, and Balachandar, S., “A scaling analysis of added-mass and history
forces and their coupling in dispersed multiphase flows,” International journal of multiphase
flow, Vol. 57, 2013, pp. 102–114.

[30] Liu, K., Lakhote, M., and Balachandar, S., “Self-induced temperature correction for inter-
phase heat transfer in Euler-Lagrange point-particle simulation,” Journal of Computational
Physics, Vol. 396, 2019, pp. 596–615.

[31] Ma, T., Yu, Y., Chen, X., and Zhou, Q., “Effect of anisotropic micro-structures on fluid-
particle drag in low-Reynolds-number monodisperse gas-solid suspensions,” AIChE Journal,
Vol. 66, 2020, e16910.

[32] Maxey, M. and Riley, J., “Equation of motion for a small rigid sphere in a nonuniform flow,”
Physics of Fluids, Vol. 26(4), 1983, pp. 883–889.

[33] Moore, W., Balachandar, S., and Akiki, G., “A hybrid point-particle force model that com-
bines physical and data-driven approaches,” Journal of Computational Physics, Vol. 385, 2019,
pp. 187–208.

[34] Moore, W. and Balachandar, S., “Lagrangian investigation of pseudo-turbulence in multiphase
flow using superposable wakes,” Physical Review Fluids, Vol. 4(11), 2019, pp. 114301.

[35] Pai, M.G., and Subramaniam, S., “A comprehensive probability density function formalism
for multiphase flows,” Journal of Fluid Mechanics, Vol. 628, 2009, pp. 181-228.

[36] Poustis, J.F., Senoner, J.M., Zuzio, D., and Villedieu, P., “Regularization of the Lagrangian
point force approximation for deterministic discrete particle simulations,” International
Journal of Multiphase Flow, Vol. 117, 2019, pp. 138–152.

[37] Richardson, J.F. and Zaki, W.N., “The sedimentation of a suspension of uniform spheres under
conditions of viscous flow,” Chemical Engineering Science, Vol. 3.2, 1954, pp. 65–73.

[38] Rubinstein, G., Ozel, A., Yin, X., Derksen, J., and Sundaresan, S., “Lattice Boltzmann simu-
lations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the
drag force,” Journal of Fluid Mechanics, Vol. 833, 2017, pp. 599–630.

[39] Sangani, A., Zhang, D., and Prosperetti, A., “The added mass, Basset, and viscous drag
coefficients in nondilute bubbly liquids undergoing smallamplitude oscillatory motion,” Physics
of Fluids A, Vol. 3(12), 1991.

[40] Schwarzkopf, J., Sommerfeld, M., Crowe, C., and Tsuji, Y., Multiphase flows with droplets
and particles, CRC press, 2011.

[41] Seyed-Ahmadi, A. and Wachs, A., “Microstructure-Informed Probabilistic Model for Hydro-
dynamic Forces in Particle-Laden Flows,” Bulletin of the American Physical Society, 2019.

47



[42] Su, M. and Zhao, H., “Modifying the inter-phase drag via solid volume fraction gradient for
CFD simulation of fast fluidized beds,” AIChE Journal, Vol. 63(7), 2017, pp. 2588–2598.

[43] Tang, Y., Peters, E.A.J.F. and Kuipers, J.A.M., “Direct numerical simulations of dynamic
gassolid suspensions,” AIChE Journal, Vol. 62(6), 2016, pp. 1958–1969.

[44] Tang, Y. Y., Peters, E. F., Kuipers, J. H., Kriebitzsch, S. S., and van der Hoef, M. M., “A
new drag correlation from fully resolved simulations of flow past monodisperse static arrays of
spheres,” AIChE journal, Vol. 61, No. 2, 2015, pp. 688–698.

[45] Tavanashad, V., Passalacqua, A., Fox, R.O., and Subramaniam, S., “Effect of density ratio
on velocity fluctuations in dispersed multiphase flow from simulations of finite-size particles,”
Acta Mechanica, Vol .230(2), 2019, pp. 469–484.

[46] Tenneti, S., Garg, R., Hrenya, C.M., Fox, R.O. and Subramaniam, S., “Direct numerical
simulation of gas-solid suspensions at moderate Reynolds number: Quantifying the coupling
between hydrodynamic forces and particle velocity fluctuations,” Powder Technology, Vol. 203,
2010, pp. 57–69.

[47] Tenneti, S., Garg, R., and Subramaniam, S., “Drag law for monodisperse gas–solid systems
using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres,”
International journal of multiphase flow, Vol. 37, No. 9, 2011, pp. 1072–1092.

[48] Thiam, E., Masi, E., Climent, E., Simonin, O., and Vincent, S., “Particle-resolved numerical
simulations of the gas-solid heat transfer in arrays of random motionless particles,” Acta
Mechanica, Vol. 230(2), 2019, pp. 541–567.

[49] Wen, C.Y. and Yu, Y.H., “Mechanics of fluidization,” Chemical Engineering Progress
Symposium Series, Vol. 62, 1966.

[50] Wylie, J.J., Koch, D.L. and Ladd, A.J.C., “Rheology of suspensions with high particle inertia
and moderate fluid inertia,” Journal of Fluid Mechanics, Vol. 480, 2003, pp. 95–118.

[51] Zaidi, A. A., Tsuji, T., and Tanaka, T., “A new relation of drag force for high Stokes number
monodisperse spheres by direct numerical simulation,” Advanced Powder Technology, Vol. 25,
No. 6, 2014, pp. 1860–1871.

[52] Zhou, Q. and Fan, L.S., “Direct numerical simulation of low-Reynolds-number flow past arrays
of rotating spheres,” Journal of Fluid Mechanics, Vol. 765, 2015, pp. 396–423.

[53] Zhou, Q. and Fan, L.S., “Direct numerical simulation of moderate-Reynolds-number flow past
arrays of rotating spheres,” Physics of Fluids, Vol. 27(7), 2015, pp. 073306.

[54] Zwick, D. and Balachandar, S., “A scalable Euler-Lagrange approach for multiphase flow
simulation on spectral elements,” International Journal of High Performance Computing
Applications, 2019.

48


