This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020-6214C

Parameter Sensitivity Analysis of the SparTen High
Performance Sparse Tensor Decomposition Software

Jeremy M. Myers Daniel M. Dunlavy

Keita Teranishi D.S. Hollman

College of William and Mary Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories

Sandia National Laboratories
jermyer @sandia.gov

dmdunla@sandia.gov

Abstract—Tensor decomposition models play an increasingly
important role in modern data science applications. One problem
of particular interest is fitting a low-rank Canonical Polyadic
(CP) tensor decomposition model when the tensor has sparse
structure and the tensor elements are nonnegative count data.
SparTen is a high-performance C++ library which computes
a low-rank decomposition using different solvers: a first-order
quasi-Newton or a second-order damped Newton method, along
with the appropriate choice of runtime parameters. Since default
parameters in SparTen are tuned to experimental results in
prior published work on a single real-world dataset conducted
using MATLAB implementations of these methods, it remains
unclear if the parameter defaults in SparTen are appropriate for
general tensor data. Furthermore, it is unknown how sensitive
algorithm convergence is to changes in the input parameter
values. This report addresses these unresolved issues with large-
scale experimentation on three benchmark tensor data sets. Ex-
periments were conducted on several different CPU architectures
and replicated with many initial states to establish generalized
profiles of algorithm convergence behavior.

Index Terms—tensor decomposition, Poisson factorization,
Kokkos, Newton optimization

I. INTRODUCTION

The Canonical Polyadic (CP) tensor decomposition model
has garnered attention as a tool for extracting useful in-
formation from high dimensional data across a wide range
of applications [1]-[5]. Recently, Hansen et al. developed
two highly-parallelizable Newton-based methods for low-
rank tensor factorizations on Poisson count data in [6], one
a first-order quasi-Newton method (PQNR) and another a
second-order damped Newton method (PDNR). They were
first implemented in MATLAB Tensor Toolbox [7] as the
function cp_apr, referring to this approach as computing a CP
decomposition using Alternating Poisson Regression (i.e., CP-
APR). These methods fit a reduced-rank CP model to count
data, assuming a Poisson error distribution. PDNR and PQNR
are implemented in SparTen,' a high-performance C++ library
of CP-APR solvers for sparse tensors. SparTen improves on
the MATLAB implementation to provide efficient execution
for large, sparse tensor decompositions, exploiting the Kokkos
hardware abstraction library [8] to harness parallelism on
diverse HPC platforms, including x86-multicore, ARM, and
GPU computer architectures.

ISparTen is a portmanteau word derived from Sparse and Tensor. The
SparTen code is available at http://gitlab.com/tensors/sparten.

knteran @sandia.gov dshollm @sandia.gov

SparTen contains many algorithmic parameters for con-
trolling the optimization subroutines comprising PDNR and
PQNR. To date, only anecdotal evidence exists for how best
to tune the algorithms. Parameter defaults in SparTen were
chosen according to previous results using the MATLAB
implementations described by Hansen et al. [6]. However,
their analysis was limited to a single real-world dataset, and
thus may not be optimal for computing decompositions of
more general tensor data. Furthermore, it is unknown how the
initial guess to a solution affects convergence, since SparTen
methods may converge slowly—or worse, stagnate—on real
data if the initial state is far from a solution. And, lastly, the
average impact of input parameters on algorithm convergence
is unclear.

To address these unknowns, we present the results of
numerical experiments to assess the sensitivity of software
parameters on algorithm convergence for a range of values
with benchmark tensor problems. Every experiment was repli-
cated with 30 randomly chosen initial guesses on three diverse
computer architectures to aid statistical interpretation. With
our results, we (1) provide new results that offer a realistic
picture of algorithm convergence under reasonable resource
constraints, (2) establish practical bounds on parameters such
that, if set at or beyond these values, convergence is unlikely,
and (3) identify areas of performance degradation and conver-
gence toward qualitatively different results owing to parameter
sensitivities.

We limited our study to multicore CPU architectures only,
using OpenMP [9] to manage the parallel computations across
threads/cores. Although SparTen, through Kokkos, can lever-
age other execution backends—e.g., NVIDIA’s CUDA frame-
work for GPU computation—we focus solely on diversity in
CPU architectures in this work.

This paper is structured as follows. Section II summarizes
basic tensor notation and details. Section III describes the
hardware environment, test data, and experimental design of
the sensitivity analysis. Section IV provides detailed results of
the sensitivity analyses. Section V offers concluding remarks
and lays out future work.

II. BACKGROUND

We briefly describe below the problem we are addressing
in this report; for a detailed description of CP decomposition

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

algorithms implemented in SparTen, refer to the descriptions
in Hansen et al. [6].

An N-way data tensor X has dimension sizes I} X I, X - -+ X
In. We wish to fit a reduced-dimension tensor model, M, to
X. The R-component Canonical Polyadic (CP) decomposition
is given as follows:

R
XaM=[NAD, AN =Y Lalo. 0a™, ()
r=1

where XA = [A},...,Ag| is a scaling vector, a(r"> represents the

r-th column of the factor matrix A" of size I, X R, and o is the
vector outer product. We refer to the operator [-] as a Kruskal
operator, and the tensor M, with its specific multilinear model
form, as a Kruskal tensor in (1). See [1] for more details
regarding these definitions.

SparTen addresses the special case when the elements of X
are nonnegative counts. Assuming the entries in X follow a
Poisson distribution with multilinear parameters, the low-rank
CP decomposition in (1) can be computed using the CP-APR
methods, PDNR and PQNR, introduced by Hansen et al. [6].

III. METHODS

In this section, we describe the hardware platforms, data,
and SparTen algorithm parameters used in our experiments.

A. Hardware Platforms

We used diverse computer architectures to perform our ex-
periments, with hardware and compiler specifications detailed
in Table I. Intel 1-4 are production clusters with hundreds
to thousands of nodes, whereas ARM and IBM clusters are
advanced architecture research testbeds with tens of nodes
each. We employed the maximum number of OpenMP threads
available per node from each platform to maximize throughput
and configured the maximum wall-clock limit as 12:00 hours
for all experiments. All parallelism was solely across threads
on a single node. The GNU compiler, gcc, was used, with -03
optimization and Kokkos architecture-specific flags enabled.

TABLE I
HARDWARE CHARACTERISTICS AND SOFTWARE ENVIRONMENT OF THE
CLUSTERS IN THIS PAPER. Threads AND RAM (GB) ARE PER NODE.

Arch Processor Threads RAM (GB) GCC
ARM ThunderX?2 256 255 720
IBM Newell Power9 80 319 720
Intel 1 Sandy Bridge 16 64 821
Intel 2 Broadwell 72 128 8.2.1
Intel 3~ Sandy Bridge 16 64 821
Intel 4 Sandy Bridge 32 64 821
B. Data

We conducted experiments using sparse tensors of count
data from the FROSTT collection [10]. Specifically, we chose
the three datasets listed in Table II to account for size,
dimensionality, and density (i.e., the ratio of nonzero entries
to the total number of elements in the tensor). Throughout the
discussion below, we refer to the data using the short names
listed in the table.

TABLE II
SPARSE TENSOR DATASETS FROM THE FROSTT COLLECTION.

FROSTT Name Dimensions Density
(short name)

chicago-crime-comm (6186,24,77,32) 1.5x 10702
(chicago)

lbnl-network (Ibnl) (1605,4198,1631,4209,868131) 4.2 x 10714
nell-2 (nell) (12092,9184,28818) 2.4 x 1079

C. Software Parameter Definitions & Experimental Ranges

PQNR and PDNR are composed of standard techniques
in the numerical optimization literature. Specifically, for each
tensor mode, the Newton optimization computes the gradient
and Hessian matrix. Then, the inverse Hessian is approximated
to compute a search direction and an Armijo backtracking
line search is used to compute the Newton step. How the
inverse Hessian is approximated differentiates PDNR and
PQNR. PDNR shifts the eigenvalues by a damping factor u
to guarantee the Hessian matrix is semi-positive definite, and
solves the resulting linear system exactly. PQNR approximates
the inverse Hessian directly with a limited-memory BFGS (L-
BFGS) approach, computed with a small number of update
pairs. Since the algorithm parameters analyzed here are those
presented in several equations and algorithms in [6], we defer
to that paper for specific details.

A brief description of each software parameter, the default
value in SparTen, and the experimental ranges tested in these
experiments are given in Table III. We note that the stability
parameters used to safeguard against numerical errors—e.g.,
offset tolerances to avoid divide-by-zero floating point errors—
do not appear in the corresponding Matlab Tensor Toolbox
method cp_apr.

D. Experiments

An individual experiment is a job j on platform m solving
a PDNR/PQNR row subproblem for dataset d with SparTen
solver s, parameter p, parameter value v, and random ini-
tialization r; all remaining software parameters are fixed at
the default values listed in Table III. Certain experiments
denoted with a dagger” were run only on Intel hardware due to
limited resources associated with the other architectures; this
accounts for the larger number of experiments reported for
these platforms. We conducted tests on these values to provide
better resolution of the impact of the parameter where nearby
values—i.e., on the bounds of the test range—contained uncer-
tainty in the results. Furthermore, we split up the experiments
across the Intel platforms by parameter, running the full set
of experiments across all parameter values and all random
initializations on a single platform. The superscripts denoted
for each parameter in the table denote the Intel platform
number specified in Table I. Since we report only the number
of function evaluations and outer iterations in our results, we
expect that running our experiments in this way has produced
valid results.

TABLE III

SPARTEN SOFTWARE PARAMETER DESCRIPTIONS AND VALUES USED IN OUR EXPERIMENTS.

Parameter Description Default Values Used in Experiments
max_outer iterations! Maximum number of outer iterations 10° 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
max_inner iterations! Maximum number of inner iterations 20 20, 40, 80, 160
max_backtrack_steps2 Maximum number of backtracking steps in line search 10 17, 2, 4, 8, 10, 127, 16
min_step_size? Tolerance for nonzero line search step length 1077 1071, 1073, 1077, 10715%
step_reduction_factor? Factor to reduce line search step size 0.5 0.1, 0.3%, 0.5, 0.7, 0.9
suff_decrease_tol? Tolerance to ensure decreases in the objective function 1074 1072, 1074, 10787, 10712F
mu_initial3 Initial value of damping parameter 1073 10'2, 1079, 1078
damping_:‘mcrease_factor3 Scalar value to increase damping parameter in next iterate 3.5 1.5, 2.5, 3.5, 45%, 55
dampinq_decrease_factor3 Scalar value to decrease damping parameter in next iterate 2/7 0.1, 2/7, 0.3, 0.5, 0.77, 0.9
damping_increase_tol3 Tolerance to increase the damping parameter 0.25 0.1, 0.25, 0.495
damping_decrease_tol3 Tolerance to decrease the damping parameter 0.75 0.505, 0.75, 0.9
size_LBFGS3 Number of limited-BFGS update pairs 3 1,2, 3, 4,5, 10, 15, 20
ep s_div_zero_grad4 Guard against divide-by-zero computing gradient and Hessian 10710 1075, 1078F, 10710, 10’12+, 10713
log_zero_safeguard* Tolerance to avoid computing log(0) 10716 1074%, 1078, 10712F, 10716, 10724%, 10732
eps*active*set4 Tolerance defining active (nonzero) variables PDNR: 1073 107, 1073, 10757,1078%

PQNR: 1078 107!, 1073, 10757,10787

1=4Intel platform used for experiments; ‘values evaluated on Intel platform only

In all experiments, we fit a 5S-component CP decomposition
using a tolerance of 10~ (i.e., the value of 7 in Equation
(20) in [6], the violation of the Karush-Kuhn-Tucker (KKT)
conditions, used as the stopping criterion for the methods
we explore here). Computation of a CP decomposition using
PDNR or PQNR in SparTen requires an initial guess of the
model parameters—i.e., initial values for M in (1)—drawn
from a uniform distribution in the range [0,1]. As such, all
experiments were replicated using 30 random initializations.
We report results on the amount of computation required
for convergence (i.e., the number of evaluations of the the
negative log likelihood objective function, f(M), defined in
Equation (4) of [6]) and the quality of the solution (i.e.,
the value of the negative log likelihood objective function).
As each of our experiments consists of 30 replicates (i.e.,
30 random initializations) across three CPU architectures, we
report sample means and 95% confidence intervals (as defined
in [11]) when presenting statistical trends in the results.

IV. RESULTS

In this section we analyze the results of the parameter sen-
sitivity experiments and describe the statistical relationships
between the convergence properties of the PDNR and PQNR
methods and their input parameters.

In total, 21,960 unique experiments were planned, account-
ing for running PDNR and PQNR with random initializations
across all parameter value ranges on the various hardware
architectures described in Sections III-A and III-C. An ex-
periment converged if the final KKT violation is less than the
value of T7=10"%; an experiment reached maximum iterations
if the number of outer iterations exceeded the maximum
limit (i.e., max_outer_iterations) and did not converge; an
experiment was canceled if it exceeded the wall-clock limit
(i.e., SparTen neither converged to a solution nor reached
maximum number of outer iterations within 12 hours); and
an experiment was missing if it did not run due to a failure

of the system to launch the experiment or other system issue.
Of the planned experiments, we collected data from 16,139
experiments.

Table IV presents the number of experiments planned
(plan.) as defined above and the number of planned experi-
ments where data was collected (i.e., planned minus missing).
For those collected (coll.), the table shows the percentage of
experiments that were canceled (canc.), converged (conv.), or
exceeded the maximum iterations (max. iter.). We note that
the most complete set of experiment results were obtained
on the Intel platforms. Although there are many missing
experiment results (miss.) for the IBM and ARM platforms,

TABLE IV
EXPERIMENTS RUN ON THE DIFFERENT DATASETS AND HARDWARE
PLATFORMS.
CPU Solver Data Plan. Collect. Canc. Conv. Max. Miss.
Iter.
chicago 1110 1110 4.8% 82.2% 13.0% 0.0%
PDNR [bnl 1110 1110 10.5% 76.5% 13.0% 0.0%
nell 1110 390 54% 39.2% 55.4% 64.9%
ARM
chicago 990 281 0.0% 55.5% 44.5 71.6%
PQNR Ibnl 990 237 0.0% 0.0% 100.0% 76.1%
nell 990 390 233% 03% 764 60.6%
chicago 1110 855 54% T77.8% 16.8% 23.0%
PDNR [bnl 1110 692 11.3% 733% 15.4% 37.7%
. nell 1110 424 51.2% 12.0% 36.8% 61.8%
chicago 990 676 10.2% 76.3% 13.5% 31.7%
PQNR [bnl 990 293 61.8% 0.0% 382% 70.4%
nell 990 481 31.0% 6.6% 62.4% 51.4%
chicago 1680 1673 5.0% 86.4% 8.6% 0.4%
PDNR Ibnl 1680 1663 11.0% 80.6% 84% 1.0%
Kl nell 1680 1643 44.7% 422% 13.1% 2.2%
nte
chicago 1440 1434 12.1% 78.6% 9.3% 0.4%
PQNR [bnl 1440 1363 78.0% 0.0% 22.0% 5.3%
nell 1440 1424 68.8% 10.1% 21.1% 1.1%

we attempt to identify patterns in the data we collected if
there is strong evidence to support our claims. We note
that a few parameters (eps_active_set, min_step_size,
suff_decrease_tol, damping_increase_tol, damping_ -
decrease_tol) showed no statistically significant differences
across the range of input values used in the experiments. We
conjecture that we did not find values where the parameters
display sensitivities in the chosen tensor problems, thus it
remains unclear if this behavior holds in general.

A. General Convergence Results on Real-World Data

As discussed in Section I, applying PDNR and PQNR to
real-world data has been explored previously in the literature
only for a single problem. From Table IV, we observed that
PQNR is canceled more than PDNR in the allotted time across
datasets and CPU platforms. This confirms our intuition, since
it is a classical result in iterative methods that damped New-
ton methods converge quadratically, in comparison to quasi-
Newton methods, which converge superlinearly. Specifically,
PQNR calls the objective function 2.7 times more than PDNR
on average on the chicago data and fails to converge for any
experiment on [bnl data across all hardware platforms. By
contrast, PDNR converges in 86% of [bnl experiments across
platforms when only 32 outer iterations are allowed.

B. Sensitivity of Convergence and Solution Behavior

There are certain ranges of parameter values that lead
to good or bad convergence behaviors in general. This is
illustrated in Figures 1-3, where parameter values and random
initializations are depicted across the horizontal and vertical
axes, respectively. These heatmaps display total objective
function evaluations, where solid columns of a single shade
indicate the same convergence behavior across all 30 random
initializations. Green shades are consistent with converged
experiments. Vertical bands not shaded green identify val-
ues that may impact algorithm performance, due either to
iteration constraints (blue hues) or excessive computations
corresponding to slow convergence or stagnation (red hues).
Hatches denote non-converging exit status. Grey represents
missing data, i.e., experiments that were planned but never
conducted due to resource limitations—e.g., dequeued by the
cluster administrator—or a system failure. Nearly solid column
lines of the same shade indicate similar behavior, but also that
there is some sensitivity of those parameter values to the initial
starting point of the iterative methods.

In several cases, there is a tendency to time-out at one or
both bounds of the test ranges for both solvers. The behavior
of numerical stability parameters eps_div_zero_grad and
log_zero_safeguard was consistent across combinations of
solver, data, and CPU hardware. When eps_div_zero_grad
is large, gradient directions that do not lead to objective
function improvements may be scaled the same as gradient
directions that do lead to such improvements. Furthermore, the
corresponding eigenvalues of the Hessian matrix are amplified
and Hessian information may be lost when determining the
next iterate. For example, PDNR loses Hessian information as

eps_div_zero_grad increases on chicago data; PDNR rarely
converges and PQNR never converges when this parameter
is relatively large—i.e. 107, Moreover, both algorithms are
sensitive to the parameter’s lower bound, as small values may
be insufficient to avoid an ill-conditioned Hessian matrix.
In either case, additional iterations follow to correct errors
incurred by eps_div_zero_grad values, large and small.

PDNR typically does not converge for large log_zero_-
safeguard values on large tensor problems. This parameter
sets a nonzero offset in logarithm calculations to avoid explic-
itly computing log(0). High precision in logarithm computa-
tions tends to ensure the objective function is minimized ac-
curately. When the value is too large, the calculated logarithm
may be too small, and more backtracking steps are required to
sufficiently decrease the objective function in the line search
routine, making time-outs more likely. On the other hand, the
effect of the parameter on convergence is indistinguishable for
values smaller than 10~8 across all experiments.

This effect—when convergence behavior is similar for
values set within sensitivity constraints—is common among
several algorithm parameters corresponding to the different
numerical optimization subroutines that comprise PDNR and
PQNR. Two examples are damping_increase_factor and
damping_decrease_factor, which control updates to the
PDNR Hessian matrix damping parameter (. SparTen rarely
converges when the former is set too low (1.5); the likely
effect is that the updated damping factor is insufficient to guar-
antee a well-conditioned Hessian and too many unimportant
directions are considered when computing the search direction.
Above the 1.5 bound, the cost in objective function calls
does not change significantly. The PQNR-specific parameter,
size_LBFGS, behaves similarly; the only observable difference
occurs when the update size is 1, using only the current iterate
in the BFGS update.

Other parameters show meaningful differences in cost, de-
fined in terms of the number of function evaluations required
before convergence is achieved, when varied. Hansen et al.
predict in [6] that when the damping parameter U is set too
large, a loss of Hessian information follows, which impacts
convergence. For example, when mu_initial is large, the
computational cost grows dramatically and time-outs become
more likely, since the initial step length will at first be very
small in every outer iteration and useful Hessian information is
discarded in early stages of the inner loop solves. Convergence
is most likely for a large, but not too-large, value, i.e.,
mu_initial = 107>, Cost grows 177.2% on [bnl and nearly
doubles (4+92.2%) on chicago as mu_initial grows from
107> to 1072, It is important to note in the former case that this
cost is skewed by one experiment that converged after nearly
42,000 outer iterations, in comparison to 1,300 for the other
parameter values on average, illustrated in Figure 4, where the
x-axis is truncated to highlight the differences in total cost.
Smaller values (i.e, 10_8) seem to perform better for chicago,
the smallest, densest problem and larger values (i.e., 1079)
tend to perform better for large, sparse problems.

Allowing many backtracking steps during the line search

Experiment ID

damping damping damping
decrease decrease increase

log maxinneriter maxOuterlter step suff
lal reduction decrease
factor tolerance

eps
div zer0

zero safeguard steps.
orad

Status
222 Canceled
0 Maxter
=3 Missing

10°

=
)

Experiment ID
Function Evaluations

=
]

108

log maxinnedter maxOuteriter max
div zero backtrack
zer0 safeguard Steps
arad

nonzero
tolerance

Fig. 1. Total function evaluations computed solving chicago on Intel architecture. Left: PDNR, Right: PQNR.

Experiment ID

damping damping damping dar
decrease decrease increa:
factor tolerance

Experiment ID

max min size s sutt
kirack variable LBFGS reduction decreas
nzero factor

W zero backirac o
zero safeguard Steps tolerance

arad tolerance

Fig. 2. Total function evaluations solving /bnl on Intel architecture. Left: PDNR, Right: PQNR.

Experiment ID

dampingdampi
decrease decrea:
factor toleran

zer0
safeguard

factor tolerance

arad

=3 Missing

g
Function Evaluations

min stey
variable juction decrease
factor

Fig. 3. Total function evaluations solving nell on Intel architecture. Left: PDNR, Right: PQNR.

may cause PDNR to waste effort; however, PQNR appears to
perform better, in general, with more steps. PDNR is sensitive
to the number of backtracking steps on chicago: average work
performed is less when the maximum number of allowed steps
is large and more work is performed when the number of steps
is small. On [bnl—the sparsest tensor problem considered—
PDNR performs better with fewer backtracking steps (see
Figure 5). The average cost incurred by PQNR decreases as
max_backtrack_steps increases.

The line search parameter step_reduction_factor is used
to reduce the line search step size between iterations. On a

large, sparse tensor problem, increasing this parameter may ac-
celerate convergence. On the other hand, a small value makes
convergence less certain. Figure 6 illustrates this behavior on
the /bnl data: the average total cost decreased by 77% as
step_reduction_factor increased from 0.1 to 0.5 (SparTen
default) and decreased another 28% from 0.5 to 0.9. On nell
data, PQNR only converged for large values (0.7, 0.9).

Parameter sensitivities affect not only convergence behavior,
but may also produce qualitatively different results. Figure 7
illustrates the effect where large eps_div_zero_grad—and
consequently, small step length—minimizes calls to the ob-

mu_initial

— 1e-08
1e-05

— 0.01

1012

1011

FunctionEvaluations

1010

10? 10%
Outer iterations

Fig. 4. Varying mu_initial solving Ilbnl, with mean
function evaluations and 95% CI. PDNR damps out Hes-
sian information and is more prone to time-outs when
mu_initial is large.

step_reduction_factor
— 01
05

102 — 09

101

FunctionEvaluations

1010

Outer iterations

Fig. 6. step_reduction_factor may accelerate conver-
gence on large, sparse tensor data (/bnl). The x-axis is
truncated at 2,000 outer iterations; 3 experiments with re-
duction factor 0.1 continued for over 4,200 outer iterations.

jective function and results in minimal objective function
value (higher values on the y-axis correspond to a smaller
negative LogLikelihood). Most striking is that larger eps_-
div_zero_grad decreases the objective function more than
an order of magnitude. This result was collected from 79 of
90 planned PDNR experiments on /bnl, and thus we consider
this interesting effect worthy of further investigation.

V. CONCLUSIONS

Using results from more than 16,000 numerical experiments
on several hardware platforms, we presented experimental
results that expand our understanding of average PDNR and
PQNR convergence on real-world tensor problems. We have
shown that when using PQNR to compute large tensor decom-
positions convergence is less-likely under reasonable resource
constraints. We have shown that some software parameters
are sensitive to bounds on values. Further, we showed that
varying several parameters can dramatically impact algorithm
performance, and in some cases, may produce qualitatively
different results.

Future work may address the issue of stagnation in Newton
optimization methods for CP decompositions. We showed

max_backtrack_steps
— 20
4.0
— 80
— 160

101

ot

FunctionEvaluations
=

10! 102 10°
Outer iterations

Fig. 5. max_backtrack_steps becomes more expensive
as the number of steps grows on [bnl. The x-axis is
truncated at 1,000 outer iterations, but 6 experiments with
16 maximum backtracking steps required more iterations.

eps_div_zero_grad
— 1e-15
le-12
— 1lel0
— 1e-08
— 1e-05

TTTN—
~1x10" W

LogLikelihood

-1x10°

10° 10t 10? 10° 10%
Outer iterations

Fig. 7. Mean objective function values with 95% con-
fidence interval, varying eps_div_zero_grad, PDNR on
Ibnl.

examples where the solver converged to a solution slowly but
within the allotted time of 12 hours. For those experiments that
timed out, it is unknown whether SparTen would eventually
converge to a solution or stagnate without making progress.
We anticipate that stagnation could be determined if the
objective function values converge to a statistical steady state
without satisfying the convergence criterion. Future develop-
ment of SparTen may include dynamic updates to algorithm
parameters based on local convergence information. Lastly,
future experiments could explore coupled sensitivities among
algorithm parameters, as this work was limited to single
parameter, univariate analyses.

ACKNOWLEDGEMENT

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-
eywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NA0003525.

[1]

[2]

[3]

[4]

[51

[6]

[71

[8]

[91

[10]

(11]

REFERENCES

T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM
Review, vol. 51, no. 3, pp. 455-500, 2009.

A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. PHAN, “Tensor decompositions for signal processing appli-
cations: From two-way to multiway component analysis,” IEEE Signal
Processing Magazine, vol. 32, no. 2, pp. 145-163, 2015.

F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum
of products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp.
164-189, 1927.

J. Carroll and J. Chang, “Analysis of individual differences in mul-
tidimensional scaling via an n-way generalization of “eckart-young”
decomposition,” Psychometrika, vol. 35, pp. 283-319, 1970.

R. A. Harshman, “Foundations of the PARAFAC procedure: models
and conditions for an “explanatory” multi-modal factor analysis,” UCLA
Working Papers in Phonetics, vol. 16, no. 1, pp. 84-84, 1970.

S. Hansen, T. Plantenga, and T. G. Kolda, “Newton-based optimization
for Kullback-Leibler nonnegative tensor factorizations,” Optimization
Methods and Software, vol. 30, no. 5, pp. 1002-1029, April 2015.

B. W. Bader, T. G. Kolda et al., “Matlab tensor toolbox version
3.0-dev,” Available online, August 2017. [Online]. Available: https:
//gitlab.com/tensors/tensor_toolbox/

H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 — 3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001257

L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” Computational Science & Engineering, IEEE,
vol. 5, no. 1, pp. 46-55, 1998.

S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis,
“FROSTT: The formidable repository of open sparse tensors and tools,”
Available online, 2017. [Online]. Available: http://frostt.io/

L. M. Leemis and S. K. Park, Discrete-Event Simulation: A First Course.
USA: Prentice-Hall, Inc., 2005.

