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The Mott metal-insulator transition in the Hubbard model is studied by constructing a dynamical
slave-boson mean-field theory in the limit of large lattice coordination number z that incorporates
the binding between doubly occupied (doublon) and empty (holon) sites. On the Mott insulating
side where all doublons and holons bond in real space into excitonic pairs leading to the charge gap,
the theory simplifies considerably to leading order in 1/

√
z, and becomes exact on the infinite-z

Bethe lattice. An asymptotic solution is obtained for a continuous Mott transition associated with
the closing of the charge gap at a critical value of the Hubbard Uc and the corresponding doublon
density nc

d, hopping χc

d and doublon-holon pairing ∆c

d amplitudes. We find Uc = UBR[1 − 2nc

d −√
z(χc

d + ∆c

d)] ≃ 0.8UBR, where UBR is the critical value for the Brinkman-Rice transition in the
Gutzwiller approximation captured in the static mean-field solution of the slave-boson formulation
of Kotliar and Ruckenstein. Thus, the Mott transition can be viewed as the quantum correction to
the Brinkman-Rice transition due to doublon-holon binding. Quantitative comparisons are made to
the results of the dynamical mean-field theory, showing good agreement. In the absence of magnetic
order, the Mott insulator is a U(1) quantum spin liquid with nonzero intersite spinon hopping that
survives the large-z limit and lifts the 2N -fold degeneracy of the local moments. We show that
the spinons are coupled to the doublons/holons by a dissipative compact U(1) gauge field in the
deconfined phase, realizing the spin-charge separated gapless spin liquid Mott insulator.

PACS numbers: 71.10.-w, 71.10.Fd, 71.27.+a, 74.70.-b

I. INTRODUCTION

A Mott insulator is a fundamental quantum electronic
state driven by large Coulomb repulsion1–3. It is pro-
tected by a nonzero energy gap for charge excitations,
but not associated with any symmetry breaking. A Mott
insulator differs from the other class of correlation-driven
insulators (e.g., magnets), better termed as Landau in-
sulators, whose origins require symmetry breaking order
parameters produced by the residual quasiparticle (QP)
interactions from a parent Fermi liquid state. The most
striking feature of a Mott insulator is the separation of
charge and spin degrees of freedom of an electron that
completely destroys the coherent QP excitations. A ubiq-
uitous example of Mott insulator is the quantum spin
liquid (QSL) where the spins are short-range correlated
but do not exhibit any symmetry-breaking long-range
order4–7. Overwhelming evidence for QSLs has been ob-
served in the κ-organics near the Mott metal-insulator
transition8–11 and in frustrated quantum magnets12–14

that are deep in the Mott insulating state.

The Mott insulator and the Mott transition are at the
heart of the strong correlation physics since it is con-
ceivable that the Mott insulator is the ultimate par-
ent phase of strong correlation from which many novel
quantum states can emerge. Indeed, strong correlation
often results in an insulating ground state with anti-

ferromagnetic long-range order, where the low-energy
physics is described by the Heisenberg type of spin mod-
els, which can be viewed as instabilities of the spin liquids
due to the condensation of low energy spin excitations
in the Mott insulator. In addition to QSLs and mag-
netic ordered states, doping a Mott insulator can lead to
the pseudogap phenomenon and unconventional high-Tc

superconductivity15–20.

The prototypical model for the Mott physics is the
half-filled single-band Hubbard model with purely on-
site Coulomb repulsion U . The Hilbert space is thus
a product of the local Hilbert space on a single lat-
tice site that consists of the doubly occupied (doublon),
empty (holon), and singly occupied (spinon) states. The
excitonic binding between the oppositely charged dou-
blons (D) and holons (H) is believed to play an essen-
tial role in describing the Mott insulator and the Mott
transition in strongly correlated Mott-Hubbard systems.
This idea was advocated sometime ago1,21–23 and studied
in the context of improved variational Gutzwiller wave
functions24,25. More recently, the idea has been made
more explicit in the field theory description26, improved
saddle-point solution27 of the slave-boson functional in-
tegral formulation of the Hubbard model28, and other
numerical29,30 approaches.

The slave-boson representation by Kotliar-Ruckenstein
(KR) is an exact functional integral formulation of
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the Hubbard model. By ignoring all intersite correla-
tions and condensing all bosons, the static saddle-point
solution28 correctly captures the result of Gutzwiller
approximation31 and gives rise to the Brinkman-Rice
(BR) metal-insulator transition at UBR

28,32,33 where the
renormalized mass of the QPs diverges. This is, however,
a rather crude approximation of the Mott transition,
since the interactions between the doublons and holons as
well as the incoherent excitations have been ignored. In
an effort to go beyond the Gutzwiller approximation and
the BR picture, an improved saddle point solution incor-
porating intersite correlations was constructed in Ref. 27
on two-dimensional bipartite lattices. It was elucidated
that the doublon-holon (D-H) binding governs the inco-
herent excitations and plays a key role in the Mott tran-
sition. On the Mott insulator side at large U , although
the D/H condensate vanishes, together with the disap-
pearance of the coherent QPs, the D/H density remains
nonzero, but with all the doublons bond to the holons.
With decreasing U , the D/H density increases and D-
H binding energy decreases. At a critical value Uc, the
D-H excitation gap closes and a D/H single-particle con-
densate starts to develop, marking the onset of the Mott
transition. Despite the success in capturing the essential
Mott physics, the intersite correlations such as the D-H
binding were incorporated in a uncontrolled way due to
the lack of a small parameter. The results obtained in
Ref. 27 are thus quantitatively unreliable.

In this work, we construct a dynamical slave-boson
mean-field (SBMF) theory in which the D-H binding and
hence the dynamical fluctuations can be studied system-
atically in a controlled manner (Section II). It turns out
that the theory simplifies considerably on the Mott insu-
lating side to leading order in 1/

√
z and becomes exact in

the large-z limit. We therefore study the Mott transition
from the large-U Mott insulating side in the large-z limit
(Section III.A). The asymptotic solution obtained on the
infinite-z Bethe lattice exhibits a continuous Mott transi-
tion from an insulating QSL to a correlated metal, where
the closing of the Mott gap and the onset of the QP co-
herence coincide at the same Uc. We demonstrate that
in the presence of D-H binding captured by the dynami-
cal SBMF theory, the BR transition is preempted by the
Mott transition since Uc < UBR, and the Mott insulator
is characterized by the incoherent upper and lower Hub-
bard bands separated by the Mott gap. A key feature of
the asymptotic solution is that on the insulating side of
the Mott transition, quantum spin fluctuations via the
intersite spinon correlations remains and survives in the
large-z limit. Various physical quantities are calculated
from simple and transparent expressions analytically at
the transition point Uc, as well as to leading order in the
Mott insulator at U > Uc. The results are quantitatively
compared to and found to agree well with those obtained
from the dynamical mean-field theory34 (DMFT) with
various numerical quantum impurity solvers, which is ex-
act in the large-z limit. In Section III.B, we derive the
effective action for the compact gauge field in the large-z

limit and show that the emergent dissipative dynamics
drives the gauge field to the deconfinement phase where
the spin-charge separated U(1) spin liquid is stable with
respect to the gauge fluctuations. The summary and dis-
cussions are presented in Section IV.

II. MODEL AND LARGE-z THEORY

We start with the half-filled Hubbard model given by

H = − t√
z

∑

〈ij〉,σ
c†iσcjσ + h.c.+ U

∑

i

ni↑ni↓, (1)

where the t-term describes electron hopping on a lattice
with z nearest neighbor (NN) bonds, and the U -term is
the on-site Coulomb repulsion. When the quantum states
are spatially extended, the NN single-particle correlator

scales with the coordination number as 〈c†iσcjσ〉 ∼ 1/
√
z.

As a result, the 1/
√
z-scaling for the hopping t in Eq. (1)

is necessary in order to maintain a finite kinetic energy in
the large-z limit35. This rescaling is used in the DMFT34.
To construct a strong-coupling theory that is nonper-

turbative in U , Kotliar and Ruckenstein28 introduced a
spin-1/2 fermion fσ and four slave bosons e (holon), d
(doublon), and pσ to represent the local Hilbert space
for the empty, doubly-occupied, and singly occupied sites

respectively: |0〉 = e†|vac〉, | ↑↓〉 = d†f †
↓f

†
↑ |vac〉, and

|σ〉 = p†σf
†
σ|vac〉. The physical Hilbert space is obtained

under the local constraints for the completeness

e†iei +
∑

σ

p†iσpiσ + d†idi = 1, (2)

and the consistency

f †
iσfiσ = p†iσpiσ + d†idi. (3)

The Hubbard model is thus faithfully represented by

H = − t√
z

∑

〈ij〉,σ
Z†
iσZjσf

†
iσfjσ + h.c.+ U

∑

i

d†idi, (4)

where the composite bosonic operator

Ziσ = L
−1/2
iσ (p†iσ̄di + e†ipiσ)R

−1/2
iσ̄ , (5)

is introduced for the bookkeeping purpose, so as to make
the following derivations more transparent. The opera-

tors Liσ = 1− d†idi − p†iσpiσ and Riσ̄ = 1− e†iei − p†iσ̄piσ̄
should be understood as projection operators for hard-
core bosons with unit eigenvalues, and the choice of the
−1/2 power in Eq. (5) reproduces the Gutzwiller approx-
imation at the level of the static saddle point28.
Unlike fermions that subject to Pauli exclusion prin-

ciple, the bosons have a remarkable property: a macro-
scopically large number of them can condense into a sin-
gle quantum state. Thus the Ziσ-boson can be decom-
posed into a single-particle condensate part Ziσ,0 and
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an uncondensed “normal” or fluctuating part Z̃iσ, i.e.,

Z
(†)
iσ = Ziσ,0 + Z̃

(†)
iσ , and similarly for the slave bosons.

Consequently, the single-particle correlator of Z-bosons
has two contributions

〈Z†
iσZjσ〉 = Ziσ,0Zjσ,0 + 〈Z̃†

iσZ̃jσ〉, (6)

where the first term comes from the single-boson con-
densate and does not scale with the coordination num-
ber z or the distance rij = |ri − rj | between site i and

j. The second term 〈Z̃†
iσZ̃jσ〉 comes from the uncon-

densed fluctuating bosons and decreases with increasing
z and rij according to z−rij/2. More explicitly, on the

NN bonds, Ziσ,0Zjσ,0 ∼ 1, whereas 〈Z̃†
iσZ̃jσ〉 ∼ 1/

√
z.

As a result, the kinetic hopping energy of uncondensed
bosons is of higher order by 1/

√
z than that of the con-

densed bosons, and thus negligible in the large-z limit
and the Hamiltonian in Eq. (4) reduces to the static
saddle point solution characterized by the single-particle
condensation of all the slave bosons28. Thus, taking the
large-z limit this way results in the static SBMF theory
which is equivalent to the Gutzwiller approximation. The
BR metal-insulator transition takes place when the con-
densate density of Z-boson is driven zero by the vanishing
of the D/H density for U > UBR, which is equivalent to
having a divergent effective mass for the QPs.
In order to include the effects of the fluctuating Z-

bosons, it is necessary to treat the contributions from
the condensed and uncondensed bosons on equal foot-
ing. As pointed out explicitly in the formulation of the
bosonic DMFT36, this can be achieved by different rescal-
ings of the bosonic hopping amplitudes for the conden-
sate and the fluctuating parts. Utilizing this rescaling for
the bosons, the slave-boson formulation of the Hubbard
model in Eq. (4) is rewritten as

H =− t√
z

∑

〈ij〉,σ

(

Ziσ,0Zjσ,0 +
√
zZ̃†

iσZ̃jσ

)

f †
iσfjσ

+ h.c.+ U
∑

i

d†idi. (7)

Since the NN correlator for the fluctuating bosons

〈Z̃†
iσZ̃jσ〉 ∼ 1/

√
z, it contributes to the hopping inte-

gral on equal footing as the condensed part. On account

of the fermion correlator 〈f †
iσfjσ〉 ∼ 1/

√
z, this lead to a

finite kinetic energy coming from the uncondensed and
fluctuating bosons beyond the Gutzwiller approximation
or the static SBMF theory in the large-z limit.
The rescaled Hamiltonian Eq. (7) has a remarkable

property that it simplifies considerably on the Mott in-
sulator side where the D/H single-particle condensate
vanishes, i.e. di0 = ei0 = 0, which implies Zi0 = 0 by
Eq. (5). As a result, the kinetic energy solely comes from
the uncondensed bosons accompanied by the back-flow
of the fermions between the neighboring sites, which is
a signature of electron fractionalization in the Mott in-
sulating state. To see that the electrons must be inco-
herent, it is instructive to note that since the correlators

of the f -fermion and the Z-bosons both scale as 1/
√
z,

the electron intersite correlator 〈c†iσcjσ〉 ∼ 1/z, which is
completely different from that of the coherent QP hop-
ping behavior on the metallic side, yet contributes to a
finite kinetic energy in this large z-limit.
We thus study the Mott transition from the Mott insu-

lating side at large U > Uc. The absence of D/H conden-

sate leads to Z̃iσ = L
−1/2
iσ (piσ̄,0di + e†ipiσ,0)R

−1/2
iσ̄ , where

di and ei are the fluctuating D/H having a nonzero den-

sity nd = ne = 〈d†idi〉 = 〈e†iei〉 6= 0. The piσ bosons
representing single-particle occupation condense into c-

numbers with p
(†)
iσ = p0 in the absence of magnetism.

Furthermore, the operators Liσ and Riσ contained in
Z̃iσ should not introduce additional intersite correlations
to leading order in 1/

√
z, in contrast to uncontrolled

saddle point approximations with D-H binding in two
dimensions27. They can thus be written in terms of the
local densities as Liσ = 1−nd

i−np
iσ and Riσ = 1−ne

i−np
iσ̄,

with np
iσ = 〈p†iσpiσ〉 = p20. The local constraints Eqs (2-3)

thus ensure Liσ = Riσ = 1/2 in paramagnetic phases at
half-filling. Hence, on the Mott insulating side,

Z̃iσ = 2p0(di + e†i ), (8)

to leading order in 1/
√
z and the Hamiltonian in Eq. (7)

becomes

H =− 4p20t
∑

〈ij〉
(d†idj + e†jei + eidj + d†ie

†
j)f

†
iσfjσ

+ h.c.+ U
∑

i

d†idi. (9)

It is straightforward to write down the path integral of
the model, with the detailed derivation provided in the
Appendix. The condensation of the pσ bosons collapses
two of the operator constraints in Eqs (2-3) into consis-
tency equations for particle densities nd + p20 = nf

σ. The
remaining one can be written as

e†iei − d†idi +
∑

σ

f †
iσfiσ = 1, (10)

which corresponds to the unbroken internal U(1) gauge
symmetry and specifies the gauge charges of the particles.
Eq. (10) shows that increasing the spinon number by one
must be accompanied by either destroying a holon or cre-
ating a doublon at the same site. The partition function
can be written down as an imaginary-time path integral

Z =

∫

D[f †, f ]D[d†, d]D[e†, e]D[a0, a]Dλe−
∫

β

0
Ldτ ,

(11)
with the Lagrangian

L =
∑

i

[

d†i (∂τ − ia0)di + e†i (∂τ + ia0)ei

+ f †
iσ(∂τ + ia0)fiσ

]

−Hf −Hb (12)

+
∑

i

[

iλi(d
†
idi + e†iei + 2p20 − 1)− U/2

]

,
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where λi is a Lagrangian multiplier. The decoupled
fermion and boson Hamiltonian19 are given by

Hf =− tf√
z

∑

〈i,j〉
eiaijf †

iσfjσ + h.c.+
U

2

∑

iσ

f †
iσfiσ, (13)

Hb =− tb√
z

∑

〈i,j〉
e−iaij (e†jei + d†idj + eidj + d†ie

†
j)

+ h.c.+
U

2

∑

i

(d†idi + e†iei), (14)

with

tf = 8tp20
√
z(χd +∆d), tb = 8tp20

√
zχf . (15)

In a stationary state, χd = 〈d†idj〉 = 〈e†jei〉 is the

quantum average of the D/H nearest neighbor hopping,

χf = 〈f †
iσfjσ〉 the spinon hopping per spin, and ∆d =

〈d†ie
†
j〉 = 〈eidj〉 is the D-H binding order parameter. In

Eqs (12-14), the spinons and the D/H are coupled by the
emergent U(1) gauge fields a0 and aij associated with the
constraint in Eq. (10). Physically, the instantons of this
compact gauge field correspond to the tunneling events
where the spinons and D/H tunnel in and out of the lat-
tice sites37.

III. MOTT TRANSITION AND SPIN LIQUID

MOTT INSULATOR

A. Asymptotic solution for Mott transition

We will first obtain the stationary state solution with
a0 = aij = 0, and then study the properties of the gauge
field fluctuations. Eq. (13) shows that the spinon hop-
ping amplitude is tf/

√
z where tf defined in Eq. (15)

is proportional to the D/H intersite correlations. We
will show that the latter leads to a renormalized nar-
row spinon band with a bandwidth on the order of the
exchange coupling J ∼ t2/U in the large U limit. The
spinon kinetic energy per site is Kf = (tf/t)K0 where

K0 = 2
∫D

0 ρ0(ω)ωdω is that for noninteracting electrons

with hopping t/
√
z and ρ0 is the corresponding semicir-

cle density of states ρ0(ω) = 2
πD

√

1− (ω/D)2 on the

infinite-z Bethe lattice38 with a half-bandwidth D = 2t.
Note that bothD and t are order one quantities, since the
1/

√
z factors in Eqs (13) and (14) are dynamically gener-

ated by the NN intersite correlators (χd,∆d, χf ) ∼ 1/
√
z

in Eq. (15) where tb and tf are of order one. Thus,
K0 = 8t/3π = 4D/3π and Kf = 8tf/3π. Since Kf

can also be written as Kf = 4tf
√
zχf , we obtain read-

ily χf = 1√
z

2
3π , independent of U . The boson hopping

parameter tb in Eq. (15) is thus given by tb = 16p20t/3π,
which is on the order of t. Hence, the spectrum of charge
excitations residing in the D/H sector has a bandwidth
on the order of the bare electron bandwidth, giving rise to
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FIG. 1: (color online) The doublon/holon energy spectrum
(a) and the corresponding spectral density of states (b) for
different U .

the broad incoherent spectral weight induced by strong
correlation.
From Eqs (12) and (14), the stationary state bosonic

Hamiltonian in the D/H sector is

HD/H=

∫ D

−D

dωρ0(ω)
[

d†ω , eω
]

[

εω −∆ω

−∆ω εω

][

dω
e†ω

]

, (16)

where εω = U
2 + λ − tb

t ω, ∆ω = tb
t ω are the D/H ki-

netic and pairing energies; λ = 〈iλ〉. Diagonalizing HD/H

by Bogoliubov transformation produces two degenerate
branches for the D/H excitations,

Ωω =
√

ε2ω −∆2
ω. (17)

The Mott insulator is thus an excitonic insulator and the
Mott gap is given by the charge gap in Ωω,

GMott(U) = 2ΩD = 2

√

(

U

2
+ λ

)(

U

2
+ λ− 4tb

)

. (18)

The physical condition for a real Ω requires U ≥ 8tb−2λ
and the equal sign determines the critical Uc for the Mott
transition where GMott(Uc) = 0.
Minimizing the energy leads to the self-consistent

equations, p20 = 1
2 − nd, λ = 4K0

√
z(χd +∆d), and

nd =
1

2

∫ D

−D

(

εω
Ωω

− 1

)

ρ0(ω)dω, (19)

√
zχd =

1

2D

∫ D

−D

εω
Ωω

ωρ0(ω)dω, (20)

√
z∆d =

1

2D

∫ D

−D

∆ω

Ωω
ωρ0(ω)dω. (21)

Eq. (19) shows that the nonzero D/H density is entirely
due to the quantum fluctuations above the Mott gap in
Ωω for U > Uc. Lowering U toward Uc, GMott must
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reduce to host the increased D/H density until GMott = 0
at U = Uc where the D/H condensation emerges and,
as we shall shown, the continuous Mott transition takes
place.
Solving these equations self-consistently, we obtain the

properties of the Mott insulator and the Mott transition.
The D/H excitation spectrum is plotted in Fig. 1a, show-
ing the closing of the Mott gap as U is reduced toward
Uc. Note that the calculated spectral density of states
ND/H(Ω) shown in Fig. 1b vanishes quadratically upon
gap closing, which ensures that the Mott transition is
continuous at zero temperature.

1. Critical properties at Mott transition

Remarkably, the critical properties of the transition
can be determined analytically. First, setting the Mott
gap GMott(Uc) = 0 gives

Uc = 8tcb − 2λc, (22)

where the script c denotes the critical values of the cor-
responding quantity at the transition point. Next, us-
ing the expressions for tb in Eq. (15) and λ given above
Eq. (19), we obtain

Uc = UBR[1− 2nc
d −

√
z(χc

d +∆c
d)], (23)

where UBR = 8K0 = 32D/3π is the critical value for
the BR transition on the Bethe lattice and (nc

d, χ
c
d,∆

c
d)

are the critical values of the doublon density, doublon
hopping, and the D-H binding, respectively. Eq. (23)
reveals the much desirable connection between the Mott
transition and the BR transition. It shows that the Mott
transition can be viewed as the quantum correction to
the BR transition due to D-H binding. Since Uc < UBR,
the BR transition is preempted by the Mott transition
and unobservable in the Hubbard model.
At U = Uc, it is straightforward to calculate the

D/H kinetic and pairing energies in Eq. (16) to obtain
(εcω,∆

c
ω) = (1− 2nc

d)
8D
3π (2− ω

D , ω
D ), such that the critical

D/H excitation spectrum in Eq. (17) becomes

Ωc
ω = (1− 2nc

d)
16D

3π

√

1− ω

D
. (24)

The spectrum is independent of χd and ∆d and agrees
with the one shown in Fig. 1a at U = 2.71D. Further-
more, the ratios εcω/Ω

c
ω and ∆c

ω/Ω
c
ω that enter Eqs (19-

21) are simple universal functions such that these inte-
grals can be evaluated analytically to obtain the critical
quantities at the Mott transition,

nc
d =

12
√
2− 5π

10π
≃ 0.040 (25)

√
zχc

d =
2

35π

√
2 ≃ 0.026 (26)

√
z∆c

d =
22

105π

√
2 ≃ 0.094. (27)

0
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FIG. 2: (color online) Mott insulator in the large-z limit of the
dynamical SBMF theory (d-SBMF). (a) The doublon density
as a function of U . (b) The Mott gap in the charge sector
as a function of U . The DMFT results obtained using dif-
ferent impurity solvers are also shown for comparison (data
from Ref.38 and 39): quantum monte carlo (QMC), exact di-
agonalization (ED), iterative perturbation theory (IPT), and
dynamical density matrix renormalization group (DMRG).

Inserting these values into Eq. (23), we obtain the critical
Hubbard interaction for the Mott transition,

Uc ≃ 0.80 · UBR ≃ 2.71D, (28)

at which the charge gap closes and the QP coherence
emerges with the D/H condensate simultaneously. It is
interesting to note that Uc is close in value to the one ob-
tained in an improved Gutzwiller projected wavefunction
approach41.

2. Doublon density and Mott gap for U > Uc

In Figs 2a and 2b, the calculated doublon density
and Mott gap are plotted in red solid lines as a func-
tion of U/D on the insulating side of the Mott tran-
sition. Various single-site DMFT results38–40 are also
plotted in Fig. 2 for comparison solely for the purpose
of benchmarking the results in the charge sector, de-
spite the different large-z limit and the continuous Mott
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transition to a spin liquid at a single Uc. These zero
temperature ground state properties are known to be
difficult to obtain reliably in the DMFT and near the
Mott transition, as reflected in the discrepancies between
the results obtained using different quantum impurity
solvers38. Fig. 2a shows that the doublon density decays
algebraically with increasing U . Indeed, Eqs (19-21) can
be solved analytically to obtain the large U behaviors

nd =

(

8

3π

)2
t2

U2
+O

(

t

U

)4

, (29)

√
zχd = 4

(

8

3π

)3
t3

U3
+O

(

t

U

)5

, (30)

√
z∆d =

4

3π

t

U
+O

(

t

U

)3

. (31)

The kinetic and potential energies deep in the Mott in-
sulator can be readily obtained from the above equa-

tions, with Ekin = −2( 8
3π )

2 t2

U + O( t4

U3 ) and Epot =

( 8
3π )

2 t2

U +O( t4

U3 ). Therefore, the energy of the Mott in-

sulator E = −( 8
3π )

2 t2

U + O( t4

U3 ), for U > Uc. In Fig. 3,
the evolution of (nd,

√
zχd,

√
z∆d) as a function of D/U

is shown on a log-log plot. It can be seen that the gen-
eral self-consistent solutions of Eqs (19-21) represented
by the solid lines merges with the corresponding dashed-
lines describing the asymptotic large-U behaviors given
in Eqs (29-31). Thus, the holons and doublons are always
present at any U . The binding of the opposite charges
on the energy scale of the Mott gap GMott(U) makes it
possible to treat them as localized quantum defects in
the Heisenberg model description of the physics on the
energy scale of the exchange coupling J , provided that
U is large enough such that GMott(U) ≫ J . Note that√
z∆d ≫ nd ≫ √

zχd in the large-U regime. As a con-
sequence, the large-U physics of the spin-liquid Mott in-
sulator is controlled by D-H binding. We will come back
to the physical significance of the latter shortly.

As U is reduced towards Uc, the calculated doublon
density nd in Fig. 2a approaches and merges at Uc

smoothly with those obtained for U < Uc by the DMFT
using the zero-temperature iterative perturbation theory
(IPT) and exact diagonalization (ED) impurity solvers.
This is reassuring since the large-z limit used in the
DMFT is both natural and appropriate for the Hub-
barrd model on the metallic side of the Mott transi-
tion. The critical behavior of the Mott gap near Uc can
also be obtained analytically from Eq. (18), GMott(U) =
α
√
U − Uc, α = 2

√

2tcb ≃ 2.61
√
t, where the square-root

singularity is clearly seen in Fig. 2b. The Mott gap
increases with U and approaches that obtained in the
DMFT using ED impurity solver and exhibit the asymp-
totic behavior in the large-U limit GMott(U ≫ D) = U
seen from Eq. (18).

0.05 0.1 0.15 0.2 0.25 0.3 D/U
c

D/U

10
-4

10
-3

10
-2

10
-1

n
d

zχ
d

√

√

z∆
d

FIG. 3: (color online) Evolution of the doublon density nd,
D/H hopping

√
zχd, and D-H binding

√
z∆d as a function of

D/U on a log-log plot in the Mott insulating state. Solid lines:
fully self-consistent solutions of Eqs (19 -21). Dashed lines:
asymptotic solutions in the large-U limit given in Eqs (29-31).
The vertical dotted line indicates the critical D/Uc ≃ 0.37.

3. Spectroscopy of spin liquid Mott insulator

Figs 4a and 4b show the spectroscopic properties on
the Mott insulating side with comparison to the corre-
sponding DMFT results. They are obtained by calculat-
ing the local electron Green’s function

Gσ(τ) = −〈Tτciσ(τ)c
†
iσ(0)〉 = Gf

σ(τ)GZ (τ), (32)

where Gf
σ and GZ are the corresponding local Green’s

functions of the spinon and the Z-boson (linear com-
binations of the D/H). In Matsubara frequency space,
Eq. (32) amounts to a convolution

Gσ(iωn) =
∑

iνn

Gf
σ(iωn − iνn)GZ(iνn) (33)

of the spinon and the D/H local Green’s functions27

Gf
σ(iωn) =

∫

dǫρ0(ǫ)G
f
σ(ǫ, iωn), (34)

GZ(iνn) =

∫

dǫρ0(ǫ)GZ(ǫ, iνn). (35)

The electron spectral density is given by Nσ(ω) =
− 1

π ImGσ(iωn → ω+i0+). Fig. 4a shows Nσ(ω) obtained
at U = 4D, exhibiting the upper and the lower Hub-
bard bands separated by the Mott gap, in broad semi-
quantitative agreement with the DMFT results obtained
by IPT and the more recent dynamical density matrix
renormalization group (DMRG) impurity solvers38,39.
The spectral density of the spinons Nf

σ (ω) also shown
in Fig. 4a is, on the other hand, gapless and contributes
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FIG. 4: (color online) Spectroscopy of the Mott insulator in
the large-z limit of the dynamical SBMF theory (red lines) at
U = 4D. (a) The spectral density of states. Thin solid line:
spinon density of states. (b) The real and imaginary parts
of the electron self-energy. Inset: Real part of self energy
on log-log plot, showing the 1/ω dependence. The DMFT
results obtained at U = 4D using the zero temperature IPT
(open squares)38 and the dynamical DMRG (open circles)39

impurity solvers are also shown for comparison.

to the thermodynamic properties of the spin liquid at low
temperatures. The spinon half bandwidth is Df = 2tf
in the large-z limit, where tf is the spinon hopping inte-
gral given in Eq. (15). Let’s consider the physics when
U is large. In this case, tf can be readily evaluated using
the solutions for (nd,

√
zχd,

√
z∆d) obtained in Eq. (29-

31). Note that since
√
z∆d ∝ t/U ≫ √

zχd in the large-
U limit, it dominates the contributions to tf and leads

to tf = 4
3π

4t2

U . Thus, the spinon hopping amplitude
and bandwidth are controlled by the exchange coupling
J , capturing the physics of the gapless U(1) spin liquid
phase in the effective Heisenberg model. Moreover, the
analysis shows that the origin of the exchange coupling
J on the insulating side of the Mott transition is inti-
mately connected to the physics of D-H binding in the
Hubbard model. We note in passing that these properties
of the Mott transition and Mott insulator are inaccessible
to Gaussian fluctuations around the Kotliar-Ruckenstein
saddle point governing the putative BR transition at

large U42,43.
The central quantity in the large-z limit is the electron

local self-energy Σ(ω). It can be extracted by casting
the local electron Green’s function in Eq. (33) into the
standard form in terms of the self-energy,

Gσ(ω) =

∫ D

−D

dǫρ0(ǫ)
1

ω − ǫ− Σ(ω)
. (36)

The calculated real part (ReΣ) and imaginary part
(ImΣ) of the electron self-energy in the current dynam-
ical SBMF theory are plotted in Fig. 4b as a function
of ω at U = 4D. For comparison, the DMFT results ob-
tained using the zero temperature IPT and the dynamical
DMRG impurity solvers are also shown at the same value
of U = 4D38,39. Remarkably close agreement can be seen
between both the real and the imaginary part of the self-
energies. Moreover, inside the Mott gap, the real part of
the self-energy shows the scaling behavior ReΣ(ω) ∝ 1/ω
as shown on the log-log scale in the inset of Fig. 4b in
agreement with the DMFT38.
We note that, while the theory in the large-z limit

amounts to two static mean-field theories for the spin-
1/2 fermion fiσ and the slave bosons, it captures the
incoherent excitations of the physical electrons due to
the dynamical fluctuations, since the Green’s function of
the physical electron ciσ involves the convolution of those
of the fiσ-fermions and the slave bosons, as shown in Eqs.
(33-35), resulting in a dynamical self-energy in Eq. (36).
For these reasons, the theory is termed as the dynamical
SBMF theory in this paper.

B. Gauge field dynamics and deconfinement

The emergence of the spin-liquid Mott insulator with
gapless spinon excitations requires spin-charge separation
and is stable only if the gauge field that couples them in
Eqs (12-14) is deconfining. To derive the gauge field ac-
tion, we integrate out the matter fields using the hopping
expansion44. To leading order in 1/z, the low energy ef-
fective gauge field action is given by45,

Seff = − η

zπ2

∑

〈i,j〉

∫ β

0

dτ1

∫ β

0

dτ2
cos (aij − aij(τ2))

(τ1 − τ2)2

+
1

zC

∑

〈i,j〉

∫ β

0

dτ(∂τaij)
2, (37)

where the second term comes from integrating out the
gapped D/H and corresponds to charging with C the
“charging energy” of a link. In the large-U limit, C ∝
U3/t2. In the language of the U(1) gauge theory, it de-
scribes the electric field action and causes the confine-
ment of the gauge charges. The first term, which is non-
local in imaginary time and corresponds to dissipation,
comes from the contribution from the gapless fermion
spionons. In our case, η = 1, but we will keep it as a
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parameter for the dissipation strength in the following
discussion. This term is periodic in the gauge field, re-
flecting its compact nature.
Thus the gauge field action is dissipative. It has been

argued under various settings that a large enough dissi-
pation η can drive the compact U(1) gauge field to the
deconfinement phase at zero temperature46–48. In the
large-z limit, Eq. (37) shows that spatial fluctuations of
the link gauge field are suppressed and the dissipative
gauge field theory becomes local, i.e. aij(τ) = a(τ). As
a result, the action becomes identical to the dissipative
tunneling action derived by Ambegaokar, Eckern, and
Schön49 for a quantum dot coupled to metallic leads,
or a shunted Josephson junction with QP tunneling50.
The 2π-periodicity of the compact gauge field requires
a(τ) = ã(τ) + 2πnτ/β where ã(τ) is single-valued and
satisfies ã(0) = ã(β), and n is an integer winding number
associated with charge quantization, i.e. the instantons
in the electric field when charges tunnel in and out of
the link. If the temporal fluctuation of the winding num-
ber n is strong, the periodicity of the a(τ) is important
and the gauge field is in the confinement phase. Oth-
erwise, its compactness is irrelevant and the gauge field
is in the deconfinement phase. For a 2D array of dis-
sipative tunnel junctions, it has been shown that there
exists a confinement-deconfinement (C-DC) transition of
the winding number at a critical η2Dc ≃ 0.4551. Using
the Villain transformation52, one can show that the in-
stanton action is described by a dissipative sine-Gordon
model, exhibiting a C-DC transition at a critical dissipa-
tion ηc = 1/4. In our case, η > ηc, and the temporal pro-
liferation of the instantons is suppressed by dissipation45.
Thus, the gauge electric field is deconfining and the gap-
less U(1) spin-liquid in the Mott insulating phase is in-
deed stable with respect to gauge fluctuations. When
time-reversal symmetry breaking is allowed, however, the
Mott insulating state is expected to develop antiferro-
magnetic long-range order on bipartite lattices.

IV. SUMMARIES AND DISCUSSIONS

In summary , we have provided an asymptotic solution
of the Hubbard model in the large-z limit to capture the
most essential Mott physics, i.e., the excitonic binding
between oppositely charged doublons and holons23–27,30.
In the Mott insulator, where the theory simplifies con-
siderably as all doublons and holons are bound in real
space into excitonic pairs, the motion of the QP must in-
volve breaking the D/H pairs and thus amounts entirely
to incoherent excitations above the charge gap set by the
D-H binding energy. We construct a dynamical SBMF
theory in the large-z limit and find a continuous Mott
transition, where the opening of the Mott gap and the
vanishing of the QP coherence coincide at the same Uc.
The BR transition is preempted by quantum fluctuations
and replaced by the Mott transition. A key feature of our
asymptotic solution is that on the insulating side of the
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FIG. 5: (color online) Mott transition on two-dimensional
square lattice obtained in Ref. 27 and the present dynamical
SBMF theory. (a) Doublon density, (b) charge gap, and (c)
state energy per site as a function of Hubbard U .

Mott transition, quantum spin fluctuations via the in-
tersite spinon corrlation remain and survive the large-z
limit. The coherent hopping of the spinons gives rise to a
gapless QSL by lifting the ground state degeneracy. The
obtained results is in quantitatively agreement with the
DMFT with various numerical quantum impurity solvers.
The derived effective action for the compact gauge field in
the large-z limit show that the emergent dissipative dy-
namics drives the gauge field to the deconfinement phase
where the spin-charge separated U(1) spin liquid is stable
with respect to the gauge fluctuations.
It is instructive to apply the dynamical SBMF the-

ory reported in this paper to the two-dimensional square
lattice and compare to the results obtained in the un-
controlled method in Ref. 27. The comparison is shown
in Fig. 5, where the doublon density, the Mott gap, and
the state energy per site are plotted as a function of U .
Although these two methods are consistent deep in the
Mott insulating phase for U ≫ Uc, there are significant
differences near the Mott transition. The critical Hub-
bard interaction Uc is increased from ∼ 2.2D in Ref. 27
to ∼ 2.33D in the dynamical SBMF theory. The doublon
density close to the transition is also much larger. Re-
markably, the energy of the Mott insulator obtained in
the controlled meanfield theory is significantly lower than
that obtained in Ref. 27 near the transition, indicating
the importance to treat the D-H binding and the quan-
tum fluctuations systematically in a controlled manner.
We expect the controlled treatment of the D-H binding
to be also important for the study of magnetism.
To end this paper, we compare the electron spec-

tral function obtained in the present theory to that ob-
tained in other scenarios of the Mott transition. Focusing
exclusively on the coherent QP, Gutzwiller variational
wave function approaches31 obtained a strongly corre-
lated Fermi liquid32 that undergoes a BR transition33

to a localized state with vanishing QP bandwidth and
vanishing doublon D/H density (Fig. 6a). The single-
site DMFT maps the lattice Hubbard model to a quan-
tum impurity embedded in a self-consistent bath38,40.
The mapping is exact in the well-defined large-z limit.
The obtained T = 0 Mott transition shown in Fig. 6b
shows that the opening of the Mott gap at Uc1 and the
disappearance of the QP coherence at Uc2 do not coin-
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FIG. 6: (color online) Schematic diagram of the Mott tran-
sition. (a) Gutzwiller with UBR ≃ 3.40D; (b) DMFT with
Uc1 ≃ 2.38D and Uc2 ≃ 3.04D38–40; and (c) present dynami-
cal SBMF theory with Uc ≃ 0.8UBR ≃ 2.71D. D: half band-
width.

cide such that the QP states in the metallic state for
Uc1 < U < Uc2 are separated from the incoherent spec-
trum by a preformed gap. This peculiar property53–55

was shown to be correct56 for the large-z limit taken in
the DMFT where the spin-exchange interaction J ∼ t2/U
scales with 1/z and forces the paramagnetic insulating
state to be in a local moment phase with 2N -fold de-
generacy, i.e., a quantum paramagnet. In contrast, the
current dynamical SBMF theory finds a continuous Mott
transition shown in Fig. 6c from a correlated metal to an
insulating QSL, where the opening of the Mott gap and
the vanishing of the QP coherence coincide at the same
Uc.
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Appendix A: Slave-boson path integral in the

large-z limit

To leading order in 1/
√
z, the Hamiltonian in the para-

magnetic Mott insulating phase is given by Eq. (9), under
the two local constraints in Eqs (2-3). It is straightfor-
ward to write down the Lagrangian as

L =
∑

i

(d†i∂τdi + e†i∂τei +
∑

σ

p†iσ∂τpiσ + f †
iσ∂τfiσ)

−4tp20
∑

〈i,j〉,σ
[(d†idj + e†jei + d†ie

†
j + eidj)f

†
iσfjσ + h.c.]

+U
∑

i

d†idi + i
∑

i

λ̃i(e
†
iei + d†idi + 2p20 − 1)

+i
∑

iσ

λ′
iσ(f

†
iσfiσ − d†idi − p20). (A1)

where Lagrangian multipliers λ̃i and λ′
iσ are introduced

to enforce the local constraints. We may introduce phase
fluctuations of p-boson condensates and write piσ =
p0e

iφp
iσ . However, the phase fluctuations can be absorbed

by a field redefinition di = die
−iφp

i↑
−iφp

i↓ , fiσ = fiσe
iφp

iσ ,
and λ′

iσ = λ′
iσ − ∂τφ

p
iσ . Thus, we can simply take

piσ = p0.

The above Lagrangian, Eq. (A1), possesses a U(1)
gauge symmetry, i.e., it is invariant under the local trans-
formation

di → die
iθi , ei → eie

−iθi , fiσ → fiσe
−iθi ,

λ̃i → λ̃i + ∂τθi, λ′
iσ → λ′

iσ + ∂τθi. (A2)

The gauge charges of the fields are determined by the
gauge transformation and it is easily deduced that the
doublon field carries the opposite charge as that of the
holon and spinon fields. The gauge invariance is a result
of the redundancy in the slave-boson representation of
the physical degrees of freedom.

We then decouple the Bose-Fermi mixed term (the hop-
ping term) by a Hubbard-Stratonovich transformation.
It is important that the gauge invariance must be re-
tained57, by introducing explicitly the gauge fields a0 and
aij that describe the temporal and spatial gauge fluctu-
ations, respectively. The resulting Lagrangian is

L =
∑

i

[

d†i (∂τ − ia0)di + e†i (∂τ + ia0)ei

+ f †
iσ(∂τ + ia0)fiσ

]

− H̃f − H̃b (A3)

+i
∑

i

λ̃i(d
†
idi + e†iei + 2p20 − 1),

with decoupled fermion and boson Hamiltonians given
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by

H̃f = − tf√
z

∑

〈i,j〉
eiaijf †

iσfjσ + h.c.+
U

2

∑

iσ

f †
iσfiσ, (A4)

H̃b = − tb√
z

∑

〈i,j〉
e−iaij (e†jei + d†idj + eidj + d†ie

†
j)

+h.c.− U
∑

i

p20, (A5)

where the hopping amplitudes tf and tb take their sad-
dle point values given in Eq. (15). Here, the Lagrangian
multiplier iλ′

iσ takes its saddle-point value of U/2 to en-
sure the symmetry between doublons and holons at half-
filling. In order to make the discussions in the main text
more transparent, we define iλ̃i = iλi + U/2. Conse-
quently, the Lagrangian in Eq. (A3-A5) can be rewritten

as Eq. (12-14) in the main text.
As a final remark, note that under the U(1) gauge

transformation, the fields transform as

di → die
iθi , ei → eie

−iθi , fiσ → fiσe
−iθi ,

aij → aij + θj − θi, a0,i → a0,i + ∂τθi, (A6)

such that the theory is indeed gauge invariant. The gauge
invariance has a simple physical interpretation. From
Eqs (11) and (12), it is clearly seen that integrating out
the scalar gauge field a0 enforces the local constraint
in Eq. (10), just like how a Lagrange multiplier works.
Furthermore, integrating over the vector gauge fields en-
forces a physical constraint on the flow of the currents,
i.e. the Ioffe-Larkin rule37, which states that the fermion
current is always accompanied by the counter-flow of the
boson current.
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