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Short Title: Heavy Hole Hyperfine Effects in GaAsMIGaAs

Outline 

1. Short historical excursion to EDSR DNP in 2DEG

2. Motivation: negative attempts to see DNP in 2DHG

3. Hole EDSR using strong spin-orbit interaction

4. DNP in p-EDSR experiments

5. Discussion

6. Double pulse EDSR revealing 75As contribution

7. Conclusions



Dobers, K. v. Klitzing, J. Schneider, G. Weimann, and K. Ploog., PRL (1988)
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DNP in 2DEG: historical excursion

A. Berg, M. Dobers, R. R. Gerhardts, and K. v. Klitzing, PRL 1990
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is it possible to observe similar nuclei physics in 2DHG structures?



• Reduced hyperfine interaction of holes with nuclei
J.Fischer, W. A. Coish, D. V. Bulaev, and D. Loss, PRB 78 155329 (2008)

R.Fallahi, S. T. Yilmaz, and A. lmamoglu, PRL 105, 257402 (2010)

• Earlier attempt to measure hyperfine (HF) effects in
GaAs electron- and hole-QPC structures
Keane et al. Nano. Lett. 11, 3147 (2011)
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• In this talk: demonstrate direct influence of HF effects in
EDSR dragging experiments via pumped Overhauser field



Vink, et al., Nat. Phys. v. 5, p. 764 (2009)
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Details of the hole Double Quantum Dot (DQD)

L. A. Tracy, et al. "Few-hole double quantum dot

in an undoped GaAs/AIGaAs heterostructure,"

APL, v. 104, 123101 (2014).
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Hole EDSR in large coupling regime: tunable g*

S.S. et al., Nat. Comms. Phys. (2019)
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Small coupling, asymmetric regime: Charge stability and transport diagrams
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EDSR measurements: hyperfine interactions cannot be ignored
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EDSR measurements: hyperfine interactions cannot be ignored
mc-cmc

Tr
an

sp
or

t 
Cu
rr
en
t 
(
p
A
)
 

0.6 - 

0.4 -

0.2 -

0 0 -

0.20

0.15

0.10

0.05

20190929_001, f=30.45GHz B=1.505T

0.00 0.05 0.10

VR
0.15

f = 38.7GHz, 20mT/min
power = -25dBm

low power

sweep up

f"Vh",/gY‘NA4tVfAtb ii ‘‘)*ANI41.4 1104*

1.87 1.88 1.89 1.90 1.91

B field (T)

•
1.92 1 93

Tr
an

sp
or
t 
Cu
rr
en
t 
(
p
A
)
 

Weak interdot coupling tN = 6.8 i_teV

0.6

1 D

0 4 -

0 2 -

0.0 -

f = 38.7GHz, 20mT/min
power = -16dBm

large power

t̀ fooh\r-1

1 87 1.881  1 1 89 1 9 '0 1.91

B field (T)

1 92 1 93

12



EDSR measurements: hyperfine interactions cannot be ignored
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Overhauser field locks dynamically when sweeping is stopped
MC-ChW
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DNP purn! - • robe measurement of nuclear relaxation time
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DNP pump-probe measurement of nuclear relaxation time
MC-CMC
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Overhauser field dependencies on power and sweep rate
MC-CMC
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Theoretical model (under construction by M. Korkusinski)
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Dragging of hole-EDSR resonance: what's going on?
ARC-CMC

Theoretical model (under construction by M. Korkusinski)
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Maximum Overhauser field for heavy holes in GaAs
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f = 38.7GHz, detuning = 535 ueV
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Double-pulse measurements demonstrating 75As nuclei contribution
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Analysis of the EDSR dragging effect oscillations
ARC-CMC
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Summar

• Hyperfine heavy-hole effects demonstrated directly using
Overhauser effect in EDSR-dragging experiments

• The heavy hole Overhauser effect is bi-directional and very
symmetric for both +I- directions

• Relaxation time -90s of the Overhauser field measured in gated
hole quantum dot using common pump-probe technique

• Up to 25% nuclear polarization achieved

• A double-pulse experiment reveals temporal oscillations in the
position of the EDSR peak with frequency corresponding to
Larmor precession of 75As nuclei

Thank you
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The Dragging Effect Using Detuning Gates
ARC-CMC
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Double pulse technique to demonstrate 75As nuclei contribution
MC-CMC
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