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Abstract

We consider laser-driven optimal control landscape of a molecule from a classical mechanical

perspective. The goal of optimal control in the present work is to steer the molecule from an initial

state to a target state, denoted by two distinct points in phase space. Thus, a particular control

objective is given as the difference between the final achieved phase space point and the target.

The corresponding control landscape is defined as the latter control objective as a functional of the

control field. While previous examination of the landscape critical points (i.e., a suboptimal point

on the landscape where there is a zero gradient) has shown that the landscape topology is generally

trap-free, the structure of the landscape away from these critical points is not well understood. We

explore the landscape structure by examining an underlying metric defined as the ratio R of the

gradient-based optimization path length of the control field evolution to the Euclidean distance

between a given initial control field and the resultant optimal control field, where the latter field

corresponds to a point at the top of the landscape. We analyze the path length-to-distance ratio

R analytically for a linear forced harmonic oscillator and numerically for a nonlinear forced Morse

oscillator. For the linear forced harmonic oscillator, we find that R ≤
√

2 and reaches its minimum

value of 1 (i.e., corresponding to “a straight shot” through control space) in the large target time

limit, as well as at special finite target times. The ratio R is similarly small for Morse oscillator

simulations when following a steepest-ascent path to the top of the landscape, implying that the

landscape is quite smooth and devoid of gnarled features. This conclusion is exemplified for a path

discovered with R ' 1.0 where simply following the initial gradient direction takes the climb very

close to the top of the landscape. These findings are consistent with a variety of previous like

simulations examining R in quantum control scenarios.
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I. INTRODUCTION

Molecular optimal control theory generally considers system dynamics described by quan-

tum mechanics, where it has provided a basis to understand the widely observed success of

many control experiments [1, 2]. In such studies, an optimally shaped laser field (or other

fields appropriate for the applications) is applied to a particular system so as to achieve a

desired control objective. For many objectives, one can show that the underlying quantum

control landscape, defined as the physical objective as a function of the control field, is

generally free of “traps” that could hinder common search algorithms (i.e., especially local

gradient-based algorithms) from finding an optimal control field [3–8]. As molecular dynam-

ics is often described well classically [9–11], recent work has extended the control landscape

analysis to systems with dynamics described by classical mechanics [12, 13]. For appro-

priate systems, classical mechanics can be more computationally tractable than quantum

mechanics, which motivates the further exploration of classical optimal control landscapes.

Under reasonable system assumptions, a careful choice of objective function generally

ensures the trap-free nature of classical control landscapes [14]. However, that analysis

considered only the landscape topology specified by so-called “critical points” and did not

explore the structure of the control landscape lying between the lowest and highest critical

points (i.e., the corresponding bottom and top of the landscape). Even if the control field does

not encounter any landscape traps as it evolves towards an optimal field, the optimization

path length along the excursion depends sensitively on the structure of the landscape and

the optimization algorithm employed. Control fields in simulations are frequently optimized

with a gradient algorithm, taking a steepest ascent climb of the landscape accompanied by

a corresponding path through the space of control fields. Gnarled control landscapes, with

many dips and ridges (yet still with no traps), can force the gradient to change direction many

times, resulting in a convoluted path between the initial field and final optimal control field.

Smooth, rather featureless landscapes, on the other hand, would take the control field along a

near straight path from the initial to optimal field. If nearly straight control field trajectories

are common, they have computational advantages - instead of re-computing the gradient of

the objective at every step along the path, the gradient could be computed infrequently on
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the way towards the optimal control field. Thus, in this work, we explore the structure of

classical optimal control landscapes by examining the nature of optimization paths taken as

we proceed from initially poor control fields (i.e., producing dynamical outcomes far from

the desired goal) towards optimal fields.

Previous gradient-based investigations of landscape structures in the quantum mechanical

regime of closed finite-level systems have shown that control fields follow remarkably straight

paths [15–18], indicating that the landscapes are largely featureless, as well as almost always

expected to be free of traps [19, 20]. These results, although developed under ideal condi-

tions, indicate that optimal control fields may be readily found, which is consistent with the

broad laboratory success of quantum optimal control experiments [1, 2] as well as simula-

tions, where the gradient or other algorithms are used. Prior to the present work, it was

an open question about whether this structural simplicity carried over to classical control

landscapes, although they have already been shown to share the common lack of landscape

traps under satisfaction of three fundamental assumptions [9, 10]. Previous work on optimal

control further suggests that classical and quantum molecular dynamical models often give

qualitatively similar results [21–24]. However, classical mechanics is fundamentally distinct

from quantum mechanics; for instance, the phase space dynamics for classical systems can

be severely nonlinear and unstable, unlike the linear Schrödinger equation for quantum state

dynamics. These differences further warrant the present investigation into the structure of

classical control landscapes.

This paper considers steering the dynamics in the classical phase space from an initial

point to a target point, which is analogous to the investigation of state-to-state quantum

transition probabilities in [15]. The paper starts with consideration of the linear forced har-

monic oscillator, which is studied as a physically relevant model that permits analytically

identifying bounds on the length of the control field optimization path. We then conduct

numerical simulations for a nonlinear Morse oscillator, showing that even in the presence of

nonlinear state dynamics, the control field optimization paths remain remarkably straight.

Thus, in this work, we show that classical control landscapes, like their quantum counter-

parts, are generally devoid of gnarled structure.

We finally remark that classical systems have the potential for chaotic behavior, and nu-
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merical instability in evolving the control field can possibly lengthen the path taken towards

an optimal field. However, some systems that are chaotic without a control have even been

shown to exhibit non-chaotic behavior under control [25–28]. In essence, the potential for

chaos could pose a numerical or experimental issue for optimizing control fields within classi-

cal dynamics, rather than a fundamental one. Consideration of the chaotic regime, however,

is beyond the scope of this paper.

In Section II, we present the basic formulation for examining the landscape structure in

terms of the ratio R of the observed optimization path length to the Euclidean distance

between an arbitrarily chosen initial control field and the optimal field discovered by use of

a gradient-based landscape climbing algorithm. Section III, presents analytical bounds on R

for a linear forced harmonic oscillator. We then numerically explore the paths taken when

controlling a Morse oscillator in Section IV. Section V provides concluding remarks.

II. GENERAL FORMULATION OF LANDSCAPE STRUCTURE

We consider the classical dynamics of a molecule consisting of n atoms in the presence of

a control field ε(t), t ∈ [0, T ]. The evolution of the system in phase space is described by the

time-dependent state variable z(t) =

qT(t)

pT(t)

, which is governed by Hamilton’s equations,

ż(t) =

 (∂H∂p )T
−
(
∂H
∂q

)T
 =

 M−1p(t)

−∂V (q(t))
∂q(t)

+ ∂A(q(t))
∂q(t)

ε(t)

 , (1)

where the superscript “T” denotes a vector/matrix transpose, the diagonal square matrix

M is composed of the individual atomic masses [10]. The vectors q(t) and p(t) are, respec-

tively, the position and momentum coordinates of the constituent atoms, and the system

Hamiltonian H(q(t),p(t)) is written as

H (q(t),p(t), t)) =
1

2
pT(t)M−1p(t) + V(q(t))−A (q(t)) ε(t). (2)
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We assume that the potential and dipole functions, V and A respectively, are twice-

differentiable in q(t).

The goal of this paper is to explore the structure of the classical molecular control land-

scape defined by a given objective J [ε (·)] = O (z(T )) as a functional of the control field ε(t).

While in general O(z(T)) can be any twice-differentiable function, which in itself does not

have traps over z [14], we assume in this work that it has the quadratic form

J [ε (·)] = O (z(T )) = −
(
z(T )− ztar

)T
Q
(
z(T )− ztar

)
. (3)

where ztar is a specified target state and Q is a symmetric, positive-definite matrix. Thus, O

is a concave function of z(T ), representing the weighted, negative squared distance between

z(T ) and the target ztar.

To facilitate the landscape structure analysis, we only deal with molecules that are con-

sidered to satisfy the following three fundamental assumptions: (1) they are controllable,

(2) the gradient of the final state with respect to the control field, {δz(T )/δε(t), t ∈ [0, T ]},

comprises a full-rank (surjective) collection of 2n-dimensional vectors (i.e., linearly indepen-

dent for any z(T ) generated by an arbitrary ε(·)), and (3) the control resources are freely

available (i.e., there are no physically relevant constraints on ε). Taken together, satisfaction

of these three assumptions are sufficient to ensure that the landscape J [ε] contains no traps

[9], i.e., a gradient algorithm will evolve the control field so as to successfully maximize J .

However, satisfaction of the assumptions does not indicate the paths that the field takes to

maximize J when starting from an arbitrary initial field. In particular, as pointed out in

the introduction, a gnarled landscape with many twists, turns, and ridges could still allow

the gradient algorithm to reach the top of the landscape, but a long path would likely be

needed to traverse the landscape, instead of the limiting ideal case where the landscape is

appropriately smooth to permit taking a nearly straight line path from the initial to the

optimal field.
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A. Path Length Ratio Metric R Characterizing the Landscape Structure

To evaluate the landscape structure, we consider a metric R(s), defined as the ratio of

(i) the path length dPL(s) taken by the control field along the gradient climb to (ii) the

straight-line Euclidean distance dE(s) between the initial and optimized fields, i.e.,

R(s) =
dPL(s)

dE(s)
≥ 1, (4)

where the parameter s(≥ 0) is introduced to track (i.e., label) the path of the field traversing

the control space and correspondingly its image as a trajectory climbing the landscape.

Starting with the same, albeit arbitrary, initial point z(s, 0) = zinit ∀s ≥ 0 in phase space,

the initial field ε(s = 0, t), 0 ≤ t ≤ T , is generally expected to give a poor (i.e., large negative)

value for O(z(s = 0, T )) in Eq. (3)), while the final optimal field ε(s = S, t), 0 ≤ t ≤ T ,

yields the maximal value of O(z(s = S, T )) to an acceptable tolerance at the end of the

landscape climb where s = S. The path length to distance ratio R(s), as a function of s,

can be used to assess the features of the landscape encountered in continuously optimizing

the control field. Furthermore, since R(s) depends on the initial field, we can evaluate the

distribution of R values for a given molecule and its optimization landscape by following

the pathway up the landscape using an ensemble of chosen initial fields; note that with the

gradient algorithm a specific unique path will be taken, ε(s = 0, t)→ ε(s = S, t), connecting

the specified initial and final phase space points.

Other algorithms not based on the gradient may be used to climb the landscape and

explore R, and the nature of the algorithm can influence R (e.g., a stochastic algorithm

is likely to take a rather erratic path up the landscape [15]). Here we use the gradient

algorithm as it is (a) most commonly employed in simulations and (b) particularly sensitive

to local landscape features. This paper will use the D-MORPH formulation of the gradient

algorithm [29]. A gradient algorithm guiding a path up an essentially featureless landscape

will likely take a near-straight path, i.e., the gradient will point directly towards the top

of the landscape, evolving the field over s in a nearly straight line through control space

towards an optimal field. Such a path corresponds to a value of R close to 1. More gnarled
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landscapes, however, with additional features can force the gradient to repeatedly change

direction and increase the length of the path taken by the control field (i.e., to its optimal

form ε(S, t), 0 ≤ t ≤ T ) relative to the Euclidean distance between the initial and final fields,

thereby producing a larger value of R.

The gradient-based path length dPL(s) and the associated Euclidean distance dE(s) can be

expediently calculated via the tracking parameter s, where the control field ε(s, t), t ∈ [0, T ],

at the value s on the landscape climb corresponds to the yield J(s) = O(s) ≡ O(z(s, T )) in

Eq. (3). The generally expected topological absence of traps implies that under the gradient

algorithm, the control field ε(s, t) will eventually evolve over s such that the objective yield

corresponds to reaching the top of the landscape (i.e., the field will maximize J as s→∞),

which is in practice stopped at an acceptable value where s = S.

Using simple analysis from calculus, the path length traversed from s = 0→ S is

dPL(S) =

∫ S

0

ds

√
1

T

∫ T

0

(
∂ε(s, t)

∂s

)2

dt, (5)

while the Euclidean distance dE(S) between the initial, ε(0, t), and optimal, ε(S, t), control

fields is given by

dE(S) =

√
1

T

∫ T

0

(ε(S, t)− ε(0, t))2 dt. (6)

From Eqs. (4), (5) and (6), we obtain

R(S) =

∫ S
0
ds

√∫ T
0

(
∂ε(s,t)
∂s

)2
dt√∫ T

0
(ε(S, t)− ε(0, t))2 dt

. (7)

Although R can in principle take any value between 1 and ∞ [15], our simulations (cf.,

Section IV) in this paper show that it generally remains small and below ∼ 2. This result is

qualitatively consistent with R determined in a variety of quantum control applications [15–

18].

A simulation that achieves the minimum, R = 1, implies that a straight-line path was

taken, dPL(S) = dE(S), through control space to reach the optimal field. It has been shown
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that R = 1, if ∂ε(s, t)/∂s is a separable function in s and t, i.e.,

∂ε(s, t)

∂s
= α(s)β(t) (8)

where α(s) and β(t) are real scalar functions of s and t, respectively [15]. In particular, such

linear “straight line” paths can be expressed as ε(s, t) = ν(s) (ε(S, t)− ε(0, t)) + ε(0, t), ∂ε
∂s

=

dν(s)
ds

(ε(S, t)− ε(0, t)), where ν(s) ∈ [0, 1] is a monotonically increasing function with ν(0) = 0

and ν(S) = 1; comparing to Eq. (8), we have α(s) = dν(s)/ds and β(t) = (ε(s, t)− ε(∞, t)).

The separability of s and t dependence in Eq. (8) ensures that the gradient does not shift

direction (i.e., it has the same dependence on t) as s changes, allowing the control field to

evolve along a straight-line path to its optimal form ε(S, t). The finding of such straight

paths would be numerically favorable, as they only require one gradient computation. Even

a prevalence toward R ∼ 1 could allow for infrequent evaluation of the gradient along the

landscape climb.

B. Gradient-based D-MORPH Algorithm

Within the framework of the D-MORPH gradient algorithm [29], the evolution of the form

of the control field over time t is governed by a first-order initial-value differential equation

in s,
∂ε(s, t)

∂s
=

δJ

δε(s, t)
=

∂J

∂z(s, T )

δz(s, T )

δε(s, t)
, (9)

which can be integrated from an initial trial choice ε(0, t) at s = 0, following the gradient

δJ/δε(s, t), to produce all intermediate control fields ε(s, t), t ∈ [0, T ] for s ∈ [0, S]. It is

readily seen that under the D-MORPH algorithm, the field corresponds to a monotonic climb

towards the top of the landscape as s increases,

dJ

ds
=

∫ T

0

δJ

δε(s, t)

∂ε(s, t)

∂s
dt =

∫ T

0

(
δJ

δε(s, t)

)2

dt ≥ 0. (10)

We note that for the numerical simulations in Sec. IV, Eq. (9) is discretized over time and

the field ε(s, t) evolves as ε(s, t) → ε(s + ds, t), thereby increasing J . Eq. (9) is integrated
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with respect to s at each of the time points using a fourth-order Runge-Kutta method and

the process is stopped at an acceptable convergence criterion, e.g., −J ≤ 0.01.

III. METRIC BOUNDS FOR R(S) WITH A LINEAR FORCED HARMONIC OS-

CILLATOR

The linear forced harmonic oscillator has long served as a physically relevant reference case

for molecular control, and it is natural to consider as a starting model for assessing landscape

structure. Furthermore, we will show that a rigorous upper bound can be found for R(S)

in this case, and the later numerical simulation results in Sec. IV with a Morse oscillator

exhibit very similar qualitative R behavior to that found for the harmonic oscillator.

A one-dimensional linear forced harmonic oscillator is described by the Hamiltonian

H =
p(t)2

2m
+
kq(t)2

2
+ aq(t)ε(t), (11)

where aq(t) is the dipole function. Consider the cost function

J = −1

2

{
z(T )− ztar

}T {
z(T )− ztar

}
, (12)

where z(T ) =

q(T )

p(T )

 is the 2× 1 phase space column vector reached at the terminal time

t = T , starting with some arbitrary phase space column vector z(0) =

q(0)

p(0)

 =

q0
p0

 at

the initial time t = 0, and ztar =

qtar
ptar

 is the target vector. Here q0 and p0 denote the

initial position q(t = 0) and momentum p(t = 0), respectively.

For simplicity and without loss of generality, we will assume m = k = 1 in the following R

metric bound analysis. This can be best realized by adopting the new variables: t→
√
k/m t,

q →
√
k q, p → p/

√
m, a → a/

√
k. It can then be readily shown that for the linear forced

oscillator in the presence of the control field ε(s, t), the terminal time phase point z(s, T )
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can be written as

z(s, T ) = exp

 0 1

−1 0

T
×


q0
p0

− a∫ T

0

exp

−
 0 1

−1 0

 t
×

0

1

 ε(s, t)dt
 , (13)

where it is understood that the system starts with the same initial phase space point for

all s ≥ 0, i.e., z(s, 0) =

q0
p0

. It is then easily seen that Eq. (13) leads to the functional

derivative

δz(s, T )

δε(s, t)
= −a exp

 0 1

−1 0

 (T − t)

×
0

1

 = −a

sin(T − t)

cos(T − t)

 , (14)

which is independent of the control field ε(s, t). By using Eqs. (12) and (14) in conjunction

with the D-MORPH gradient algorithm, Eq. (9), we obtain the relation

∂ε(s, t)

∂s
≡ δJ

δε(s, t)

=
∂J

∂z(s, T )

δz(s, T )

δε(s, t)

= a×

sin(T − t)

cos(T − t)

T

×
{
z(s, T )− ztar

}
(15)

From Eqs. (14) and (15), we then derive the D-MORPH equation for the phase space point

z(s, T ) at the final time T as follows:

∂z(s, T )

∂s
=

∫ T

0

δz(s, T )

δε(s, t)

∂ε(s, t)

∂s
dt

= −a2L
(
z(s, T )− ztar

)
, (16)

where

L =
1

4

2T − sin(2T ) 1− cos (2T )

1− cos (2T ) 2T + sin (2T )

 (17)

is a positive definite matrix for T > 0. Since the matrix L is independent of the integration
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variable s, it follows that the solution of Eq. (16) can be written as

z(s, T )− ztar = exp
(
−a2Ls

)
×
{
z(0, T )− ztar

}
. (18)

Therefore, Eq. (15) can be further expressed as

∂ε(s, t)

∂s
= −a×

sin(T − t)

cos(T − t)

T

× exp
(
−a2Ls

)
×
{
z(0, T )− ztar

}
, (19)

which can be integrated over s to yield the control field

ε(s, t) = ε(0, t) +
1

a
×

sin(T − t)

cos(T − t)

T

× L−1 ×
{

exp
(
−a2Ls

)
− I
}
×
{
z(0, T )− ztar

}
, (20)

where I denotes the 2× 2 identity matrix and

L−1 =
1

T 2 − sin2 T

 2T + sin(2T ) −1 + cos (2T )

−1 + cos (2T ) 2T − sin (2T )

 , (21)

noting that
(
T 2 − sin2 T

)
> 0 for all T > 0. Thus, in the limit of s → ∞, we have from

Eq. (18) z(s, T )→ ztar as L is positive-definite, showing that the final state approaches the

target as the control field ε(s, t) evolves towards an optimal control field, i.e.,

lim
s→∞

ε(s, t) = ε(0, t)− 1

a
×

sin(T − t)

cos(T − t)

T

× L−1 ×
{
z(0, T )− ztar

}
, (22)

which is in agreement with the exact (inverse) solution of the corresponding classical Hamil-

ton equation (i.e., Eq. (1)) for the linear forced harmonic oscillator [30].

From Eqs. (5), (15), and (18), it can be shown that the path length through the control
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space is

dPL(S) = a

∫ S

0

√
[z(0, T )− ztar]T exp (−a2Ls)L exp (−a2Ls) [z(0, T )− ztar] ds

≤ 1

a
(
√
σ1y1 +

√
σ2y2) , (23)

where the vector y ≡

y1
y2

 = UL−1 (I − exp (−a2LS)) |z(0, T )− ztar| ≥ 0, σ1 = 2/(T +

| sinT |) > 0, and σ2 = 2/(T − | sinT |) > 0 (for T > 0). Here the unitary matrix

U diagonalizes L such that ULU † =

σ1 0

0 σ2

. Moreover, we have used the relation√
[y1(s)]2 + [y2(s)]2 ≤ |y1(s)| + |y2(s)| for y1, y2 ∈ R and |x| =

√
x21 + x22 for the mag-

nitude of any real number 2 × 1 column vector x =

x1
x2

. Similarly, using Eqs. (6), (15),

and (18), we find that the Euclidean distance between the initial and final fields, dE, can be

written as

dE(S) =
1

a

√
[z(0, T )− ztar]T (I − exp (−a2LS))L−1 (I − exp (−a2LS)) [z(0, T )− ztar]

=
1

a

√
σ1y21 + σ2y22. (24)

By using Eqs. (23) and (24), in conjunction with the chain of inequalities
√
x21 + x22 ≤

x1 + x2 ≤
√

2 (x21 + x22) for arbitrary numbers x1 ≥ 0 and x2 ≥ 0, we arrive at an absolute

metric upper bound

R(S) =
dPL(S)

dE(S)
≤
√
σ1y1 +

√
σ2y2√

σ1y21 + σ2y22
≤
√

2, (25)

indicating that R will be relatively small for the linear forced harmonic oscillator.

Interestingly, at the special times T = nπ (for the case of k = m = 1, or ω0T = nπ for

the more general case, where ω0 ≡
√
k/m is the characteristic frequency of the harmonic

oscillator with a force constant k and mass m), n = 1, 2, · · · , the matrix L, Eq. (17), reduces
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to the simple diagonal form

L =
T

2

1 0

0 1

 , (26)

and, as a result, Eq. (19) can be written as

∂ε(s, t)

∂s
= −a exp

(
−a

2T

2
s

)
×

sin(T − t)

cos(T − t)

T {
z(0, T )− ztar

}
, (27)

which is a product of two separate scalar functions of the parameter s and time t, respectively,

cf., Eq. (8). To this end, it can be shown that the path length dPL(S), Eq. (23), and the

corresponding Euclidean distance dE(S), Eq. (24), can be reduced to the same expression,

i.e.,

dPL(S) = dE(S) =
1

a
×
√

2

T
×
[
1− exp(−a2TS/2)

]
×
√

[z(0, T )− ztar]T[z(0, T )− ztar]. (28)

Thus, the metric R(S) shrinks to its lower limit of R = 1, implying that the underlying

control field follows a straight-line path at the special times T = nπ (or more generally

ω0T = nπ), n = 1, 2, . . .. Though the harmonic oscillator is a particular classical system,

the findings above suggest that low R values may also arise for other types of systems; this

behavior is confirmed in an anharmonic oscillator example in Section IV.

We will verify the analytical results above by numerically calculating R for several simu-

lations with the harmonic oscillator and objective function J = − (q(T )2 + p(T )2) /2, corre-

sponding to the target qtar = 0 and ptar = 0 in phase space. The parameters in Eq. (11) are

set to be m = 1, k = 2, a = 0.5, with a final time of T = 18π and initial state (q(0), p(0)) =

(1.69, 1). Note that this case corresponds to k = 2 and T ×
√
k/m = 18

√
2π 6= nπ, n an

integer; thus, it does not yield R(S) = 1. We initialize the control field to be a sum of

three sine functions with randomly chosen amplitudes (between 0.0005 and 0.05) and phases

(between π and −π), and frequencies of ω, 2ω, and 3ω, where ω =
√
k/m is the natural fre-

quency of the unforced oscillator. Fig. 1(a) shows the distribution of R over 300 simulation

runs; we see that the maximum R value is ∼ 1.22, which is below the theoretical limit of
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√
2. As another example, Fig. 1(b) shows the distribution for 100 simulation runs with each

of three different final states: (qtar, ptar) = (1.565,−0.246), (1.982, 1.537), and (1.989, 0.5),

utilizing the same initial condition in Fig. 1(a) for all cases. Again, R remains well below
√

2. Each simulation run was stopped when the objective function J [ε (s, ·)] ≥ −0.0001 (

i.e., the landscape value J was within four decimal places of its maximum value of 0).

We finally tested the theoretical upper bound of R ≤
√

2 by using a stochastic particle

swarm optimization directed to maximize R at the final control field (see Refs. [15, 31] for

details on the particle swarm algorithm). The target state is chosen as qtar = 0 and ptar = 0.

The initial control field is taken as a sum of 50 sine functions, and the optimization variables

to maximize R, given the initial state (q(0), p(0)), are the amplitudes and phases of the

50 sine functions. Thus, we are seeking to maximizing R by searching over the indicated

space of initial fields, with the gradient algorithm then taking a path to the final field that

optimized J and permitted a calculation of R for each field. We find that R ≤ 1.34, which is

well below the theoretical bound of
√

2. All of these findings for the linear forced harmonic

oscillator will serve as a benchmark reference for the characteristic molecular situation of a

non-linear forced Morse oscillator in Sec. IV.

FIG. 1. Histograms of the final R values with the linear forced harmonic oscillator and differ-

ent target states: (a) Target
(
qtar, ptar

)
= (0, 0) and (b) the combined distributions for the tar-

gets
(
qtar, ptar

)
= (1.565,−0.246), (1.982, 1.537), and (1.989, 0.5). The initial state in all cases is

(q(0), p(0)) = (1.69, 1).
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IV. SIMULATIONS FOR A CONTROLLED MORSE OSCILLATOR

To complement the analytical results for the linear forced harmonic oscillator above, in

this section we numerically explore the landscape structure for a Morse oscillator by sampling

many different initial control fields. We will see that similar R behavior arises, suggesting

that nearly straight, gradient driven control trajectories are common as found in quantum

control studies [15–18]. The Hamiltonian of the controlled Morse oscillator is given as

H (q(t), p(t), t) =
p(t)2

2m
+D0 (1− exp (−α (q(t)− re)))2 − Aq(t) exp

(
−ξq(t)4

)
ε(t), (29)

where we use the parameter values m = 1732, D0 = 0.2101, α = 1.22, re = 1.75, A = 0.4541,

ξ = 0.0064. All quantities are given in atomic units (a.u.), and these parameter values

approximate the behavior of an HF molecule [32–34] collinear with the applied field. For

all the simulations, the final time is T = 320π, and the initial control field is taken as a

sum of three sine functions, with amplitudes randomly drawn from the uniform distribution

between 0.0005 and 0.05, and phases drawn from a normal distribution between π and

−π. The frequencies of the three sine functions are, respectively, 1, 2, and 3 times the

fundamental frequency of the unforced oscillator. Each control field through a gradient

landscape climb has an imposed Gaussian envelope, exp [−(t− T/2)2/20000], to assure that

the field is essentially zero at the beginning and end of the control interval (t = 0 or t = T ).

A. Distributions of the Path Length Ratio Metric R

We consider the initial state (q(0), p(0)) = (1.75, 0), which is the equilibrium phase space

point of the field-free oscillator; varying the initial state did not yield any significant difference

in the resultant distribution of R values. Each of the distinct target phase states are taken

to have an energy corresponding to either the 4th, 7th, or 11th quantum energy level. The

successive cases correspond to increasing sampling of the anharmonicity and the nonlinear
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dipole coupling of the Morse oscillator, cf. Eq. (29), with the objective function

J [ε] = −
[(
q(T )− qtar

)2
+
(
p(T )− ptar

)2]
(30)

corresponding to Eq. (3) with Q = I. Thus, −J represents the squared Euclidean distance

between the final achieved state and the target. The control field optimization was stopped

when J ≥ −0.01, thus ensuring that q(T ) and p(T ) are within 0.1 a.u. of the target. To

calculate R, we derive from Eq. (5) the following equation

d (dPL(s))

ds
=

√∫ T

0

1

T

(
∂ε(s, t)

∂s

)2

dt (31)

which is integrated, together with Eq. (9) using a fourth-order Runge-Kutta method, over s

as the optimization proceeded to find the total path length of the control field dPL(s) during

the optimization. The final value of R at s = S was calculated by dividing dPL(S) by the

Euclidean distance dE(S) between initial and final control fields in Eq. (6).

Figure 2 shows the combined distribution of the final R values over 100 randomly chosen

initial fields for each of the three targets: (qtar, ptar) is either (1.565,−0.246), (1.982, 1.537),

or (1.989, 0.5) having an energy corresponding to the 4th quantum energy level (delimited

by the inner and outer classical turning points at (q1 − re) ≈ −0.37 and (q2 − re) ≈ 0.63,

respectively, relative to the minimum potential position at re = 1.75) in the anharmonic

region of the Morse oscillator and sampling the nonlinear nature of the dipole, cf. Eq. (29).

Even the largest R value is quite small, lying below 1.5, which is qualitatively consistent with

the analytical findings for the classical harmonic oscillator in Sec. III and qualitatively similar

to previous findings for quantum control simulations [15, 17]. Several fields are concentrated

around R ≈ 1 in Fig. 2, suggesting that near-straight control fields are quite prevalent.

However, there is little obvious distinguishing features between fields that yield low and high

R values. For example, Fig. 3 shows two illustrative optimal control fields that respectively

correspond to low and high R values. It was found that despite the large differences in the

respective R values (a) the fields possess comparable oscillatory structures with some evident

character of an approximate sign flip starting at ε = 0 and persisting at later times, while (b)

17



R-value at final s
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

H
is

to
g

ra
m

0

2

4

6

8

10

12

14

16

18

FIG. 2. Histogram of the combined final R values over 100 randomly chosen initial fields for each

of three target states
(
qtar, ptar

)
= (1.565,−0.246) , (1.982, 1.537) , (1.989, 0.5) for the anharmonic

oscillator with phase space targets corresponding to the 4th quantum energy level. Each simulation

was stopped when J ≥ −0.01. The averaged final R value is 〈R〉 ≈ 1.21.

the fields are clearly distinct in amplitude with the field at the low R(< 1.01) value having

about twice the amplitude of that at the high R(> 1.45) value. We further remark that a

detailed examination of all of the collective control fields showed quite varied behavior as

well as some similarity in certain cases. Fig. 3 is presented as an example of where fields

with a degree of similarity can give significantly different R values.

Some portion of the simulations in Fig. 2 started near the top of the landscape, which in

the extreme case yielded a very small Rmin value of 1.001 as a result. In order to eliminate

any potential such bias we now consider starting with initial fields that produce points in

phase space quite far from the top of the landscape. Thus, we first “normalize” the fields to

ensure that the initial value of J is sufficiently far from the final accepted value of J ≥ −0.01;

after choosing a random control field, we evolve it to an interim control field εi for which

J [εi] ∈ [−25,−9]. By following this procedure, the achieved state under an interim field

εi is within a ring (i.e., of inner and outer radii, respectively, 9 and 25) around the target

point (qtar, ptar). We then use a set of such interim fields {εi} to initiate the subsequent

optimizations. Fig. 4 shows the histogram of the resultant R values over 120 runs with 40
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FIG. 3. Two randomly chosen optimal fields that gave either a low (solid curve) or a high (dashed

curve) R value in Fig. 2 for the anharmonic oscillators corresponding to target phase space points

at the 4th quantum energy level.

random choices of εi to respectively reach each of the three target values (1.565,−0.246),

(1.982, 1.537), and (1.989, 0.5) (i.e., the same targets utilized previously) in Fig. 2. While

the R values remain below R = 2, we see that they have shifted away from R = 1, compared

to the R-values shown in Fig. 2. Thus, starting very far from the target reduced the number

of essentially straight shots across control space. Notwithstanding this change, Figs. 2 and 4

still share the common characteristic of dramatically small R values (i.e., the average values

are 〈R〉 ≈ 1.21 in Fig. 2 and 〈R〉 ≈ 1.36 in Fig. 4), regardless of the initial field and

the associated J value. Thus, all of the results show that subtle changes in 〈R〉 can arise

depending on the imposed circumstances, but there is remarkable general similarity in the

final R distribution.

We also found that similar results shown in the histograms given in Fig. 5, obtained from

simulations for target phase space states having relatively much higher energies correspond-

ing to the 7th quantum energy level [i.e., delimited by the inner and outer classical turning

points (q1−re) ≈ −0.45 and (q2−re) ≈ 1.05] and the 11th quantum energy level [i.e., delim-

ited by the inner and outer classical turning points (q1− re) ≈ −0.5 and (q2− re) ≈ 1.57] in

the very anharmonic region and the strong nonlinear dipole domain of the Morse oscillator,
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FIG. 4. Histogram of the resultant final R values reaching each of three target states
(
qtar, ptar

)
=

(1.565,−0.246) , (1.982, 1.537) , (1.989, 0.5), with initial control fields producing J ∈ [−25,−9]

values lying far from the targets at J > −0.010 for the anharmonic oscillator with the target phase

space points corresponding to the 4th quantum energy level. The average value is 〈R〉 ≈ 1.36.

A comparison with Fig. 2 shows the evident difference that very small R values (i.e., R <∼ 1.1)

are not present above, but the average values of 〈R〉 are very similar and no R value exceeds 2 in

either case. Thus, all control paths are not strongly distorted, regardless of whether the initial field

produces a J value close to, or far from, the target at J = 0.

Eq. (29). In each case, either corresponding to the 7th or 11th quantum energy level, 100

simulations was performed starting with random initial fields with the stopping criterion

J ≤ 0.01. The simulations sampled a range of target qtar and ptar values (i.e., ptar ranged

from 0.04 to 4 at intervals of 0.04 with qtar taking whatever values needed to get to the

corresponding energy level.) Fig. 5 shows that in both cases the resultant R values are all

below 2 (i.e., between 1.0067 and 1.6125 with an average value 〈R〉 ≈ 1.2455 for the 7th

level and between 1.0314 and 1.8934 with an average value 〈R〉 ≈ 1.3003 for the 11th level).

These findings demonstrate that the ubiquitous small R-value behavior persists also for the

strongly anharmonic region of the Morse oscillator while also sampling the very nonlinear

domain of dipole moment. The latter characteristics are quite distinct from the linear forced

harmonic oscillator where the analytical results in Eq. (25) show that R ≤
√

2 ≈ 1.4142,

but the distribution of R in all the simulations was found to be over a small range (i.e., less
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FIG. 5. Histogram of the combined final R values over 100 randomly chosen initial fields for target

phase states having higher energies corresponding to the 7th quantum energy level (dotted lines)

and the 11th quantum energy level (the dashed lines) in the very anharmonic region and the strong

nonlinear dipole region of the Morse oscillator. Each simulation was stopped when J ≥ −0.01. The

averaged final R values, respectively, are 〈R〉 ≈ 1.2455 for the 7th level and 〈R〉 ≈ 1.3003 for the

11th level. All the collective results in Figs. 1, 2, 4, and 5 under quite varied physical situations

show characteristically small R values.

than 2).

B. Extrema of the Path Length Ratio Metric R

Although physically the lower bound of R is 1.0, its practically attainable lower limit

in any particular physical system calls for numerical assessment. Furthermore, the highest

value of R upon a gradient climb of the landscape is an important indication of the degree

of confounding structural features that may be encountered. Specifically, given the generally

low R values for all cases found in the preceding section, we now attempt to maximize and

minimize R for the case of the 4th quantum energy level of the Morse oscillator to assess its

extreme values using a stochastic particle swarm optimization (PSO) method [15, 31]. Since

the gradient algorithm is used for evolving the field, the value of R for a given simulation run

is uniquely determined by the initial control field. To this end, we use the PSO algorithm

to search over initial fields that either minimize or maximize the R value.

To facilitate the PSO algorithm, we take the optimization variables (i.e., those searched
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over to seek either a minimum or maximum value of R) to be the respective amplitude

and phase parameters for the initial field, which were arbitrarily drawn from probability

distributions in the simulations as in the previous section. Since the initial field was the

sum of three sine functions, there are then 6 optimization variables, i.e., 3 amplitudes and

3 phases. Throughout the particle swarm optimizations, we took the initial point to be

(q(0), p(0)) = (1.7,−0.1) and the target state to be (qtar, ptar) = (1.8205, 0.5). Moreover, the

particle swarm was taken to have 100 initial members with each member initially chosen so

that its cost satisfied J ∈ [−25,−9]; however, subsequent fields found by the particle swarm

algorithm could take any initial cost, as dictated by the algorithm. Specifically, the following

three steps were implemented to assess the minimum and maximum attainable values of R:

(1) Select random amplitude and phase parameters for the initial field ε(0, ·), (2) compute the

final R(S) after a gradient optimization to reach the optimal control field where J ≥ −0.01,

and (3) evolve, using the PSO algorithm, the initial control field’s amplitude and phase

parameters so as to optimize the final R value.

The maximum value of Rmax = 1.9 was found essentially coinciding with the value already

found in Fig. 4, while the minimum was found to be Rmin = 1.0001 (despite starting from

a relatively large initial cost J , e.g., the field considered for illustrating the straight line

trajectory in Fig. 6 corresponds to such a case), which is nearly three order of magnitude

smaller than the lowest Rmin values ≈ 1.075 shown in Fig. 4. These findings are particularly

important since they indicate that (1) the control landscape structure is generally smooth

and (2) some regions of control landscape, followed by a gradient climb path, are especially

featureless and devoid of gnarled structure. Nonetheless, the two extreme R generating fields

are distinct (not shown), but no dramatic features are present to indicate that either one

would give an extreme R value.

C. Straight Paths through Control Space

To access the physical nature of a straight line trajectory, cf. Eq. (8), we consider the

converse of considering a small R value found post facto (i.e., for the case corresponding to the

4th quantum energy level) from a gradient-based optimization of a control field, as illustrated
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in the previous sections. The relatively low values of R found in all of the simulations

presented in both Figs. 2, 4 and 5 indicate that near-straight controls are prevalent in

landscape climbs. The extreme limit of this behavior is to just follow the initial gradient to

assess how far up the landscape the climb reaches. Thus the field ε(s, t), 0 ≤ s ≤ S, is given

by

ε(s, t) =

(
δJ

δε(s = 0, t)

)
s + ε(0, t) (32)

Naturally, the success of this procedure is expected to rely on the appropriate R value being

sufficiently small for the field trajectory ε(0, t) → ε(S, t). Fig. 6 shows the evolution of J

with Eq. (32) using the prior determined control field giving the minimal value R = 1.0001,

obtained in our simulations by combining D-MORPH and PSO algorithms, see Sec. IV B.

The objective (i.e., the value of J) initially rises to reach a maximum value of J = −0.001

at ∼ s = 0.025 as shown in Fig. 6. This result demonstrates the existence of an initial field

whose cost function gradient points directly to a high value optimal field; many such cases

were found in the analogous quantum mechanical studies [15–18]. However, no procedure

exists at the present time to a priori identify such ideally behaving fields. Notwithstanding,

the distribution of R values for all of the D-MORPH gradient optimizations in Figs. 2 and

4 are indicative of nearly straight line trajectories.

V. CONCLUSION

In this work, we examine the structure of classical optimal control landscapes. The

classical molecular trajectories follow Hamiltonian dynamics and the objective is to steer

an initial phase space point to given target point. We assess the structure of the control

landscape by examining the path along which the control field evolves towards an optimal

field, guided by a steepest ascent gradient algorithm. In particular, we find that the path

through control space (i.e., from the initial to optimal field) in many cases is comparable

to a straight-line path. For a one-dimensional harmonic oscillator, we show that the length

of the control field’s path is at most a factor of
√

2 longer than the straight-line Euclidean

distance between the initial and final fields; numerical investigations were fully consistent
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FIG. 6. Achieved J as we just follow the initial gradient δJ/δε(s = 0, t), Eq. (32), for a field

corresponding to the minimal value R = 1.0001 obtained in the PSO simulations of Sec. IV B

for the case corresponding to the quantum mechanical 4th energy level. The figure shows that

marching in the initially identified gradient direction proceeds, from a relatively large initial cost

J , directly to the top of the landscape at s ≈ 0.025 producing J = −10−3.

with the theoretical upper bound of
√

2 by only coming near to that value. Numerical

results for a Morse oscillator further support the near straightness of gradient algorithm

generated control paths for phase space target cases corresponding to the 4th, 7th and 11th

quantum energy levels. This result indicates that the control landscape is relatively smooth

and featureless, and thus gradient algorithms follow efficient, non-convoluted paths when

searching for optimal control fields. The same qualitative observation was found prevalent in

more extensive quantum mechanical simulations [15–18], leading to the tentative conclusion

that the indicated landscape behavior remarked above is universal for closed quantum or

classical systems under control.

While our results show that control fields evolve along nearly-straight gradient-based

paths for sample classical systems, we do not have an explanation of why the landscape

is surprisingly devoid of features. However, an explanation was provided in the quantum

case [15–18] involving a multiple of interfering pathways that does not appear to have an

analog in the classical regime. A more encompassing classical and quantum explanation may
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exist as a goal of future research to discover. It is possible that more complex classical sys-

tems, in particular, in a higher-dimensional phase space, could exhibit longer control paths.

For example, it is straightforward to derive the bound R ≤
√

2n for the n-dimensional har-

monic oscillator and it may be possible to generalize these bounds to anharmonic oscillators.

However, despite the upper bound, what actually counts is the statistical distribution of

R values, and especially whether they are biased to lower values. Finally, an interesting

direction for future research would be to take advantage of the collective results to design

more efficient search algorithms to discover optimal control fields. We plan to explore these

questions in future work.
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