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Abstract 

 
Surface topography and surface finish are two significant factors for evaluating the quality of 
products in additive manufacturing (AM). AM parts are fabricated layer by layer, which is quite 
different from traditional formative or subtractive methods. Despite rapid progress in additive 
manufacturing and associated optical metrology for quality control and in-situ monitoring, limited 
research has been conducted to investigate the reliability of 3D surface measurement data. The 
surface topologies scanned by multiple optical systems demonstrated significant differences due 
to varying sampling mechanisms, resolutions, system noises, etc. The 3D datasets should be 
trustworthy in order to extract parameters for quality assurance or feedback control from 3D 
surface measurements. In this paper, we set up new standards to evaluate the reliability of 3D 

surface measurement data and analyze the variation in the topographical profile. In this study, two 
non-contact optical methods based on Focus Variation Microscopy (FVM) and Structured Light 
System (SLS) were adopted to measure the surface topography of the target components. The two 
optical metrology systems generated two entirely different point cloud datasets. Statistical methods 
were applied to test the difference between the data obtained from the two systems. By using data 
analytics approach for comparison, it was found that the surface roughness estimated from the 
point cloud data sets of FVM and SLS has no significant difference, though the point cloud data 
sets were completely different. This paper provides standard validation approach to evaluate the 
plausibility of metrology data from in-situ real-time surface analysis for process planning of AM. 
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analysis. 
 

1. INTRODUCTION 

Additive manufacturing (AM), widely known as 3D printing, involves manufacturing of 
parts by building them layer by layer. It has developed rapidly in recent years, demonstrating its 
capability in a wide range of applications and many industries such as automotive, aerospace, and 
consumer products [1]. There are several advantages of AM processes compared to conventional 
subtractive manufacturing processes. Complex shapes with many intricate features can be made 
easily by AM processes [2]. Also, the material wastage is less compared to that of subtractive 
manufacturing [3]. Given that AM could be the future, it became necessary to inspect the quality 
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of the parts being made. The inherent problem in the AM parts is their strength, which was 
dependent on the surface profile of each layer being added [4]. In addition, tool traverse path 
impacts the part profiles significantly, leading to many researchers focusing on the characterization 
of surface roughness of 3D printed components [5-9]. 

Surface roughness denotes smoothness and quality of a surface. It is one of the most critical 
factors to assess the quality of manufactured components in the industry. The surface roughness 

measurement techniques could be classified into two categories: contact methods and non-contact 
methods [10]. For contact methods, a stylus was the most popular instrument for surface roughness 
measurement. The stylus runs perpendicularly to the surface of a fixed part along a straight line, 
and surface roughness could be calculated based on x/z position information of this line. For 
commercial application, Rank Taylor Hobson introduced the first instrument in Leicester, England 
called Talysurf [11]. By moving a probe along a surface, an analog electrical signal was generated 
when the probe vibrates with the surface variation. After obtaining this signal, the centerline 
average roughness (CLA) was calculated by a simple analog computer. This procedure eventually 
became the standard for measuring surface roughness [12]. Veniali et al. used a Taylor 
Hobson Talysurf Form Plus profilometer to measure a fused deposition model (FDM) part 

[13]. They found that the profile was effective in describing the micro-geometrical surface of FDM 
prototypes. However, the contact surface roughness method had inevitable limitations. Soft parts 
might be damaged during the measurement process because of the contact made by the stylus 
during the measurement process.  

Non-contact methods have been developed to overcome this issue. X-ray computed 
tomography method applied the characteristic of X-ray to calculate the surface roughness, A. 
Thompson et al. [14] reviewed studies using X-ray computed tomography (CT) technology to 
build up 3D surface maps of AM parts. Laser scanning could provide topography information with 
high accuracy which has attracted the attention of many researchers [15,16]. Other than laser 
scanning system, ultrasonic methods could also detect the surface roughness, which uses an 
ultrasonic transmitter for emitting sound pulses to the surface, based on the Doppler effect, the 

surface roughness was calculated [17-19]. Various microscope systems provided the advantages 
of the non-contact optical profiler method without damaging the part, fast response and higher 
accuracy. Poon et al. [20] compared stylus profiler, atomic force microscope (AFM) and non-
contact optical profiler to measure the surface roughness. Scanning electron microscopy [21], 
digital fringe projection [26] and stereomicroscope system [22] have been used for surface 
measurements. Neural network [23], digital image magnification technique [24], modified binary 
speckle image and adaptive optics [25] have been adopted for advanced image processing and data 
processing. Among these techniques, the structured light system provided fast response, high 
accuracy way for measuring the surface roughness. Zhang et al. [26] were able to utilize fringe 
projection techniques to perform in-situ inspection for laser powder bed fusion. Focus variation 

microscopy is another high accuracy metrology system that can be used for surface quality 
inspection in additive manufacturing [27]. In this work, we use these two metrology systems as 
testbeds to identify if the two different methods have consistent surface roughness values or the 
same surface. 
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Optical techniques are the preferred non-contact methods to measure the surface 
topography and calculate the surface roughness. Optical methods could analyze the surface 
topography with high efficiency based on different image processing methods, especially with the 
help of high performance computing nowadays. However, with different optical systems and light 
sources, there were still several considerable differences. In longitudinal turning process, modeling 
and prediction of surface roughness on parameters such as Ra, Rp, and Rz were compared to indicate 

the condition of surface roughness [28]. However, limited research has been done to determine 
whether the performance of different optical systems was consistent. Without such knowledge, the 
trustworthiness of data extracted from different metrology systems could not be determined. In 
order to compare the systems the same sample surface should be analyzed with different 
measurement systems. The focus of this research will be on the comparison of one surface 
roughness parameter to resolve the potential conflict between manufacturer and customer who use 
their own different optical system to check the quality of the manufactured parts. Our null 
hypothesis was that the surface topography from different systems based on point cloud data 
analysis followed the same distribution. If failing to reject the null hypothesis, it indicated that the 
surface roughness of the 3D-printed plastic or metal objects based on different optical systems 

were reliable, which could be used to compare the quality of different 3D-printed objects. Objects 
with better quality usually have lower surface roughness. If the two systems conflicted with each 
other, further work should be conducted to investigate the cause of difference between the two 
systems. 

Based on the point cloud data generated from each system, an algorithm was developed to 
align the two groups of topography information. In order to perform statistical comparison, the 
surface roughness was estimated from each point cloud data set. The Structured Light System 
(SLS) was employed to measure surface roughness of the additive printed part. In this work, since 
Focus Variation Microscopy (FVM) system has higher precision, it was used to verify the 
resolution of the SLS system, which helped the system to realize the potential reliable real-time 
surface measurement of 3D printed part during the manufacturing process. By scanning the 

topography information of each layer during the printing process, overall information of the 
surface roughness for a particular 3D printed part was achieved. 

2. METROLOGY SETUP AND MEASUREMENT METHODS 

2.1. Focus Variation Microscopy (FVM)  

The setup of the FVM is shown in Figure 1a. The resolution of the lens used was 1.1 µm, 
and the field of view was 2-3 mm square. Based on FVM, the topographical information of the 
additive manufactured part is demonstrated in Figure 1b. The height of this metal filament (from 
the top of the metal filament to the bottom of the metal filament, peak-to-peak value) was 0.224 
mm; the field of view used was 3 mm square. The focus variation microscopy was used to verify 
the accuracy of structured light system (which has a lower depth resolution). 



 

4 
 

 
Figure 1: (a) Schematic of Focus Variation Microscopy (FVM), and (b) FVM image of the 

additive manufactured metal part with constructed 3D data. 

2.2. Structured Light System (SLS) 

As shown in Figure 2a, the Structured light system (SLS) used in this paper was composed 
of the unit (A), a camera capturing images; unit (B), and a real-world 3D object; unit (C), a 

projector projecting fringe patterns. Fringe patterns were projected to object, and distorted phase 
lines were captured by the camera for 3D reconstruction. For establishing the pixel correspondence 
between the camera and the projector, we used the carrier phase information by implementing the 
least-square phase shifting algorithm [29].  

The least-square phase shifting algorithm could be mathematically described as Equations 

1-2. ��	represented the average intensity, ���represented the intensity modulation and ∅ was the 

phase obtained after solving the phase-shifted patterns. Since ∅ was computed by an arctangent 

function, phase jumps of 2� would occur. To remove the 2� phase discontinuities, an unwrapping 

process was done. Unwrapping was achieved by adding or subtracting multiples of 2� at the 

locations ��	, ��	where there was a discontinuity, to obtain the absolute phase Φ�	, ��. 
���	, �� � ���	, �� � ����	, ��cos�∅�	, �� � 2��/��  (1) 

∅	�	, �� � ������ �∑ !"#$%	�&"'( �(")*
∑ !"+,#	�&"'( �(")*

-     (2) 

Φ�	, �� � 	∅�	, �� � ��	, �� . 	2�    (3) 

After obtaining the phase map, we adopted a calibration-based 3D reconstruction algorithm 

[29] to convert the phase map Φ into 30�1, 2, 3�. The test system consisted of a digital-light-

processing (DLP) projector and a camera. The camera was attached to a telecentric lens with a 
magnification rate of 0.486. The resolution of the camera was set to 1280 × 960 pixels. The 
projector had a 912 × 1140 pixels resolution. We used 18 step phase-shifted patterns for phase 
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retrieval. Figure 2b shows the sample that was scanned using SLS and reconstructed 3D image 
(same part as Figure 1b, but different sizes for field of view and resolutions). 

 
Figure 2: (a) Schematic drawing of the SLS system, and (b) photograph and reconstructed 3D 

SLS geometry of the metal sample. 

3. ANALYTIC APPROACH FOR 3D SURFACE MEASUREMENT 

An AM machine could be equipped with a wide variety of optical sensing platforms based 
on specific manufacturing needs (e.g., repeatability, data sampling resolution). The problem was 
that different optical sensing techniques and systems tended to produce data with notable 
disagreement. Systematic approaches that could perform correlation analysis across sensing 
platforms were essential for obtaining reliable data. In this study, we developed a standard 
procedure for comparing the data from different optical metrology systems. The problems and 
approaches were discussed in details in the following sections.  

3.1. Extraction Algorithm for Cross-section Profile  

An additive manufactured metal sample (as shown in Figure 2b) was used for the 
measurement and data collection. The results were collected separately from FVM and SLS. Both 
systems captured the surface topography in the format of point cloud data. The resolution of the 
structured light system was 10 µm. The scanned area of the SLS was larger than that of FVM. In 
order to compare the results from the two systems, the scanned zone from both of the systems 
should be the same. Another challenge was that the data collected from the FVM system was not 
aligned with the SLS system, so it was difficult to ensure that the cross-sections extracted from the 
two-point cloud datasets correspond to the same location. Therefore, as a first step, the point cloud 
datasets from the FVM system and SLS system should be matched and.  

Iterative Closest Point (ICP) algorithm [30, 31] was applied to match and align each point 
from one point cloud data set to its corresponding point in the other point cloud data set. The ICP 

algorithm took two-point clouds (4 and 5) as input and returned the rigid transformation (rotation 

matrix 6 and translation vector 7) that best aligned the two point clouds. If the point cloud data 

from SLS was denoted by 5 and the one from FVM was 4, the point cloud data could be matched 
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by transforming either of those. The new point cloud dataset (corresponding to FVM) � can be 
expressed as:  

� � 6 ∗ 4 � 7     (4) 

6 and 7 were the rotation and translation matrices for aligning the point cloud data from 

FVM with SLS. In this way, both the point cloud data sets would be in the same coordinate system, 
and the corresponding points from the two systems would be aligned. Note that the point cloud 
data from FVM is denser than the one from SLS since FVM has a higher resolution. Another 
observation is that the spatial range of the FVM data is smaller and included in the one of SLS. To 
achieve finding the corresponding points, our strategy is that we make sure all the points of FVM 
can find their correspondence. In this case, correspondences can be many-to-one mappings. 
Therefore, the points that are overlapped in the same scanning area between FVM and SLS are 
taken into consideration for ICP alignment. By this means, ICP can correctly align the two sets of 
point cloud data with distinct densities and spatial ranges. In addition, when we use the metrology 
systems to measure the sample, we are clear about the approximate orientation and the position of 

the obtained point cloud data based on the knowledge of both systems, therefore we are able to 
provide a roughly correct initial alignment. Then, the ICP algorithm refines it iteratively, which 
ensures that the final alignment is accurate, and the correct corresponding cross-sections are 
compared. To extract the required cross-section, the points that were closest to this required cross-
section could be obtained using a k-nearest neighbor search algorithm [29]. The distance d of those 
points to the point (in the chosen cross section) was given by Equation 5. 

 9 � 	 �:�1� � 1�; � �2� � 2�;�	  (5) 

�1�, 2�� were the points in the chosen region and �1, 2� was the point on the required cross-
section. The distance between all the closest points was obtained, and the Gaussian model in 
Equation 6 was used to provide the weights for all the chosen points. Weights were assigned based 

on the perpendicular distance from the point to the cross section. The � and < were the indices for 

the points 1 and 2.  

=��, <� � 	 �
>√;@ A�

B&
&C&      (6) 

The 2D cross-sections extracted from the point cloud data of SLS and FVM are shown in 
Figure 3a-b. Note that the orientation of the cross-section is perpendicular to the printing direction. 
The cross-section along this direction provides much useful information such as bead width and 
layer height, which can be applied for printing quality assessment. From the extracted cross-
sections, various surface roughness parameters could be calculated. There were a variety of 

approaches to quantify the surface roughness, among them the Roughness Average 6D was the 

most widely used measurement in industry. In a cross-section of an object, define 3� 	to be the 

vertical coordinate of a point on the cross-section, where � was the index of scanned points on the 

selected line. 3E was defined as the mean of 3�	from all cross sections. The arithmetic average of 
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the surface roughness profile 6D  calculated using Equation 7 at multiple slicing locations was 

demonstrated in Figure 3c. 

6D � �
F∑ |3� � 3E|F�H�      (7) 

 
Figure 3: Image of the additive manufactured metal part: (a) 3D profiles based on SLS and FVM, 

(b) 2D cross-section profiles extracted at red lines, and (c) differences in 6D values at different 

slicing locations. 

As we can see from Figure 3c, the percentage differs based on the calculated 6D was up to 
36%. With such a big difference, it was difficult to identify the uniformity of the two datasets. If 
the data were to be used as a decision-making factor for feedback control or quality check, the 
results could generate significant ambiguities. In order to test the reliability of the 3D surface 
measurement data, two approaches based on 2D cross-section data analysis and direct 3D data 
comparison were developed.  

3.2. Statistical Approach for 2D Cross-section Analysis 

After extracting the data from two different 3D optical systems, the following statistical 
algorithms were used to compare the roughness parameter.  

3.2.1. Shapiro-Wilk Test  

The Shapiro-Wilk test [34] was used to check if a random sample I � J1�|	� �1,2, . . . , �M	came from a normal distribution. The null hypothesis of the Shapiro-Wilk test was that 

I followed a normal distribution. The test statistic was in Equation 8.  

N � �∑ D"O�"�P")* �&
∑ �O"�	Ō�&P")*

     (8) 

In Equation 8, 1��� was the �RS  the smallest value among all 1��5, 1̄	was the sample mean, and 

��  was a coefficient related to the standard normal distribution. If N was greater than the critical 

threshold, the normality assumption of I should be rejected. 

3.2.2. Paired t-test  

The paired t-test [33] was used to compare two population means where there were two 
samples, and the observations from these two samples could be paired. Assume we had two 



 

8 
 

dependent random samples I � J1�|	� � 1, 2, . . . , �M	 and T � J2�|	� � 1, 2, . . . , �M	 from normal 

distributions with the same standard deviation and means U�and U;. 1�and 2� were observed from 

the same entity,	� � 1, 2, . . . , � . The null hypothesis and alternative hypothesis were VE and V�, 

where VE:	U� � U; and V�:	U� X U;. The t-statistic was calculated in Equation 9. 

� � ∑ �O"�Y"�P")*
Z *
P�P[*�∑ �O"�Y"�&P")*

    (9) 

 If |� | was greater than the 97.5th percentile of the t-distribution with � � 1	degrees of 

freedom, which meant the p-value was less than 0.05, we rejected the null hypothesis and 

concluded that I and T were from two different distributions (U� X U;).  

3.2.3. Wilcoxon Signed-rank Test  

If two samples I � J1�|	� � 1, 2, … , �M  and T � J2�|	� � 1, 2, … , �M  did not come from 
normal distributions; Wilcoxon signed-rank test [36] should be used. There are many non-
parametric statistical tests that compared two samples without the requirement of normal 
assumption, such as Kolmogorov–Smirnov test [40], Wilcoxon rank sum test [41] and Wilcoxon 
Signed Rank Test. Wilcoxon signed-rank test was the most suitable one in this study, because it is 

particularly for matched pair samples and Ra measured by SLS and FVM were exactly matched 
pair sample. The steps of the Wilcoxon signed-rank test [36] was as follows in Figure 4.  

 
Figure 4: Wilcoxon test flowchart 

In the last step, 	�_ 	was 25 in the study conducted in this paper, and 5�`��1� was an 

indicator function. If 1 was positive, 5�`��1� would be 1; if 1 was negative, 5�`��1� would be -

1. If the calculated statistic N  was greater than the critical value of Na_�R�aDb,	cd 	 , the null 

hypothesis would be rejected, and we could conclude that X and Y were from a different 
distribution.  

A suitable test would be used according to the property of the data. If the normal 

assumption (6D the difference from the two systems) was violated, nonparametric methods would 

be preferred. Otherwise, the paired t-test would be used. If the surface roughness calculated using 
the two datasets from the same part had no significant difference, there would be no evidence 
against the assumption that the structured light system and the focus variation microscopy had the 
same performance on scanning. The working flow, as illustrated in Figure 5 below. 
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Figure 5: Workflow of statistical tests 

3.3. Analytical Approach for 3D Data Comparison 

In the previous section, data comparison among 2D cross-section profiles was established, 
which provided an effective method to evaluate data plausibility in the 2D domain (e.g., comparing 
profilometry and scanned 3D datasets). However, extracting 2D data from 3D datasets resulted in 
information loss, which would be a countermarch to the effort for future 3D analysis. To address 

this issue, instead of comparing 6D  values, we developed the approach based on Pearson's 
Correlation Coefficient (PCC) [37] for a direct comparison of surface topology data in 3D space. 
Essentially, PCC was a measure of the linear correlation between two variables, which took values 
between -1 and 1, where 1 indicated total positive linear correlation, 0 no linear correlation, and 
−1 total negative linear correlation.  

Once multiple 3D datasets were registered through iterative-closest-point and k-nearest 
neighbor resampling, consistency evaluation among the registered 3D data obtained from different 
optical systems could be performed. Therefore, the hypothesis was that if two 3D datasets were 
measured from the same surface, they should pass the PCC examination. The computation 
procedure of PCC was explained below.  

The first step was to convert the 3D point matrices into 2D depth images with well-aligned 

mesh grids. Supposing we had two converted depth images 0�	and 0; with a dimension of M. N 

from two different 3D data, the depth images would then be converted into vectors �� and �; with 

a length of M. N in preparation for calculation of PCC using Equation 10. 

 ghh � �i*�ij*�⋅�i&�ij&�
:�i*�ij*�⋅�i*�ij*�:�i&�ij&�⋅�i&�ij&�  (10) 

where �̅�, �̅; were the mean of the two vectors correspondingly, and “⋅” was the inner 
product. If two depth images were similar, the converted vectors should have a strong linear 
correlation with the PCC value close to one.  
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4. RESULTS AND DISCUSSION 

We would like to point out that p-values and statistical values in this study were a factor to 
identify differences among datasets; however, in the practical testing of this study, we also 
carefully reviewed the physical data along with the statistical significance to analyze the results. 
A statistically significant result proved the null hypothesis (no difference between measured 
outcomes). There has been a debate of statistical significance recently, arisen from the pharmacy 

and clinic testing [36, 37], indicating some false conclusions. In our study, all data were validated 
both physically and statistically, to avoid misuse of statistical significance.  

4.1. Data Analysis of 2D Cross-Section 

The cross-section images from FVM and SLS of the metal part are shown in Figure 5. The 
cross-section of FVM and the SLS were not precisely the same, but have the same trend, which as 
reasonable. A total of 50 (25 from SLS and 25 from FVM) cross-section profiles were extracted 
from both of the point cloud datasets. For each cross-section, there were 1801 points to calculate 

the 6D value using Equation 7, and the results are shown in Figure 6a-b. All the cross-sections had 

the same horizontal length of 2 mm. In the manufacturing process of selective laser melting of 
361L stainless steel, surface roughness Ra was measured for determining material removing rate 
[42]. In cutting process, the relationship of surface roughness parameter Ra and spindle speed, 
feed-rate and machining time was investigated [43]. In surface defect machining processing, 
surface roughness Ra of AISI 4340 part was calculated to prove this technique could manufacturing 
parts which satisfy ASTM standards [44]. In order to determine whether the performance of the 

two systems was similar, we compared the 6D values obtained from the cross-sectional plots of 

the two systems. The Shapiro-Wilk [34] test was conducted to determine whether the difference 
between the two samples follows the normal distributions or not. If the normality assumption was 
accepted, the paired t-test [35] would be used to test the population means of the two datasets. 
Otherwise, if the datasets violated the normality assumption, a non-parametric method, the 
Wilcoxon signed-rank test [36], would be used.  

 
Figure 5: Cross-section of the FVM and SLS based on scanned point cloud datasets 
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Table 1. Surface roughness data from FVM and SLS 

Slicing 

No. 

Ra _ FVM 

(µm) 

Ra _ SLS 

(µm)  

Slicing 

No. 

Ra _ FVM 

(µm) 

Ra _ SLS 

(µm) 

1 42.3917 53.4998  14 53.7451 49.1922 

2 50.2008 44.1331  15 44.1254 50.9112 

3 52.8794 50.3658  16 41.7624 56.1287 

4 52.7942 43.1504  17 53.6251 44.0176 

5 43.1264 52.4136  18 51.6375 43.2483 

6 54.2452 46.6477  19 54.1086 45.2432 

7 42.415 57.3948  20 41.9405 54.9878 

8 41.8247 57.202  21 53.3152 50.1836 

9 46.8622 46.9997  22 52.4384 50.3091 

10 48.5498 45.4499  23 51.5983 50.7457 

11 54.082 48.05  24 45.369 49.0713 

12 42.7874 55.9695  25 42.0667 57.7666 

13 52.0042 50.4453     
 

Table 1 and Figure 6 showed that the 6D	difference between the two systems did exist. 

Sometimes FVM had larger 6D and sometimes it had smaller 6D. It was feasible that 6D  from 
FVM and SLS were fluctuated but balanced. We could not make conclusions by just observing the 
data visually. Therefore, statistical tests must be performed to compare datasets. 

 
Figure 6: 6D of 25 cross-section samples from the FVM and SLS based on scanned point cloud 

data (b) statistical test results 
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Table 2. Statistical test results 

 
The statistical results were shown in Table 2. The null hypothesis of the Shapiro-Wilk test 

was that the two paired surface roughness datasets followed a normal distribution, while the null 
hypothesis of the paired t-test and the Wilcoxon signed-rank test was that the two paired surface 

roughness datasets followed the same distribution. The null hypothesis would be rejected when 
the p-value of the test is smaller than 0.05, which meant the calculated statistics based on 
observations were far away from the value required by the null hypothesis. Since the p-value of 
the Shapiro-Wilk test was 0.007574, which was much smaller than 0.05, we rejected the null 
hypothesis and concluded that the normality assumption was violated. Therefore, the Wilcoxon 
signed-rank test was conducted, and its p-value was 0.4578. The p-value was larger than 0.05; 
hence we did not find clear evidence against the hypothesis that surface roughness based on the 
two systems were from the same distribution.  

 
Figure 7. (a) Metal samples from Direct Energy Deposition, (b) computed PCC values and (c) 
histogram for cross-comparison among different sample surfaces measured by SLS and FVM.  

4.2. Data Analysis of 3D Point Cloud Datasets 

In this study, SLS and FVM were used to obtain the 3D datasets of three samples fabricated 
by direct energy deposition, as shown in Figure 7a. The objective was to validate whether the 3D 

datasets measured from different systems were following the same surface topological distribution. 
Figure 7b shows the results when using PCC as an indicator for consistency between two 3D 
datasets obtained from SLS and FVM. It showed that the computed PCC values for the same 
sample were closer to 1 compared with PCC values for different samples, and the histogram on 
the right (Figure 7c) clearly showed that a big gap exists for the PCC values computed between 
the same sample and different samples. Each color in Figure 8c indicates one PCC value of one 
sample comparison in Figure 7b. The result was promising in identifying the same measured 
sample from different optical platforms. Therefore, it has been shown that Pearson's Correlation 
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Coefficient (PCC) was a strong and reliable indicator for the identification of the same measured 
sample across different optical metrology platforms.  

4.3. Contributions of the Approaches 

In additive manufacturing, both in-situ inspection and off-line examination are important 
given that the former activity assists corrective actions in process, and the latter activity ensures 
low quality products do not go off the production line. In a modern manufacturing environment, a 
downstream manufacturer may use a different optical system for surface topology inspection than 
the one used by its upstream manufacturer. The surface landscapes acquired from these systems 
can have significant disagreements due to different optical principles, sensor noise or spatial 
sampling. Such disagreement may cause confusions or miscommunication in a cyber-environment 
where surface data is shared by all members of a manufacturing stream. A practical question will 
arise regarding how one could rationally evaluate surface roughness given surface data presenting 
different resolutions in the cloud-manufacturing database. The objective of this research is to 
identify statistical methodologies for cyber-metrology data correlation and consistency evaluation 
among multiple stations. 

In this study, SLS and FVM were used to obtain the 3D datasets of three samples fabricated 

by direct energy deposition (as shown in Figure 7a) Non-damage measurement. Compared with 
tactile measurements which typically involve probe touching the sample, instruments used in our 
method will not directly contact the sample. Thus, the chance of damaging the sample during the 
measurement process is drastically reduced. 

Substitutability. From the statistical tests, we can conclude that the values of Ra measured 
by both systems are consistent. There are upstream manufacturer and downstream manufacturer 
in the product cycle. The upstream manufacturer will need to provide the surface roughness 
information to downstream manufacturer in order to present the product quality to downstream 
manufacturer. However, downstream manufacturer will also conduct the measurement with their 
system to get the surface roughness. The measured surface roughness results could be different 
due to the measurement by different system. Or the reason could even be measuring the wrong 

sample. This paper used FVM and SLS system to measure the surface roughness of additive 
manufactured samples and provided the statistical data to compare the Ra values. A robust model 
was provided for the research community and industry to resolve the possible conflicts and 
misunderstanding of surface roughness. 

Potential for in-situ measurement. The SLS system can reach a scanning rate of 30 kHz, 
so if we implement the system inside an AM machine, the in-situ measurement can be achieved. 
This can create significant values for additive manufacturing. For example, during the 
manufacturing process, if the SLS system detects an unexpected bump on the certain layer (i.e., 
the value of Ra is abnormally large), it can automatically inform the system to feed less material 
on the next layer in the bump location. In this way, the quality of the workpiece can be assured. 
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5. CONCLUSIONS 

There are a few non-contact optical methods that have been applied to calculate the surface 
roughness of additive manufactured parts based on point cloud data collected. However, the point 
cloud datasets from different optical methods on the same scanned area demonstrated different 
point values. Upon slicing, the data demonstrated different cross-section line profiles. Limited 
research has been conducted to validate whether the point cloud datasets generated from different 

optical systems are following the same distribution. If not, surface roughness value 6D  from 
different systems would be unreliable.  

In this paper, two different optical measurement techniques were used to measure the 3D 
surface topography of the parts manufactured by AM processes. Statistic methods were applied in 
the paper that proved that the surface roughness measurements of additive manufactured samples 
using SLS and FVM system were equivalent. Algorithms have been demonstrated to extract 
various cross-sections from the point cloud data generated by two systems. The surface roughness 

parameter, the arithmetic average of roughness profile (6D) was calculated using the extracted 
cross-sections. The statistical test has been conducted to compare the two systems, which showed 6D calculated using the cross-sections obtained from both of the systems agreed with each other. 

Data correlation and consistency evaluation approach was developed for data comparison among 
point cloud datasets. The PCC value was a reliable indicator for the identification of the same 
measured sample across different optical metrology systems.  

Surface point cloud data from other non-contact optical methods can be validated based on 
approaches in this work, e.g., laser scanning and acoustic techniques. The future research work of 
our group is to provide a standard measurement approach for non-contact and real-time 
quantification of surface roughness and quality assessment of additively manufactured parts, 
which could pave a way to bring a new standard to AM industry. 
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