

1 A cash flow model of an integrated industrial CCS-EOR project in a petrochemical

2 corridor: A case study in Louisiana

3 Brian F. Snyder^{1*}

4 Michael Layne¹

5 **David E. Dismukes^{1,2}**

6

⁷ ¹Department of Environmental Science, Louisiana State University, Baton Rouge, LA, 70803

⁸ ²Center for Energy Studies, Louisiana State University, Baton Rouge, LA, 70803

*Corresponding author: Energy Coast and Environment Building, Louisiana State University, Baton Rouge, LA, 70803. snyderb@lsu.edu. 225-578-4559

11

12 **Funding Statement:** This research was funded through the U.S. Department of Energy contract
13 DE-FE0029274

14 **Abstract**

15 Petroleum refineries and petrochemical plants are major CO₂ sources, however, they are also
16 significant capital and employment assets that are unlikely to be replaced in the near term. As a
17 result, nations and states that are interested in reducing the carbon intensity of their economies
18 will need to find ways to reduce the emissions of their existing industrial capacity. Industrial
19 carbon capture provides one potential mechanism for reducing the carbon intensity of existing
20 industrial facilities, however, an economically feasible capture system requires that the captured
21 CO₂ be integrated into a system of transport and storage with income generated either through
22 tax credits, enhanced oil recovery (EOR), or both. Here, we present a cash-flow model of an
23 integrated system with industrial capture, pipeline transport, and EOR, and we parameterize the
24 model with data from Louisiana. Given a \$50/bbl oil price, an integrated capture, transport and
25 EOR system that uses ethylene oxide production, ammonia production, or natural gas processing
26 as sources is predicted to have a net present value of about \$500 million; hydrogen-based capture
27 has a cash flow of -\$214 given the same assumptions. Further, we find that the recent 45Q Tax
28 Credit expansion has a positive impact on the cash flow of the system but does not change the
29 overall profitability of the systems under the specified assumptions such that without the tax
30 credits natural gas processing, ammonia production and ethylene oxide production-based capture
31 systems remain cost-effective, while hydrogen-based capture remains unprofitable with or
32 without the tax credit.

33

34 **1. Introduction**

35 While renewables, nuclear power, and energy storage provide a plausible foundation for a carbon
36 neutral electricity sector (Jacobson et al. 2015), industrial processes such as petroleum refining,
37 fertilizer and cement manufacturing, and chemical feedstock production may be harder to
38 decarbonize. As a result, other low carbon technologies will be required for deep
39 decarbonization (Ahman and Nilsson 2015; Ahman et al. 2017). Industrial carbon capture and
40 storage (CCS) is one potential tool for reducing the carbon intensity of the industrial sector.
41 Although a great deal of attention has focused on CCS from coal-fired power plants (Singh et al.
42 2003; Haszeldine 2009; Edge et al. 2011), industrial CCS may offer a lower-cost alternative
43 because it typically involves carbon capture from non-combustion exhaust streams with higher
44 concentrations and pressures of CO₂. Combustion exhausts usually have CO₂ concentrations of 3
45 to 14%, with partial pressures of 0.03 to 0.14 atm (0.4 to 2.1 psi), while “high-purity” industrial
46 sources can have CO₂ concentrations of over 95% with partial pressures of 1 – 20 atm (4.5 to
47 290 psi; Table 1). Note that not all emissions from a specific industrial facility will be from high-
48 purity sources, as many large industrial facilities contain both combustion and non-combustion
49 emissions.

50 Once captured, CO₂ can be stored in saline reservoirs or mature oil reservoirs. Saline
51 reservoirs allow for permanent storage but financial benefits of the system are dependent on tax
52 or other governmental incentives. In contrast, depleted oil reservoirs may be used for enhanced
53 oil recovery (EOR) which creates an independent cash flow but reduces the net carbon benefit
54 (Jaramillo et al. 2009; Cuellar-Franca and Azapagic 2015). In the present study, we focus on
55 EOR storage, but the economically preferred storage solution will depend on tax incentives for
56 EOR and saline storage, oil prices, transportation costs, and other factors.

57 The development of widespread integrated CCS-EOR will depend on the geographic
58 proximity between sources of high purity CO₂ and EOR sinks. While there is some existing CO₂
59 transportation infrastructure in the U.S., it is generally not collocated with industrial CO₂
60 sources. In addition, since demand for purchased CO₂ in an EOR project typically lasts about a
61 decade (Jarrell et al. 2002; Dilmore 2010; King et al. 2013), a network of neighboring EOR
62 fields and/or other storage reservoirs is likely to be required in order to continue to create cash
63 flow from the initial capital investment.

64 For both historical and geological reasons, many declining petroleum and natural gas
65 plays are located in close proximity to refining and petrochemical production. For example, oil
66 and gas exploration and production in South Louisiana developed relatively early in the
67 industry's history with the discovery of the Jennings field in 1901 (Harris 1910). Due to this new
68 production and the proximity to the Gulf Coast and the Mississippi River, a refining industry
69 grew up around the exploration and production industry, including the construction of the now
70 ExxonMobil Baton Rouge refinery in 1909. As refineries grew in sophistication, they began to
71 both produce and demand specialized petrochemicals, and an industry developed in the region to
72 capitalize on abundant natural gas supplies, transportation infrastructure, and existing industrial
73 suppliers and customers. Because of this history, there is a large concentration of both declining
74 oil fields and industrial CO₂ sources along the Mississippi River between Baton Rouge and New
75 Orleans, Louisiana. Due to this industrial concentration, this area is known as the Louisiana
76 Chemical Corridor (LCC). A similar collocation of high-purity industrial CO₂ emissions and
77 potential EOR fields occurs around Lake Charles, Louisiana, Southern California, Western
78 Pennsylvania, Northwestern Ohio, and Coastal Texas (Figure 1).

79 Due to its history, the LCC is an industrial ecosystem in which firms commonly
80 exchange steam, electricity, hydrogen and various hydrocarbon coproducts, however, CO₂ is not
81 included as part of the existing industrial ecosystem. The addition of a CCS-EOR component to
82 this ecosystem has the potential to convert a major waste stream (CO₂) into an input for local oil
83 production. This would create a potentially unique industrial ecosystem and would represent an
84 example of the continuing evolution of industrial systems (Ayers 1989).

85 The purpose of this paper is to analyze the economic potential of an integrated CCS-EOR
86 project in the LCC as a case study to inform industrial CCS-EOR projects elsewhere. The model
87 envision a joint venture project composed of a CO₂ capture operator, CO₂ pipeline operator, and
88 EOR operator. We begin with background information on the history of the industry and the
89 spatial distribution of CO₂ sources and potential EOR fields. We then describe available CCS-
90 EOR cost models and data and parameterize these models to develop capital and operational
91 costs for the capture, transport, and injection components of the model.

92 **2. History and Status of CO₂ EOR**

93 ***2.1 EOR History***

94 By the 1970s, declining oil production, geopolitical concerns associated with new sources of
95 foreign oil, and the technical difficulty associated with geologically deep or subsea plays led to
96 the development of new technologies for producing onshore oil in the U.S. One of these
97 technologies was CO₂ EOR. The earliest CO₂ EOR tests in the Mead-Strawn and Scurry Area
98 Canyon Reef Operators Committee (SACROC) units of West Texas in the early 1970's
99 demonstrated that CO₂ EOR could produce up to 50% more oil than water flooding alone (Holm
100 and O'Brien 1971; Dicharry et al. 1973).

101 In the late 1970s and early 1980's, several Louisiana reservoirs were injected with CO₂.
102 In 1978, Shell began an EOR project on its Weeks Island field in South Louisiana. Shell injected
103 approximately 44,000 tonnes of CO₂ from late 1978 to early 1980. Oil production began in 1981
104 and over the next six years, about 260,000 barrels of oil, or over 60% of the remaining oil in
105 place, had been produced (ARI 2006). In 1981, Gulf Oil (now Chevron) conducted an analysis of
106 a water alternating gas (WAG) production system in its Quarantine Bay field south of New
107 Orleans. Gulf Oil barged 25,400 tonnes of liquid CO₂ from New Orleans and injected it into an
108 8,200 ft Miocene sand (Hsie and Moore 1988). In total, CO₂ injection only accounted for about
109 19% of the hydrocarbon pore volume (HPVC), but nearly 17% of original oil in place (OOIP)
110 was recovered at an efficiency of 7.5 bbl/tonne CO₂. Finally, in 1982, Texaco began injecting
111 approximately 1,500 tonnes of CO₂ per day (30 million scf) from nearby ammonia plants into the
112 Paradis oil field (Bears et al. 1984). The CO₂ injections were into a 9,000 ft deep sand and were
113 mixed with approximately 10% nitrogen.

114 While these early projects were developed using anthropogenic CO₂ captured from
115 natural gas processing plants, discoveries of cheap and abundant non-anthropogenic¹ sources in
116 Colorado, New Mexico and Mississippi have allowed EOR production to steadily increase
117 (Figure 2, recreated from Kuuskraa and Wallace 2014). The Permian Basin in West Texas
118 remains the predominant EOR-producing basin. As of 2014, the industry utilized 68 million
119 tonnes of CO₂ in 136 separate projects and produced 300,000 bbl/d of total oil (Kuuskraa and
120 Wallace 2014).

121 **2.2 Current Status in Louisiana**

¹ Non-anthropogenic CO₂ is CO₂ that is derived from fossil reservoirs that would, in the absence of EOR, stay underground. Anthropogenic CO₂ is produced by combustion of hydrocarbons, some other industrial hydrocarbon oxidation process, or stripping CO₂ from natural gas reservoirs.

122 *Capture Projects*

123 As of 2017, there were 17 operating, large-scale carbon capture systems in the world, and
124 all but two relied on industrial sources of CO₂ (Global CCS Institute 2017). While there are no
125 large-scale (defined as over 400,000 tonnes/year) systems currently operating in Louisiana, there
126 is one large-scale system in development in Lake Charles, Louisiana, and another mid-sized
127 facility operating in the LCC. In 2013, LCC ammonia producer PCS Nitrogen contracted with
128 EOR specialist Denbury Resources to deliver approximately 365,000 tonnes/year (20 MMcf/day)
129 CO₂ into Denbury's newly built Green Pipeline. The CO₂ flows to EOR operations in Denbury's
130 Hastings field south of Houston, TX. Note that PCS Nitrogen emits significantly more CO₂ that
131 is vented to the atmosphere (a total of 557,000 tonnes in 2016), however, the economic costs and
132 benefits of the decision to capture only a fraction of emissions have not been disclosed. In
133 addition to this operating capture project in the LCC, a petcoke to methanol project in Lake
134 Charles, Louisiana is proposed.

135 *EOR Projects*

136 There are a limited number of enhanced oil recovery operations in Louisiana. Denbury
137 operates the Delhi Field in central Louisiana, which injects non-anthropogenic CO₂ from Jackson
138 Dome in Mississippi. Tertiary production began in 2010 and in 2016 the Delhi Field produced
139 2.6 million barrels of oil (SONRIS 2017). Denbury also operates a smaller field called Lockhart
140 Crossing in South Louisiana which also receives non-anthropogenic CO₂ from Jackson Dome;
141 Lockhart Crossing produced 445,000 barrels of oil in 2016 (SONRIS 2017). Marlin Resources
142 conducts EOR at the Buckhorn field which is also connected to Denbury's pipeline system. In
143 2016 Marlin Resources produced 7,283 barrels of oil from the Buckhorn Field (SONRIS 2017).

144 **3. Industrial CO₂ Emission Sources in Louisiana**

145 While CO₂ capture and EOR are both currently limited in Louisiana, there is a significant
146 resource of CO₂ emissions that could be captured for EOR uses. The Environmental Protection
147 Agency collects detailed data on all large stationary emission sources in the U.S. because of the
148 Greenhouse Gas Reporting Program (GHGRP). These data are available through the Envirofacts
149 website (<https://www3.epa.gov/enviro/greenhouse-gas-customized-search>). All data are from the
150 2015 reporting year.

151 Due to opportunities for low-cost capture, we were specifically interested in emissions
152 from ammonia production, hydrogen production, natural gas processing, and ethylene oxide
153 production (recall Table 1). Therefore, data for all industrial emissions as well as data from
154 ammonia production (GHGRP Subpart G), hydrogen production (GHGRP Subpart P), natural
155 gas processing (GHGRP Subpart W) were collected. Locations of ethylene oxide production
156 were collected from EPA's ChemView database; emission quantities from ethylene oxide
157 production as well as production quantities are considered confidential business information and
158 are not reported. Figure 3 shows all point sources of emissions in Louisiana while Figure 4
159 shows the emitters of the four target industrial CO₂ streams.

160 Most of the large, high purity CO₂ sources are located along the LCC. Ammonia,
161 hydrogen production, and ethylene oxide production are the most attractive sources in the LCC
162 while natural gas processing is more dispersed throughout the state. Although natural gas
163 processing creates a highly pure CO₂ stream, emissions at each plant are typically far lower than
164 emissions from other industrial processes because natural gas processing is dispersed into a large
165 number of small facilities due to the challenges of transporting unprocessed gas over long
166 distances; this could create commercialization problems associated with economies of scale.
167 Further, the volumes of CO₂ produced from natural gas processing will follow the geographic

168 distribution of natural gas production which changes over time as fields mature. Thus, while
169 emissions from natural gas processing may be an attractive target for early commercialization in
170 some areas, the larger sources along the LCC may be of more sustained potential.

171 **4. Model**

172 We created a cash flow model implemented in MS Excel to provide a first-order
173 approximation of the economic feasibility of a system in which a single-owner captures CO₂
174 from selected industrial processes, transports the CO₂ via pipeline to one of 120 selected
175 declining oil fields in Louisiana, and produces some incremental oil volume which is sold to
176 finance the system². Captured and injected CO₂ accrues a tax credit consistent with the 2018
177 CO₂ tax credit expansion (\$35 per tonne). We treat the tax credit as revenue despite the fact that
178 it is a tax credit and not a direct subsidy. Thus, we assume that the firm either has sufficient
179 taxable earnings to claim the full value of the tax credit, or that tax credits are transferable. As of
180 late 2019, the Internal Revenue Service has not finalized the 45Q regulations.

181 All parameters are on an annual basis, and all capital costs are incurred in year zero and
182 all operating expenses and revenues begin in year 1. The model is composed of three main sub-
183 models that estimate costs for capture, transport, and the EOR system, and an additional
184 calculation that uses assumptions about the cumulative 30-year oil production and the rate of
185 decline based on data from existing EOR operations. The purpose of the analysis is to determine
186 the overall cash flow to the system, and as a result, we model the entire system as a single unit;
187 therefore, CO₂ does not transfer ownership and the net cash flow is not distributed amongst

² The entire spreadsheet model will be made available by request to the corresponding author.

188 multiple parties. Thus, the model is similar to the cash flow to a hypothetical joint venture
189 company composed of CO₂ source, CO₂ transport, and CO₂-EOR firms³.

190 In the following sections, we describe the three main cost sub-models that estimate
191 capital and operational expenses for CO₂ capture, transport, and injection (Figure 5). The total
192 capital costs are the sum of the capture, transport and injection (EOR) capital costs:

$$CAPEX_{TOTAL} = CAPEX_{CAPTURE} + CAPEX_{TRANSPORT} + CAPEX_{EOR} \quad \text{Eq. 1}$$

193 Capital costs occur in year 0 and do not reoccur. Total operating costs are also the sum of the
194 operating costs of capture, transport and injection (EOR) systems, and reoccur annually.

195 Therefore:

$$OPEX_{TOTAL_t} = OPEX_{CAPTURE_t} + OPEX_{TRANSPORT_t} + OPEX_{EOR_t} \quad \text{Eq. 2}$$

196 where t indicates the year of operation.

197 Revenue is generated by the sale of oil at a given price, plus tax credits of \$35 per
198 tonne generated in the first 12 years of injection⁴. Thus, the total revenue in year t (REV_{TOTAL_t}) is
199 the sum of oil production (q) in year t times the oil price (p) plus the CO₂ injected in year t (C_t)
200 times the fixed \$35 per tonne tax credit for $t < 12$:

$$REV_{TOTAL_t} = q_t p + 35C_t \quad \text{Eq. 3}$$

201 Equation 3 assumes that the CO₂ injected is equal to the CO₂ stored (e.g. CO₂ leakage is
202 ignored). In year 0, revenues and OPEX are zero, and are first incurred in year 1.

203 Annual costs for all three sub-models are summed and subtracted from the revenue
204 generated by CO₂ tax credits and oil recovery to generate an annual cash flow for the overall

³ We are interested in the profitability of the entire system because if the entire system is profitable, then profits may be split among multiple parties. If the system is not profitable, it is unlikely that a business case for development can be made.

⁴ Note that the model is denominated in 2011\$, but the 45Q tax credit is denominated in 2019\$. This could create some error, but given the overall uncertainties in the model, we expect the difference to be small.

205 system. Once the net annual cash flow is estimated, annual cash flows are discounted and
206 summed to determine the Net Present Value (NPV) according to:

$$NPV = CAPEX_{TOTAL} + \sum_{t=0}^{30} \frac{REV_{TOTAL_t} - OPEX_{TOTAL_t}}{(1 + i)^t} \quad \text{Eq. 4}$$

207 Where i is the discount rate, assumed to be 10%.

208 Two of the models (capture costs and transport costs) were denominated in 2011\$; the
209 third model (EOR costs) was denominated in 2008\$ and inflated to 2011\$ using the Producer
210 Price Index for oil and gas field machinery and equipment manufacturing (PCU333132333132)⁵.
211 To inflate to more recent denominations, model users could inflate model output using the
212 relevant PPI data. Figure 6 presents a detailed depiction of the model structure and Table 2
213 describes selected model parameters.

214 **4.1 Capture Costs**

215 Normalized capital and operational expenses (CAPEX and OPEX) developed by
216 Summers et al. (2014) for retrofit carbon capture systems are depicted in Table 3, along with the
217 facility design size on which they are based. To our knowledge, Summers et al. provide the most
218 detailed engineering-based analysis of industrial carbon capture retrofit costs available. While
219 the normalized capital cost from Table 3 could be input directly to the model, normalized costs
220 assume a linear relationship between facility size and facility cost. However, there are economies
221 of scale between the facility size and the capital cost that may be non-linear and this would make
222 the use of normalized costs inappropriate. Summers et al. did not provide cost curves for
223 CAPEX, but they did provide cost curves that related total breakeven cost per tonne to facility

⁵ Alternatively, the PPI for crude petroleum and natural gas extraction could be used (PCU2111121111), however, due to the high demand for oil drilling in the 2008 period, the use of this index would dramatically deflate the 2008\$. In contrast, the PPI selected results in a slight inflation from 2008\$ to 2011\$.

224 size across a range of facility sizes (Figure 8). Summers et al. also provide information on the
225 proportion of the breakeven costs⁶ that are attributable to capital and operating expenditures, and
226 we use these data as a means of adjusting the normalized CAPEX.

227 From the graphs provided by Summers et al. (Figure 7), we derived exponential curves of
228 the form:

$$\text{Breakeven CO}_2 \text{ Cost} = M * E^{-n} \quad \text{Eq. 5}$$

229 Where M and n are best-fit constants, the *Breakeven Cost* is the price, in dollars per tonne CO₂,
230 at which Summers et al.'s capture model breaks even, and E is the CO₂ emissions captured in
231 tonnes per year. Values of M and n are provided in Table 3 for each industrial process studied.
232 In order to adjust the CAPEX, we first derived a predicted breakeven CO₂ cost using Eq. 5 and
233 the emissions input, then multiplied by the percentage of the breakeven costs that were
234 associated with CAPEX in Summers et al.'s data. This approximates the breakeven CAPEX in
235 the Summers et al. model given a specific emissions quantity; however, for our model, we were
236 not interested in the breakeven costs, but the actual capital costs. Therefore, we used the known
237 relationship between the CAPEX cost and the breakeven capex cost reported by Summer et al. to
238 inflate (or deflate) the estimate:

$$\text{CAPEX}_{\text{CAPTURE}} = [(M * E^{-n}) * (B_C / (B_C + B_O))] * (R_C / B_C) \quad \text{Eq. 6}$$

239 Where M , E and n are as in Eq. 5, B_C and B_O are the breakeven CAPEX and OPEX respectively
240 reported by Summers et al. for the design case, and R_C is the retrofit CAPEX estimate from
241 Summers et al. for the design case. In each capture system, the Summers et al. model includes

⁶ Breakeven costs are the price of CO₂ required for a system to be financially viable. As in all techno-economic modelling, breakeven cost estimation requires a number of financial assumptions. Summers et al.'s major financial assumptions include a 1-year capital expenditure period, a 50:50 debt to equity ratio, a 30 year economic life, a 8% interest rate on debt, a return on equity of 20% and a 15.2% capital charge factor.

242 compression that increases the pressure of the CO₂ to 2215 psi consistent with the input for the
243 transportation cost model. We used the normalized OPEX (in \$ per tonne) in the last column of
244 Table 3 as model input ($OPEX_{CAPTURE_t}$); this assumes that the relationship between operating
245 expenditures and facility scale is linear.

246 **4.2 EOR System Cost**

247 We used an engineering-based model (Godec 2014) to estimate the capital ($CAPEX_{EOR}$)
248 and operating ($OPEX_{EOR_t}$) costs of an EOR system. The model includes four components of
249 capital costs: the costs to drill new wells, the costs to build a CO₂ recycling plant, the costs to
250 build a CO₂ distribution system, and the costs of the CO₂ compression system. Other equipment
251 for fluids and water management were modeled as annualized leases and incorporated into
252 operating costs. All other capital costs associated with field development including production
253 well construction costs, intra-field and export production pipeline construction cost, and other
254 equipment costs are considered sunk and are not included. The model also includes operating
255 costs for the CO₂ recycling plant as a function of oil price and the maximum CO₂ injection
256 volume⁷, workover costs, energy costs for compression, and energy costs for lifting water and
257 liquids. See Supplementary Information for the equations employed.

258 Equations for all of these cost components were taken from Godec (2014), but critical
259 input parameters were the number of wells needed, the drilling cost per well, well depth, oil
260 price, distribution system mileage, electricity price, and oil production. Many of these variables
261 are difficult to estimate with confidence. The number of wells needed will depend on field
262 geology, the number of existing wells that may be reused, and operator strategy, and in our base

⁷ We use the maximum injection volume as a proxy for the CO₂ recycle rate in all years. This is a simplification and it is more likely that CO₂ recycle rates will be an increasing function with the average approximately equal to the initial injection rate.

263 parameterization we assume that 10 new wells are drilled. Drilling cost per foot was taken from
264 EIA (2016), and well depth was assumed to equal the depth of the reservoir taken from Nunez-
265 Lopez et al. (2008). In-field distribution lines were assumed to require 20 miles of new pipeline.
266 Electricity prices were assumed to be 0.10 \$/kWh. Oil production estimates are discussed in
267 Section 4.5, below.

268 **4.3 Transportation Costs**

269 A viable CCS system will consist of a number of capture facilities linked to a number of
270 storage reservoirs via a pipeline network. We employed a model developed by the National
271 Energy Technology Laboratory (Morgan et al. 2014) to estimate the costs of building a CO₂
272 pipeline in southern Louisiana. The model first calculates the appropriately sized pipe and the
273 number of booster pumps needed based on fluid dynamics and using a least cost approach. Once
274 the model calculates the basic characteristics of the system, it calculates total capital and
275 operational expenses based on data from natural gas transmission data, supplemented with other
276 data sources (Morgan et al. 2014).

277 We assume that most CO₂ EOR projects will take place within 100 miles of the CO₂
278 point source because distances greater than 100 miles are increasingly uneconomic (Dooley et al.
279 2006, Middleton et al. 2014) and because Louisiana offers a number of sources and sinks at
280 distances less than 100 miles. Therefore, we evaluate transport distances between 10 and 100
281 miles. The quantity of CO₂ transported is set by the maximum amount of CO₂ injected, C_{max} ,
282 which is defined in the next section. All other input parameters were set at their default values,
283 including the pressure drop (1000 psi; from 2215 to 1215 psi), elevation rise (50 ft, consistent

284 with flat Southern Louisiana terrain), and contingency allowance (15%). Capital costs relations
285 from McCoy and Rubin (2008) were used and a Southwest U.S. location was assumed.

286 Given these input parameters, we set $CAPEX_{TRANSPORT}$ equal to the “Total Investment
287 (capital expenses or Capex) with project contingency in real \$” given by the NETL model
288 (Morgan et al. 2014). For the purposes of its own internal cost calculations, the NETL transport
289 model assumes that capital costs of pipeline construction are spaced over three years; for
290 simplicity, we assumed $CAPEX_{TRANSPORT}$ was incurred in year 0. Likewise, we used the “Total
291 Annual Operating Expense” output from the NETL model as input for $OPEX_{TRANSPORT_t}$.

292 **4.4 CO₂ Purchase over Time**

293 Total CO₂ purchased for injection into the reservoir over the life of the project, C_{total} , is
294 estimated as:

$$C_{total} = OOIP * RF * \frac{1}{EF} \quad \text{Eq. 7}$$

295 where RF , the recovery factor, is quantity of oil recovered as a percent of OOIP, and EF is the
296 efficiency factor in bbls of oil produced per tonne of CO₂ purchased. However, the timing of
297 CO₂ injection and oil production is also important because it determines the timing of costs and
298 revenues. We assumed that purchase of captured CO₂ occurred for a period of n years with a
299 maximum purchase tonnage in the first year of operation⁸. Purchase tonnage declined linearly to
300 zero through the n year purchase time. Thus, purchase tonnage in year t is given by:

$$C_t = \left(1 - \frac{t}{n}\right) C_{max} \quad \text{Eq. 8}$$

⁸ It is possible that the maximum CO₂ injection would occur sometime after year 1 as it takes time for injection patterns to come online. The model could be modified to take this into account, but for simplicity we assume a decreasing CO₂ injection that peaks in year 1.

301 where C_t and C_{max} are the annual CO₂ purchase quantities in year t and the initial year of
302 operation, respectively.

303 However, C_{total} is also the summation of C_t over the period zero to n. Thus, the sum of the
304 sequence of CO₂ injections is:

$$C_{total} = n \frac{(C_{max} + 0)}{2} \quad \text{Eq. 9}$$

305 Solving for C_{max} :

$$C_{max} = \frac{2 * C_{total}}{n} \quad \text{Eq. 10}$$

306 In the remainder of the paper, we assume⁹ that n = 10. King et al. (2013) assumed that
307 CO₂ injection into Texas Gulf Coast reservoirs occurred over 7 to 20 years, thus our use of a 10-
308 year CO₂ purchase period may be reasonable. Note that we assume a linear decline in CO₂
309 injection. A nonlinear decline is also plausible and may lengthen the duration of injection while
310 keeping the quantity injected relatively constant (e.g. Dilmore 2010). Such a change would be
311 expected to have small changes in net cash flows. Likewise, we could incorporate a long-term
312 purchase and injection of “make-up” CO₂ to account for CO₂ loss. We ignored this as we
313 assumed it would have a minor impact on net cash flows.

314 The size of the capture, pipeline, and injection sub-models are then scaled based on C_{max}
315 while operating costs are scaled to C_t . Note that the model assumes that some industrial source
316 capable of producing C_{max} is within 100 miles of the field. In Louisiana this will generally be

⁹ King et al. (2013) assumed that CO₂ injection into Texas Gulf Coast reservoirs occurred over 7 to 20 years, thus our use of a 10-year CO₂ purchase period may be reasonable. Note that we assume a linear decline in CO₂ injection. A nonlinear decline is also plausible and may lengthen the duration of injection while keeping the quantity injected relatively constant (e.g. Dilmore 2010). Such a change would be expected to have small changes in net cash flows. Likewise, we could incorporate a long-term purchase and injection of “make-up” CO₂ to account for CO₂ loss. We ignored this as we assumed it would have a minor impact on net cash flows.

317 reasonable but may not be defensible elsewhere. In these cases, the maximum transportation
318 distance would need to be increased.

319 The efficiency factor, EF , is a critical unknown parameter. Six EOR fields have a
320 sufficient operating history and data availability to allow for an approximation of the oil
321 production per unit of CO_2 injected (Table 4). These six fields (Weeks Island, Northeast Purdy
322 Unit, Kelly Snyder Field, Ford Geraldine Unit, Joffre Viking Field, and Weyburn Unit), all
323 produced between 4.7 and 6.7 barrels of oil per tonne of CO_2 purchased over project lifespans of
324 8 to 21 years. (Jaramillo et al 2009; Dilmore 2010). Likewise, the WAG system used for the
325 Miocene Quarantine field in South Louisiana produced about 7.5 bbls per tonne of CO_2 (Hsie
326 and Moore 1988). However, these high recovery ratios from early EOR projects have been
327 challenged by Azzolina et al. (2015). Using confidential data on 31 reservoirs under EOR,
328 Azzolina et al. estimated the crude recovery rate varied from 1.8 to 4 bbl/t CO_2 . Data reported
329 by Murrell and DiPietro (2013) suggest similar efficiencies, while estimates by King et al. (2013)
330 range from 1.4 to 3.3 bbl/t CO_2 . Thus, a large range of efficiencies are defensible. In reality,
331 efficiency will vary over space and time, changing with different geological conditions and
332 technological development. For our baseline model, we select an intermediate value of 3 bbl/t
333 CO_2 , but explore the effect of variable efficiencies.

334 **4.5. Oil Production**

335 Oil production from EOR reservoirs will be dependent on the geology of the reservoir and its
336 history of exploitation, and it is difficult to make generalizations about oil production via EOR.
337 We estimated the total oil production (Q) over the 30-year life of the project as a fraction of the
338 original oil in place (OOIP).

$$Q = OOIP * RF \quad \text{Eq. 11}$$

339 Other authors have assumed RF to be 15% of OOIP (Nunez-Lopez et al. 2008), and empirical
 340 measurements of RF are generally between 5 and 25% of OOIP (Oleas 2017). For our baseline
 341 parameterization, we select a value of 17.5%.

342 Nunez-Lopez et al. (2008) provided data on the estimated OOIP for 120 Louisiana
 343 reservoirs that passed geotechnical screening criteria as being amenable to EOR and the OOIP
 344 and depth of these reservoirs become input to the model. The model is geologically simple and
 345 only requires information on reservoir OOIP and depth. This allows the model to be
 346 generalizable to nearly any reservoir, however, the oil production values are unlikely to be
 347 accurate if the model is applied to reservoirs that have not been screened for geotechnical
 348 parameters. See Nunez-Lopez et al. (2008) for details on the geotechnical screening process.

349 **4.6 Production Volumes over Time**

350 Tertiary oil production from EOR reservoirs follows a decline curve as in other
 351 hydrocarbon production systems. Following Jahediesfanjani (2017), we assumed a standard
 352 exponential decline where

$$q_t = q_i e^{-D_i t} \quad \text{Eq. 12}$$

353 Where q_t is oil production in bbls per year at year t , q_i is the initial oil production (bbls/year), and
 354 D_i is the decline rate per year. Equation 12 was used to calculate oil production in year t . From
 355 Equation 11, the integral of q_t from year zero to year 30 is Q which is also given by (Poston and
 356 Poe 2008):

$$Q = \frac{q_i}{D_i} (1 - e^{-D_i n}) \quad \text{Eq. 13}$$

357 And rearranging for q_i gives:

$$q_i = \frac{QD_i}{1 - e^{-D_i n}} \quad \text{Eq. 14}$$

358 Jahediesfanjani (2017) estimated decline curve parameters from CO₂-EOR systems based
359 on 15 reservoirs for which production data were available. While there were only 15 reservoirs in
360 the analysis, small reservoirs had higher decline rates than large reservoirs (Table 5) and we
361 therefore estimated D_i based on the OOIP of the reservoir according to Table 5.

362 **4.7 Cash Flow Calculations**

363 The cash flow was evaluated in a single integrated model in which carbon was captured from one
364 of four sources (ammonia production, ethylene oxide production, natural gas processing, or
365 hydrogen production). Capital and operational costs of the capture system were determined from
366 section 4.1, above. CO₂ was transported some distance via pipeline and injected, incurring
367 capital and operational costs as described in sections 4.2 and 4.3, respectively. Data on original
368 oil in place and reservoir depth were input to the model based on the analysis of Nunez-Lopez et
369 al. (2008). All revenue in the model is generated by the production of oil, which is sold at a \$50
370 per barrel in the baseline parameterization, and the generation of EOR tax credits. In 2019\$, a
371 barrel of oil would be \$57, roughly equivalent to late 2019 oil prices; nonetheless, oil prices are
372 highly variable, and other values could be justified. The tax credits are assumed to be \$35 per
373 tonne consistent with the 2018 45Q expansion and are treated as normal income.

374 We calculated cash flows assuming either no discount rate or a 10% discount rate and a
375 project lifetime of 30 years. Tax rates and depreciation were not considered. While these
376 financial assumptions are highly unrealistic for actual financial planning purposes, the present
377 interest is on techno-economic feasibility and identifying sources of costs and opportunities for

378 economies rather than parameterizing actual decision-making. For simplicity, we also assumed
379 that oil production began in year 1 of injection and followed a single year (year 0) of capital
380 expenses. In reality, there will be a multi-year investment period in the capture, transport and
381 injection systems such that the capital expenses we model as occurring in year 0 will actually be
382 spread among the prior two to four years. Future models may take this more realistic distribution
383 of capital expenses into account.

384 **5. Results and Discussion**

385 For simplicity, we discuss the costs and production from a single representative reservoir,
386 Paradis. Paradis is a Miocene sand discovered in 1939. There are a number of reservoirs in the
387 field, including a 9,000 ft reservoir that was the target of previous EOR injections, but we
388 assume that this 40-year-old equipment is not used. We model an 11,000 ft reservoir with an
389 estimated OOIP of 206 MMbbls. Paradis is relatively close to the LCC, approximately 9 miles
390 from the nearest major industrial facilities in Norco, Louisiana, and approximately 60 miles from
391 the most distant facilities in the LCC. Therefore, we assume a conservative 50-mile transport
392 distance. We assume *RF* is 17.5 and *EF* is 3 bbl/t CO₂. Given these assumptions, the initial oil
393 production was estimated to be approximately 3 million bbls in the first year.

394 **5.1 CO₂ Accounting**

395 Figure 8 shows the modeled oil production from the Paradis reservoir and CO₂ purchases
396 along with the CO₂ emissions from the combustion of the produced oil, assuming an emission of
397 0.43 tonnes CO₂ per bbl (EPA 2018). Oil production and CO₂ purchases decline rapidly over the
398 first decade of the project. While a thorough life cycle analysis is beyond the scope of the
399 present paper, the total CO₂ purchased over the life of injection is about 15% less than the CO₂

400 emitted through the combustion of the produced oil (12 million tonnes purchased versus 14
401 million tonnes emitted). Note that estimates of life-cycle CO₂ emissions are highly dependent on
402 assumptions about the efficiency factor; when the efficiency factor is cut in half (from 3 to 1.5),
403 the amount of CO₂ purchased doubles so that it significantly exceeds the CO₂ emissions from oil
404 production (24 million tonnes purchased versus 14 million tonnes emitted)¹⁰.

405 **5.2 Cash Flows**

406 The summed, non-discounted cash flows for the ammonia (\$919 million), ethylene oxide
407 (\$969 million) and natural gas processing (\$998 million) systems are quite similar and positive
408 while the cash flow for the hydrogen capture system (\$41 million) is more negative (See
409 Supplementary Figure 1). Cash flow becomes negative late in the life of all four system types as
410 the costs of operating the reservoir exceed the oil revenue. Table 6 depicts the net present value
411 by source type for various oil prices. At \$50 per bbl oil prices and given a modest 10% discount
412 rate, the cash flow from the hydrogen-based capture system becomes negative (-\$214 million)
413 while the net cash flow of the other source types remains positive. CO₂ capture from hydrogen
414 production only generates a positive NPV at oil prices above \$70 per bbl, while the other three
415 industrial source types remain cost effective even at low oil prices.

416 Figure 9 shows discounted cash flows from an ammonia-based EOR system with and
417 without the tax credits established by the February 2018 amendments to section 45Q of the 2005
418 Energy Policy Act. Using a 10% discount rate, the tax credit increases the net present value from
419 \$158 million to \$453 million. The inclusion of the tax credits in non-discounted cash flows has a
420 similar effect.

¹⁰ This illustrates that the meaning of the “efficiency factor” depends on the aim of the system. Paradoxically, if the aim of the system is to sequester carbon, a low efficiency factor is preferred. If the aim of the system is to produce hydrocarbons, a higher efficiency factor is preferred.

421 The efficiency factor (*EF*) is a critical unknown parameter and values from
422 approximately one to five are defensible. In the default parameterizations discussed so far, we
423 have utilized an intermediate value of three. See supplementary Figure 2 for non-discounted
424 cash flows given efficiency factors of 1.5, 3, and 4.5 tonnes CO₂/ bbl at \$50 per bbl oil. Higher
425 efficiency factors improve cash flows, but even an efficiency factor of 1.5 generates a net non-
426 discounted cash flow of \$347 million and a net discounted cash flow of \$252 million.

427 To this point, we have only discussed results from a single reservoir, Paradis. However,
428 the model is easy to parameterize with alternative reservoirs given their original oil in place and
429 reservoir depth. Table 7 shows the net discounted cash flow for an ammonia capture system
430 supplying selected Louisiana oil fields at 50- or 100-mile transport distances. While there is
431 relatively little effect of increasing transportation distance, small fields have low or negative net
432 cash flows, suggesting that there are significant economies of scale associated with field
433 development costs.

434 **5.3 Model Limitations**

435 The model is relatively simple to parameterize and this allows for a significant degree of
436 generality. However, the generality of the model implies a loss of realism, and this is especially
437 true for the geological processes. The model estimates the oil production based only on the
438 original oil in place. While the analysis is constrained to reservoirs that have passed
439 geotechnical analysis for suitability to EOR (e.g. mature, water drive fields that declining after
440 secondary recovery), the model does not take into account the wide variety of factors that could
441 impact recovery volumes. However, many of these factors are either not known for all fields or
442 not publicly disclosed, and the model is intended to provide a mean estimate of cash flows given

443 limited data. For example, King et al. (2013) used hydrocarbon pore volume to constrain CO₂
444 injection while we based CO₂ injection on OOIP because hydrocarbon pore volume was not
445 available for Louisiana's potential EOR fields. As a result of these simplifications, the model
446 may be more useful for high-level planning and policy purposes than for decision-making for
447 any individual EOR system.

448 The simplistic treatment of several financial parameters, especially taxes and
449 depreciation, may also be critiqued. The model was built to examine the system-wide feasibility
450 of a capture-transport-inject EOR system, however, in practice, this system may be operated by
451 three separate corporate entities. Thus, the tax regime is not obvious and would depend on the
452 allocation of cash flows among firms. Nonetheless, the incorporation of taxes will likely serve to
453 reduce net cash flows to the EOR system.

454 While we assumed that the development of an EOR system in Paradis would not rely
455 heavily on the existing infrastructure, this assumption is not consistent with the previous
456 development of an EOR facility in Paradis. As discussed above, a shallower reservoir in the
457 Paradis field was flooded with CO₂ in the early 1980's. For the sake of comparison to other
458 fields, we ignored this development in our cost models, however, the details of the original EOR
459 development of Paradis may be instructive for future development of Paradis and other fields in
460 the LCC. When Paradis was developed for EOR in the early 1980's, CO₂ was supplied by two
461 nearby ammonia facilities. To transport this CO₂, an existing 14-inch diameter natural gas
462 pipeline was converted to CO₂ service and the CO₂ was transported as a low-pressure gas in a
463 pipeline with a maximum allowable operating pressure of 814 psia. This pipeline was able to
464 transport approximately 570,000 tonnes of CO₂ per year without the need for construction of a
465 new supercritical line as envisioned in our model. Likewise, for the injection of the CO₂, the

466 operator was able to adapt three existing compressors with a combined 3,980 hp, thereby
467 avoiding significant capital costs for compression (Bears et al. 1984). Similarly, in the
468 Quarantine project, the operator drilled one new production well and recompleted six other wells
469 including one producer well that was converted for injection (Hsie and Moore 1988). While
470 each project is unique and opportunities for reuse will vary, it is likely that the models may
471 conservatively overstate some capital expenditures because it is not possible to know which
472 wells, pipelines, and compressors can be repurposed at each potential EOR field.

473 Similarly, it is likely that other capital expenditures may be underestimated for some
474 fields. The number of new wells is user input, but it is difficult to generalize because it depends
475 both on the geology of the field and the condition of the existing infrastructure. In our default
476 parameterization of Paradis, we assumed 10 new wells would be drilled for the injection system,
477 but this may not be sufficient.

478 Finally, the model ignores the possibility that a single capture system might be built to
479 supply an increasing number of EOR fields. As EOR fields mature, their needs for CO₂ decrease.
480 While we discounted the operating costs of the capture facility to account for the reduced CO₂
481 capture, the capture facility represents a large capital cost and a firm that has invested in a
482 capture facility is likely to seek other CO₂ buyers to make use of its capital investment. Future
483 modelling should take this into account as it will have significant effects on the cost
484 effectiveness of the system.

485 **6. Conclusions**

486 An integrated carbon capture-EOR system in Louisiana has the potential to generate positive
487 discounted cash flows at modest oil prices, however, this applies only to high purity sources.

488 Hydrogen production, which produces exhaust that has a CO₂ concentration intermediate
489 between combustion exhaust and ethylene oxide production, ammonia production, and natural
490 gas processing, returns negative cash flows in most circumstances. This suggests that
491 anthropogenic EOR may, at present, be a plausible means to reduce the carbon intensity of
492 industries with high-purity emissions, but that other options will be necessary for more general
493 industrial utilization.

494 The inclusion of the 45Q tax credits add significant cash flow to the model, however, we
495 did not study which projects are expected to be stimulated by the passage of the tax credit.
496 Presumably, the purpose of the passage of the tax credit was to provide an incentive so that
497 projects that fell below profitability would generate positive NPV. In our cursory analysis, the
498 profitability of the system was driven by the capture component such that hydrogen capture
499 generated negative NPV with and without the tax credit, while the other capture types generated
500 positive cash flows with and without the tax credit. Thus, a future analysis could use the model
501 presented here to identify the marginal projects whose NPV becomes positive with the inclusion
502 of the tax credit. Similarly, our analysis was limited to a single oil price environment. Future oil
503 prices may change our conclusions.

504 A functional EOR market requires integration across multiple CO₂ sources, pipeline
505 operators, and EOR operators with each player in the market generating a sufficient return to
506 justify operations, but without creating costs that make operations unprofitable for the other
507 players. Because of these conflicts, partnerships and joint ventures may be more feasible
508 methods for development. The model presented here is essentially a cash flow model of a joint
509 venture between capture, transportation, and EOR operators and suggests that in at least some
510 circumstances, such a joint venture may be profitable. Our results suggest that joint ventures that

511 include high-quality sources, transport firms, and EOR operators may be profitable today, but
512 that capture for lower quality CO₂ sources may require either the purchase of CO₂ by the EOR
513 firm (e.g. a subsidy) and/or a network of EOR and saline storage options that improve the
514 economics of the capture investment.

515

516

517 **References**

518 Ahman, M., Nilsson, L.J., 2015. Decarbonizing Industry in the EU: Climate, Trade and Industrial
519 Policy Strategies. In: Dupont, C., Oberthur, S. (eds.) Decarbonization in the European
520 Union. Energy, Climate and the Environment. Palgrave Macmillan, London.

521 Ahman, M., Nilsson, L.J., Johansson, B., 2017. Global climate policy and deep carbonization of
522 energy-intensive industries. *Climate Policy* 17, 634-649.

523 Advanced Resources International (ARI). 2006. Basin Oriented Strategies for CO₂ Enhanced Oil
524 Recovery: Onshore Gulf Coast. U.S. Department of Energy, Office of Fossil Energy.
525 Washington, D.C.

526 Ayers, R.U., 1989. Industrial metabolism. In: *Technology and Environment*, 23-49. The National
527 Academies Press, Washington, D.C.

528 Azzolina, N. A., Nakles, D. V., Gorecki, C. D., Peck, W. D., Ayash, S. C., Melzer, L. S.,
529 Chatterjee, S. 2015. CO₂ storage associated with CO₂ enhanced oil recovery: A statistical
530 analysis of historical operations. *International Journal of Greenhouse Gas Control*, 37,
531 384-397.

532 Bears, D. A., Wied, R. F., Martin, A. D., Doyle, R. P. 1984. Paradis CO₂ Flood Gathering,
533 Injection, and Production Systems. *Journal of Petroleum Technology*, 36(08), 1312-1320.

534 Cuéllar-Franca, R.M., Azapagic, A., 2015. Carbon capture, storage and utilisation technologies:
535 A critical analysis and comparison of their life cycle environmental impacts. *Journal of
536 CO₂ Utilization* 9, 82-102.

537 Dicharry, R.M., Perryman, T., Ronquille, J., 1973. Evaluation and design of a CO₂ miscible
538 flood project-SACROC unit, Kelly-Snyder field. *Journal of Petroleum Technology* 25,
539 1309-1318.

540 Dilmore, R. M. 2010. An assessment of gate-to-gate environmental life cycle performance of
541 water-alternating-gas CO₂-enhanced oil recovery in the Permian Basin. National Energy
542 Technology Laboratory, DOE/NETL-2010/1433

543 Dooley, J.J., Dahowski, R.T., Davidson, C.L., Wise, M.A., Gupta, N., Kim, S.H., Malone, E.L.,
544 2006. Carbon dioxide capture and geologic storage. A Technology Report from the
545 Second Phase of the Global Technology Strategy Program.
546 <http://www.globalchange.umd.edu/data/gtsp/workshops/2006/ccs_report.pdf>.

547 Edge, P., Gharebaghi, M., Irons, R., Porter, R., Porter, R., Pourkashanian, M., Smith, D.,
548 Stephenson, P., Williams, A., 2011. Combustion modelling opportunities and challenges
549 for oxy-coal carbon capture technology. *Chemical Engineering Research and Design* 89,
550 1470-1493.

551 Energy Information Administration (EIA), 2016. Trends in U.S. Oil and Natural Gas Upstream
552 Costs. U.S. Department of Energy.
553 <<https://www.eia.gov/analysis/studies/drilling/pdf/upstream.pdf>>.

554 Environmental Protection Agency (EPA) 2018. Greenhouse gasses equivalencies- calculations
555 and references. U.S. Environmental Protection Agency.
556 <https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references>

558 Fox, M. J., Simlote, V. N., Stark, K. L., Brinlee, L. D. 1988. Review of CO₂ Flood, Springer “A”
559 Sand, Northeast Purdy Unit, Garvin County, Oklahoma. *SPE Reservoir Engineering*,
560 3(04), 1161-1167.

561
562 Godec, M., 2014. Acquisition and Development of Selected Cost Data for Saline Storage and
563 Enhanced Recovery (EOR) Operations. Department of Energy/National Energy
564 Technology Laboratory-2014/1658.

565 Global CCS Institute, 2017. Large-scale CCS facilities. In: Global Status of CCS: 2017.
566 <http://www.globalccsinstitute.com/sites/www.globalccsinstitute.com/files/uploads/global-status/1-0_4529_CCS_Global_Status_Book_layout-WAW_spreads.pdf>.

567 Grigg, R., McPherson, B. 2007. Factsheet for Partnership Field Validation Test.
568 https://www.netl.doe.gov/publications/proceedings/08/rcsp/factsheets/10-SWP_SACROC%20EOR%20Sequestration_Oil.pdf

569 Harris, G.D. 1910. Oil and Gas in Louisiana with a Brief Summary of Their Occurrence in
570 Adjacent States. U.S. Geological Survey, Department of the Interior. Bulletin 429.

571 Haszeldine, R.S., 2009. Carbon capture and storage: how green can black be? Science 325, 1647-
572 1652.

573 Holm L.W., O'Brien L.J. 1971. Carbon Dioxide Test at the Mead-Strawn Field. Society of
574 Petroleum Engineers 3103: 431-442.

575 Hsie, J. C., Moore, J. S. 1988. The Quarantine Bay 4RC CO₂ WAG Pilot Project: A Postflood
576 Evaluation. SPE Reservoir Engineering, 3(03), 809-814.

577 Jablonowski, C. Singh, A. 2010. A Survey of CO₂-EOR and CO₂ Storage Project Costs. SPE
578 Paper No. 139669-MS presented at the SPE International Conference on CO₂ Capture,
579 Storage, and Utilization, New Orleans, Louisiana, USA, 10-12 November 2010

580 Jacobson, M. Z., Delucchi, M. A., Bazouin, G., Bauer, Z. A., Heavey, C. C., Fisher, E., Yeskoo,
581 T. W. 2015. 100% clean and renewable wind, water, and sunlight (WWS) all-sector
582 energy roadmaps for the 50 United States. Energy & Environmental Science, 8(7), 2093-
583 2117.

584 Jahedesfanjani, H., 2017. Application of decline curve analysis to estimate recovery factors for
585 carbon dioxide enhanced oil recovery. In: Verma, M.K., Three approaches for estimating
586 recovery factors in carbon dioxide enhanced oil recovery. U.S. Geological Survey
587 Scientific Investigations Report 2017-5062C.

588 Jaramillo, P., Griffin, W.M., McCoy, S.T., 2009. Life cycle inventory of CO₂ in an enhanced oil
589 recovery system. Environmental Science and Technology 43: 8027-8032.

590 Jarrell, P.M., Fox, C., Stein, M., Webb, S. 2002. Practical Aspects of CO₂ flooding. Society of
591 Petroleum Engineers, Monograph 22. Richardson, TX. 214 pp.

592 King, C. W., Gülen, G., Cohen, S. M., Nuñez-Lopez, V. 2013. The system-wide economics of a
593 carbon dioxide capture, utilization, and storage network: Texas Gulf Coast with pure
594 CO₂-EOR flood. Environmental Research Letters, 8(3), 034030.

595 Kuuskraa, VA & M Wallace. 2014. CO₂-EOR set for growth as new CO₂ supplies emerge. Oil
596 and Gas Journal 112: 66-76.

597 Massachusetts Institute of Technology (MIT). 2016. Carbon Capture and Sequestration Project
598 Database. <https://sequestration.mit.edu/tools/projects/index.html>

599 McCoy, S.T. 2009. The economics of CO₂ transport by pipelines and storage in saline aquifers
600 and oil reservoirs. Carnegie Mellon University. 247 pp.

601 McCoy, S. T., Rubin, E. S. 2008. An engineering-economic model of pipeline transport of CO₂
602 with application to carbon capture and storage. International Journal of Greenhouse Gas
603 Control, 2(2), 219-229.

604

605

606 Metz, B., Davidson, O., De Coninck, H., Loos, M., Meyer, L.. 2005. IPCC special report on
607 carbon dioxide capture and storage. Intergovernmental Panel on Climate Change, Geneva
608 (Switzerland). Working Group III.

609 Middleton, R.S., Clarens, X., Liu, X., Bielichky, J.M., Levine, J.S., 2014. CO₂ Deserts:
610 Implications of Existing CO₂ Supply Limitations for Carbon Management.
611 Environmental Science and Technology 48, 11713-11720.

612 Morgan, D., Grant, T., Simpson, J., Myles, P., Poe, A., Valenstein, J., 2014. FE/NETL CO₂
613 Transport Cost Model: Description and User's Manual. Department of Energy/National
614 Energy Technology Laboratory-2014/1660.

615 Munson, R., 2016. Industrial CO₂ Capture and Treatment. Presentation given at the Southern
616 States Energy Board CCS Conference, New Orleans, LA. 2 November, 2016.

617 Murrell, G., DiPietro, P. 2013. North American CO₂ supply and developments. 19th Annual CO₂
618 Flooding Conference. Midland, TX.

619 National Energy Technology Laboratory (NETL). 2014. FE/NETL CO₂ Transport Cost Model.
620 DOE/NETL-2014/1667.

621 Noothout, P., Wiersma, F., Hurtado, O., Macdonald, D., Kemper, J., van Alphen, K., 2014. CO₂
622 Pipeline infrastructure—lessons learnt. Energy Procedia 63, 2481-2492.

623 Nunez-Lopez, V., Holtz, M.H., Wood, D.J., Ambrose, W.A., Hovorka, S.D., 2008. Quick-look
624 assessments to identify optimal CO₂ EOR storage sites. Environmental Geology 54,
625 1695-1706.

626 Oleas, R.A., 2017. Carbon Dioxide Enhanced Oil Recovery Performance According to the
627 Literature. In: Verma, M.K., Three approaches for estimating recovery factors in carbon
628 dioxide enhanced oil recovery. U.S. Geological Survey Scientific Investigations Report
629 2017-5062D.

630 Phillips, L. A., McPherson, J. L., Leibrecht, R. J. 1983. CO₂ Flood: Design and Initial
631 Operations, Ford Geraldine (Delaware Sand) Unit. Paper presented at the 58th Annual
632 Technical Conference and Exhibition, Society of Petroleum Engineers, San Francisco.
633 CA, October 5-8.

634 Pyo, K., Damian-Diaz, N., Powell, M., Van Nieuwkerk, J. 2003. CO₂ flooding in Joffre Viking
635 pool. Paper presented at the Canadian Petroleum Society's International Petroleum
636 Conference, Calgary, Alberta, Canada, June 10 – 12.

637 Rabindran, P., Cote, H., Winning, I.G., 2011. Integrity management approach to reuse of oil and
638 gas pipelines for CO₂ transportation, Proceedings of the 6th Pipeline Technology
639 Conference. Hannover Messe, Hannover, Germany, pp. 04-05.

640 Seevam, P., Race, J., Downie, M. Barnett, J., Cooper, R. 2010. Capturing Carbon Dioxide: The
641 Feasibility of Re-Using Existing Pipeline Infrastructure to Transport Anthropogenic CO₂.
642 Proceedings of the 8th International Pipeline Conference. Calgary, Canada. p. 1-14.

643 Singh, D., Croiset, E., Douglas, P.L., Douglas, M.A., 2003. Techno-economic study of CO₂
644 capture from an existing coal-fired power plant: MEA scrubbing vs. O₂/CO₂ recycle
645 combustion. Energy Conversion and Management 44, 3073-3091.

646 Simbolotti, G. 2010. CO₂ Capture and Storage. Energy Technology Systems Analysis Program,
647 International Energy Agency Tech Brief E14.

648 Strategic Online Natural Resources Information System (SONRIS). 2017. Louisiana Department
649 of Natural Resources. <http://www.sonris.com/>

650 Summers, W.M., Herron, S.E., Zoelle, A. 2014. Costs of Capturing CO₂ from Industrial Sources.
651 U.S. Department of Energy, National Energy Technology Laboratory. Report number:
652 DOE/NETL-2013/1602.

653 United States Environmental Protection Agency [US EPA]. 2017. 2015 Greenhouse Gas
654 Emissions from Large Facilities. Accessed: April 7, 2017.
655 <https://ghgdata.epa.gov/ghgp/main.do#>.

656 Wallace M., Goudarzi, L. Callahan, K., Wallace, R. 2015. A Review of the CO₂ Pipeline
657 Infrastructure in the U.S. U.S. Department of Energy, National Energy Technology
658 Laboratory. Report number DOE/NETL-2014/1681.

659 Whittaker, S. G. 2005. Geological characterization of the Weyburn field for geological storage of
660 CO₂: summary of Phase I results of the IEA GHG Weyburn CO₂ monitoring and storage
661 project. *In* Summary of Investigations 2005, (1), Saskatchewan Geological Survey.
662

663

664 **Table 1.** CO₂ concentrations in exhaust streams from power and industrial sources. (sources:
665 Metz et al. 2005; Summers et al. 2014; Munson 2016)

666

<i>Process</i>	<i>Capture Concentration (mole %)*</i>	<i>Partial Pressure (psia)</i>
Coal Fired Power Plant	3 to 14	2
Natural Gas Processing	99	23.3
Coal to Liquids	100	265
Gas to Liquids	100	265
Ethylene Oxide	100	43.5
Ammonia	97	22.8
Hydrogen	44.5	8.9

667

668

669 **Table 2.** Parameters and their default model values

<i>Parameter</i>	<i>Description</i>	<i>Value</i>
Field	Potential EOR Field	Selected from 120 LA fields identified by Nunez-Lopez et al. 2008
n	Duration of CO ₂ purchase in years	10
OOIP	Original Oil in Place	Determined from Nunez-Lopez et al. 2008
RF	Recovery Factor; % of OOIP recovered	17.5%
EF	Efficiency factor; bbls of oil produced per tCO ₂ purchased	3
Distance	Source to sink distance in miles	10-100
Capture system	Type of industrial system	Hydrogen; Natural gas processing; Ethylene oxide; Ammonia
Wells	Number of new injection wells	10
Distribution length	Length of the distribution system, in miles	20
Drilling cost	Cost to drill and complete injection wells, \$/ft	150
Injection pressure	Pressure of supercritical CO ₂ required for injection, psi	2200
Oil price	Price of oil, \$/bbl	50
C_{max}	Maximum quantity of CO ₂ purchased in year 1, tonnes	Derived from model input
C_t	CO ₂ purchased in year _t , tonnes	Derived from model input

670

671

672

673 **Table 3.** Capital and operational costs of retrofit industrial CCS systems, and best-fit parameters used for scaling capital costs; data
 674 from Summers et al. 2014

675

Process	Retrofit CAPEX (R_c ; \$ tonne $^{-1}$)	Design case emissions (t CO ₂ /yr)	Breakeven CAPEX (B_c ; \$ tonne $^{-1}$)	Breakeven OPEX (B_o ; \$ tonne $^{-1}$)	Best Fit Parameters		OPEX Cost ($OPEX_{CAPTURE_t}$; \$ tonne $^{-1}$)
					M	n	
<i>Natural Gas Processing</i>	42	551,818	6.2	11.36	1191	0.317	11.36
<i>Ethylene Oxide</i>	67	103,276	9.95	14.57	1445	0.351	14.57
<i>Ammonia Production</i>	71	389,639	10.55	15.97	3235	0.371	15.97
<i>Hydrogen Production</i>	271	273,860	43.43	74.84	15,571	0.392	74.84

676

677

679 **Table 4.** CO₂ injection and incremental oil production at selected EOR fields in North America

<i>Field/reservoir</i>	<i>Total CO₂ purchased (million tonnes)</i>	<i>Incremental oil production (million bbls)</i>	<i>Bbl produced per tonne CO₂ purchased</i>	<i>Reservoir geology</i>	<i>State or province</i>	<i>Source</i>
<i>Northeast Purdy unit</i>	6.2	36	5.8	Pennsylvanian sandstone	Oklahoma	McCoy 2009; Fox et al. 1988
<i>Kelly Snyder field</i>	87.5	402	4.6	Pennsylvanian carbonate	Texas	McCoy 2009; Grigg and McPherson 2007
<i>Ford Geraldine unit</i>	2.37	13	5.5	Permian sandstone	Texas	McCoy 2009; Phillips et al. 1983
<i>Joffre Viking unit</i>	3.6	23	6.4	Albian sand	Alberta	McCoy 2009; Pyo et al. 2003
<i>Weyburn unit</i>	20	130	6.5	Mississippian carbonate	Saskatchewan	Jaramillo et al. 2009; Whittaker 2005
<i>Weeks Island field</i>	0.044	0.26	5.9	Miocene sand	Louisiana	ARI 2006
<i>Quarantine field</i>	0.028	0.188	7.5	Miocene sand	Louisiana	Hsie and Moore 1988

683 **Table 5.** Decline curve parameters used in the cash flow model

<i>Field category</i>	<i>Category definition (MMbbls OOIP)</i>	<i>Number of fields</i>	<i>Average D_i (yr$^{-1}$)</i>
<i>Small</i>	<100	3	0.092
<i>Medium</i>	100-1,000	5	0.076
<i>Large</i>	>1,000	7	0.055
<i>All fields</i>		15	0.069

684

685

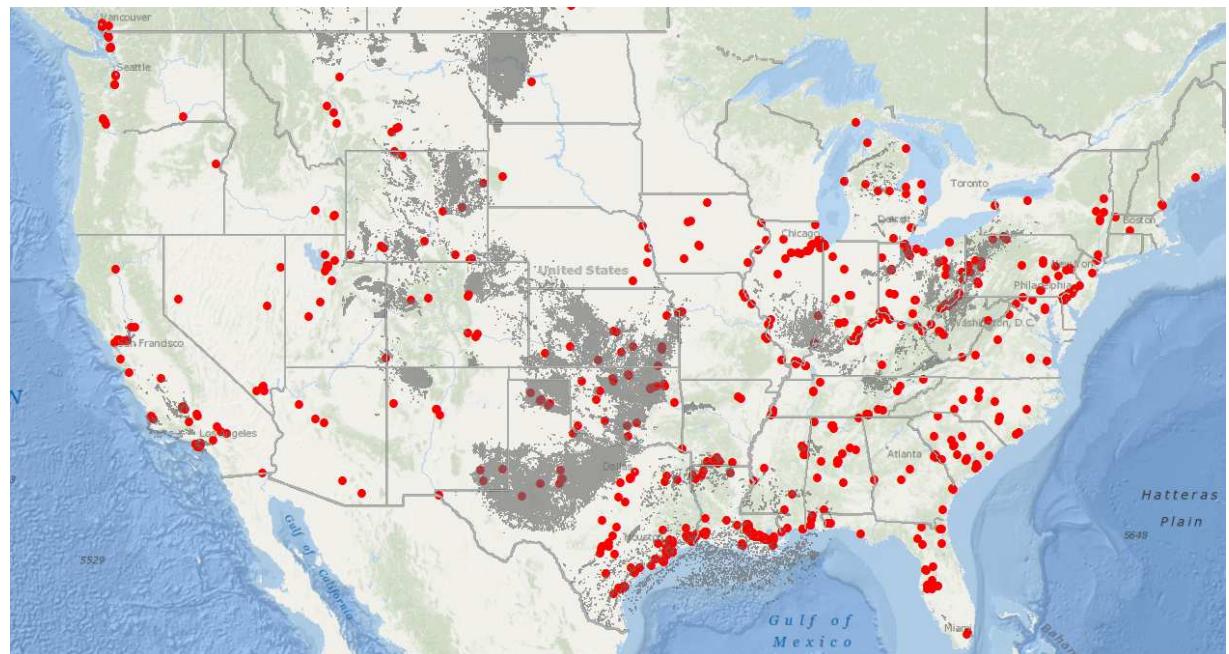
686 **Table 6.** Net present value (in million \$) of the baseline parameterization for the Paradis field

<i>Oil Price (\$/bbl)</i>	<i>Nat Gas Processing</i>	<i>Ammonia</i>	<i>Ethylene oxide</i>	<i>Hydrogen</i>
30	316	254	299	-413
50	571	509	553	-158
70	826	764	808	97

687

688

689

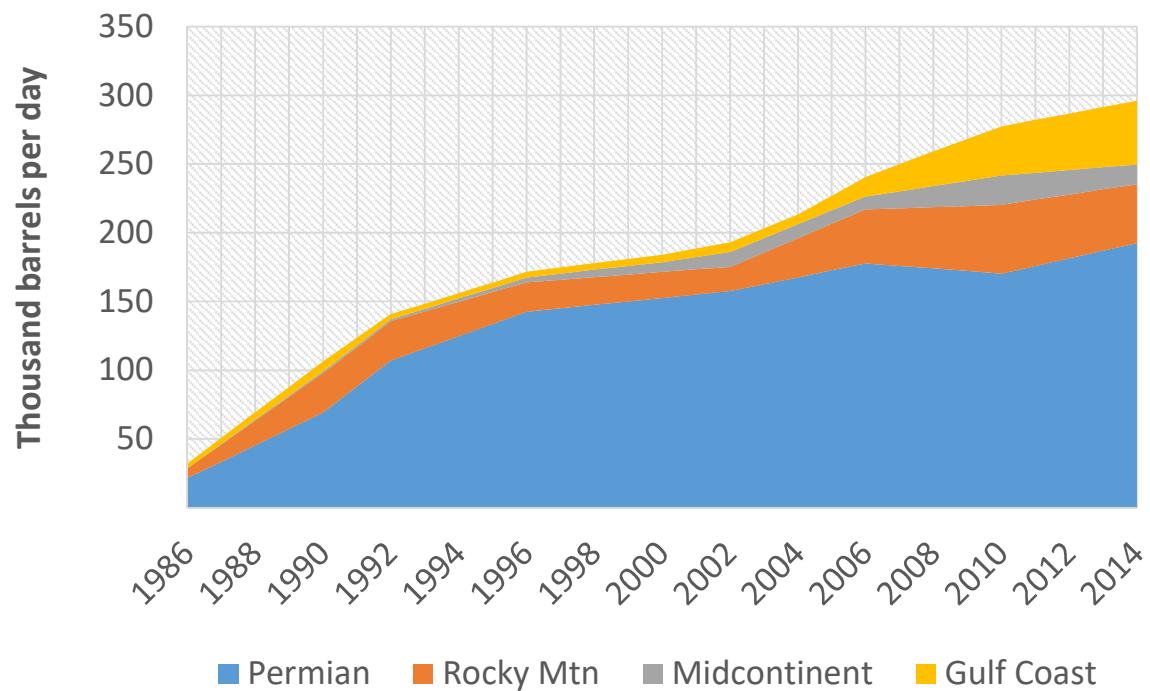

690 **Table 7.** Variation in NPV by EOR field assuming ammonia capture system

<i>Field</i>	<i>OOIP (million bbls)</i>	<i>Depth (ft)</i>	<i>NPV (million \$)</i>	
			<i>50 miles</i>	<i>100 miles</i>
<i>Paradis</i>	206	11,000	509	484
<i>Avery Island</i>	155	9,000	358	333
<i>Bayou Sale</i>	290	14,000	763	717
<i>Delhi</i>	334	3,135	915	880
<i>Hackberry West</i>	166	7,360	394	369
<i>Lake Pelto</i>	32	13,200	10	-8
<i>Clovelly</i>	17	11,900	-26	-44
<i>Erath</i>	28	8,695	10	-8

691

692 **Figure 1.** Industrial sources (red circles) and potential storage locations (dark grey) in the U.S.

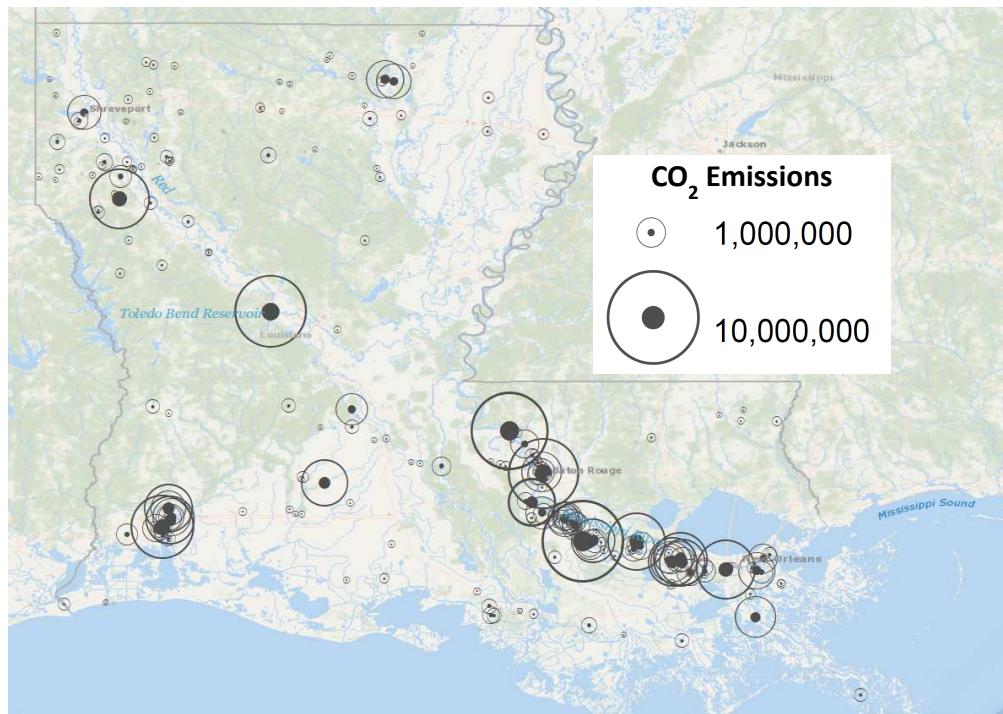
693 Data from NETL 2015

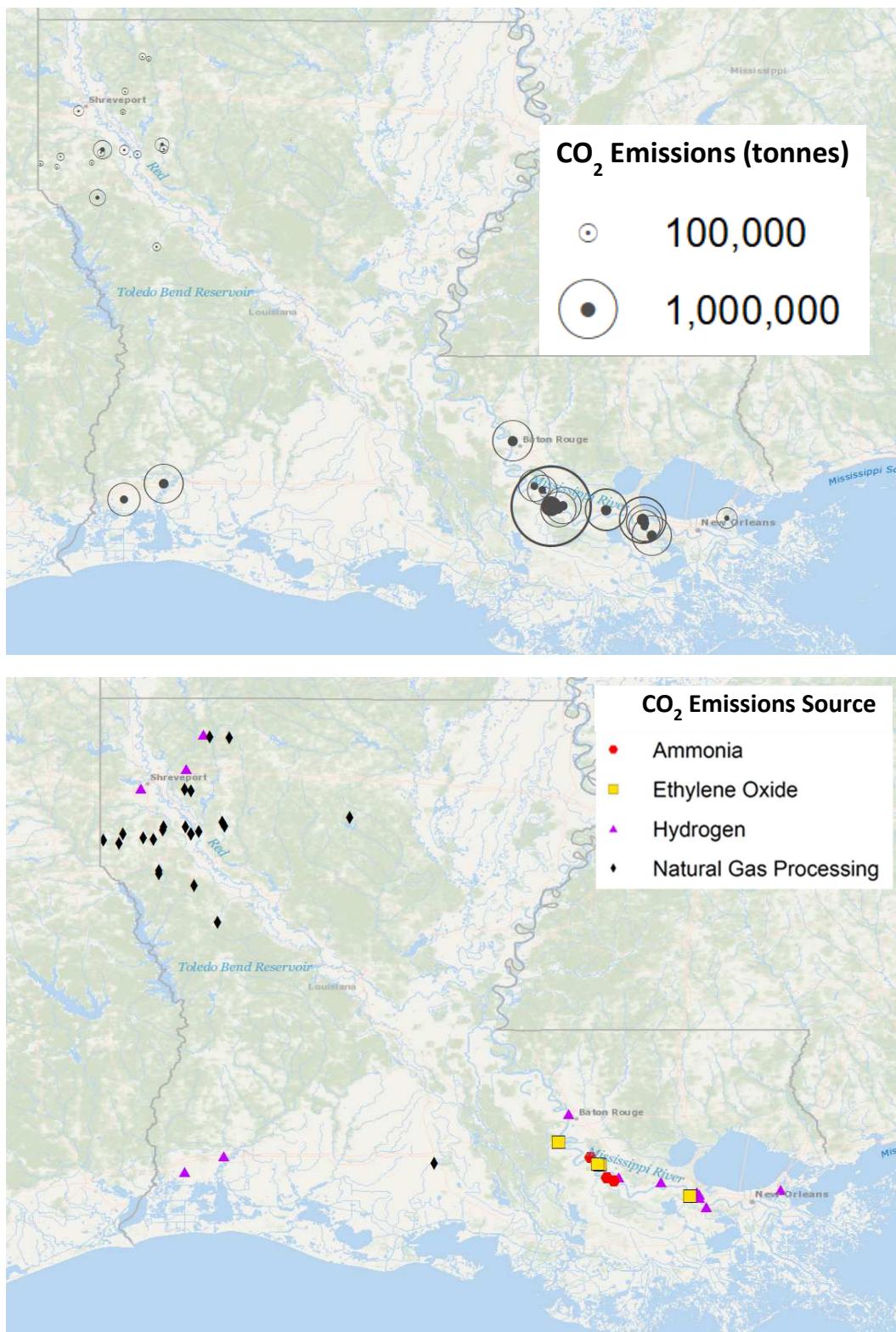

694

695

696

697


698 **Figure 2.** Crude oil production via EOR in the U.S., 1986-2014. Data from Kuuskraa and
699 Wallace 2014


700

701

702 **Figure 3.** Annual emission and from point sources of CO₂ emissions in Louisiana (2015). Data
703 from EPA 2017



706 **Figure 4.** Point sources of high purity CO₂ in Louisiana by annual emissions (top) and high
707 purity source production processes (bottom)

708

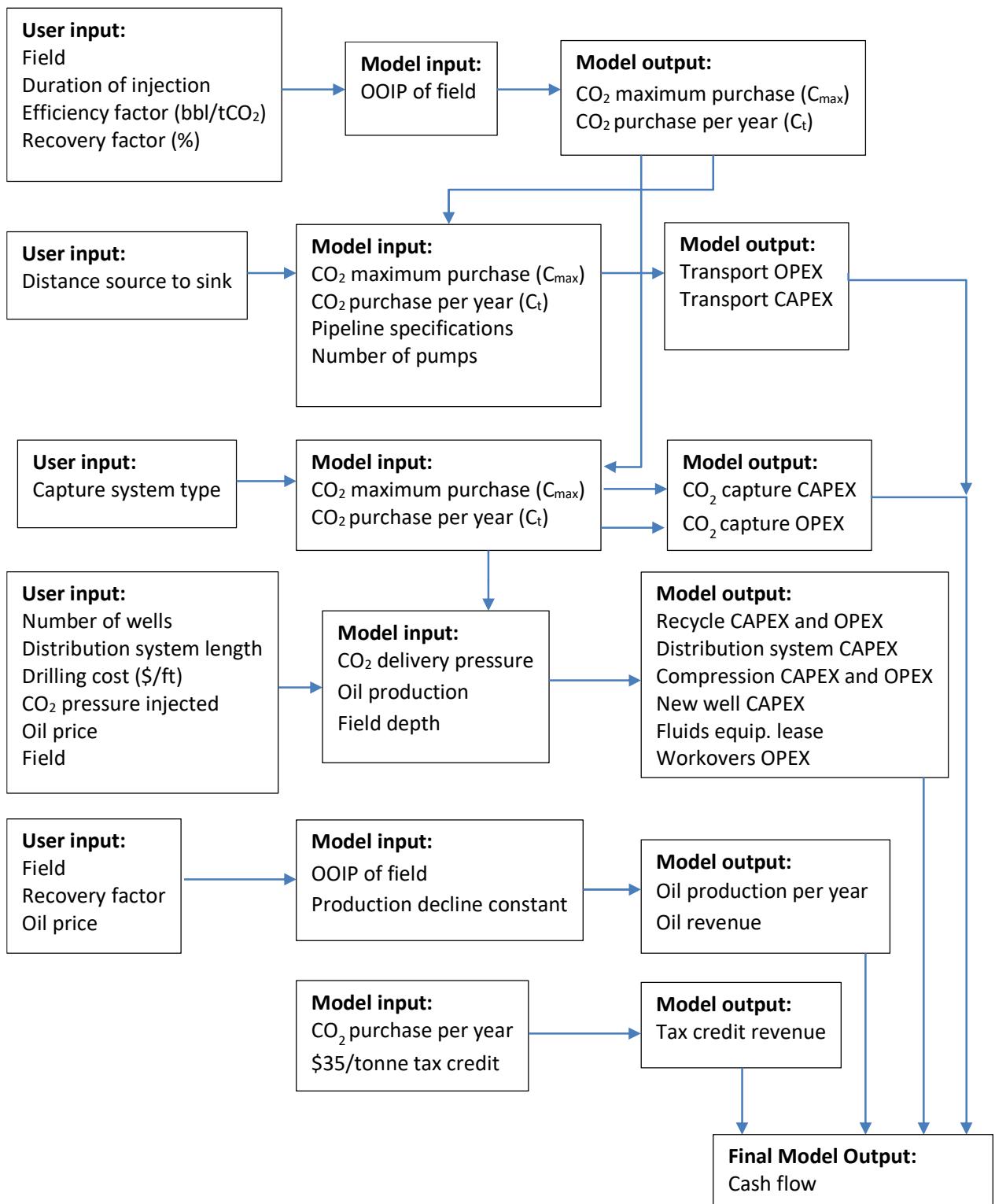
709 **Figure 5.** Diagrammatic depiction of the model system

711

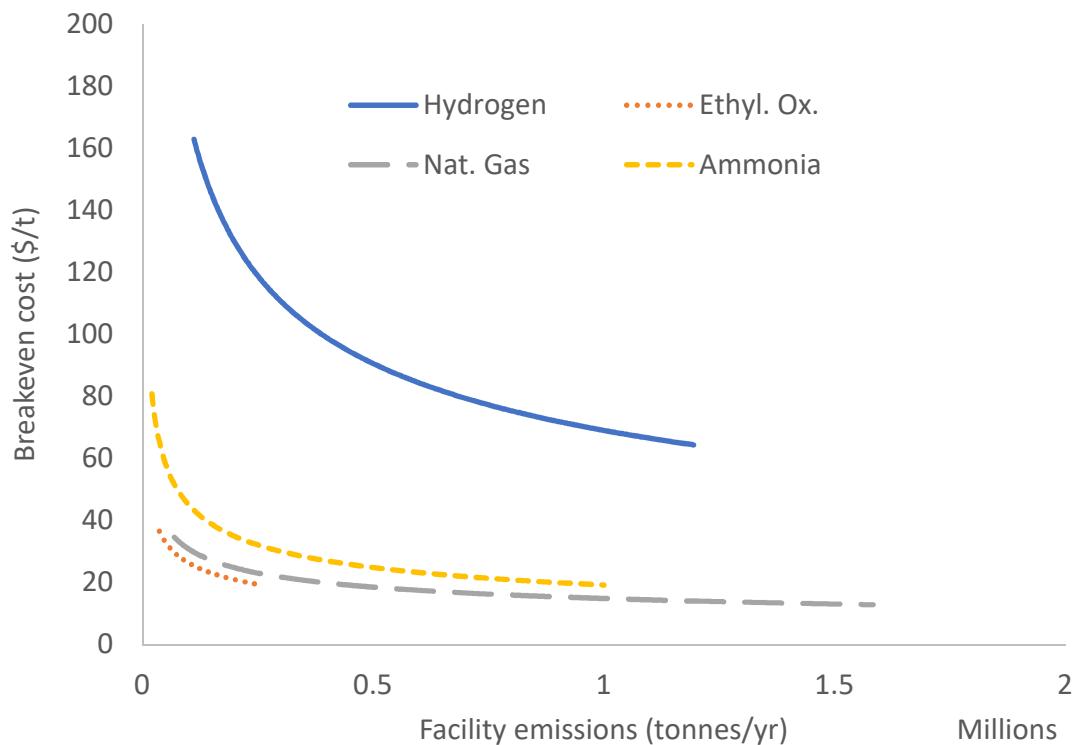
712

713

714


715

716

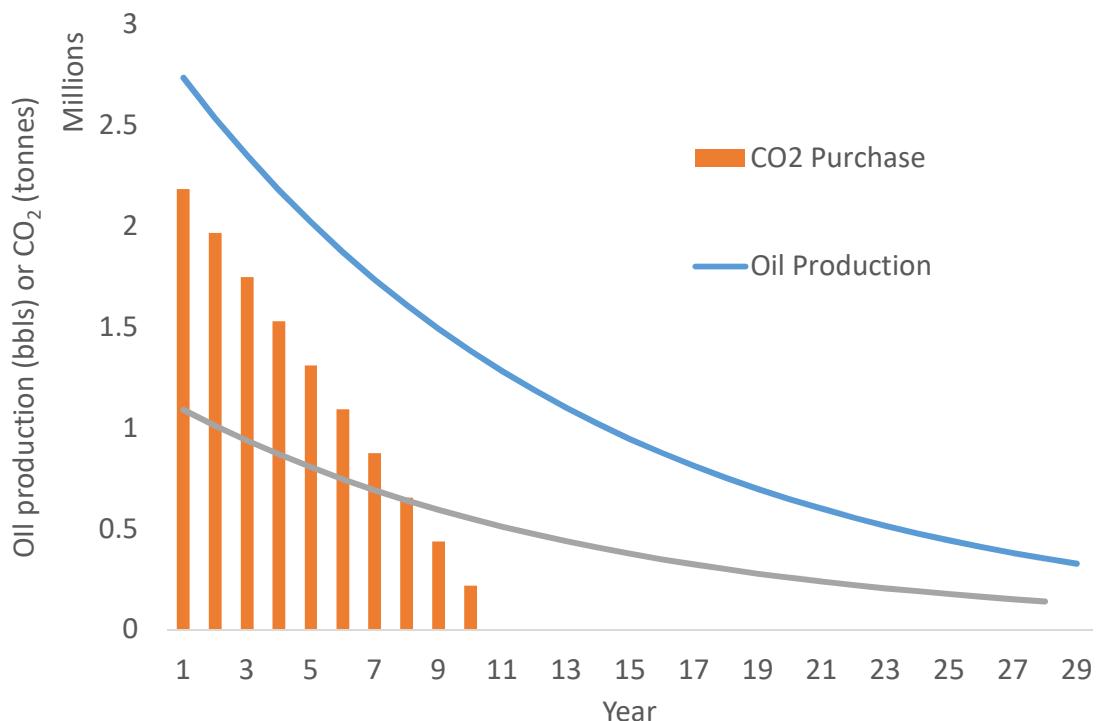

717

718

719

Figure 6. Schematic depiction of the integrated techno-economic model

722 **Figure 7.** Nonlinear relationships between facility emissions and the breakeven cost in the
723 Summers et al. (2014) model.

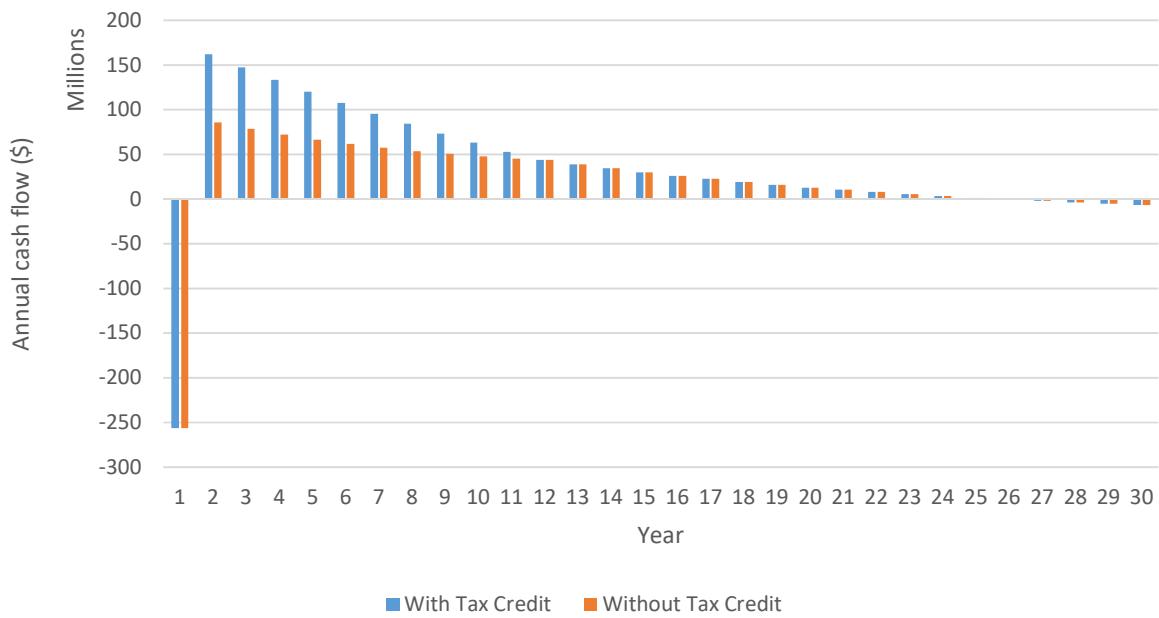


724

725

726

727 **Figure 8.** Modeled oil production, CO₂ purchases, and CO₂ emissions from combustion of
728 produced oil from the Paradis oil field



729

730

731

732 **Figure 9.** Discounted cash flows from an ammonia-based EOR system with and without the
733 EOR tax credit

734

735

736

737

738

739

740

741

742

743

744

745

746

747