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Short Title: Heavy Hole Hyperfine Effects in GaAs/AlGaAs
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DNP in 2DEG: historical excursion

Dobers, K. v. Klitzing, J. Schneider, G. Weimann, and K. Ploog., PRL (1988)

Unidirectional dragging of ESR for sweep down
direction due to DNP
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DNP in 2DEG: historical excursion

A. Berg, M. Dobers, R. R. Gerhardts, and K. v. Klitzing, PRL 1990

VOLUME 64, NUMBER 21 PHYSICAL REVIEW LETTERS 21 MAY 1990
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Is it possible to observe similar nuclei physics in 2DHG structures?




Reduced hyperfine interaction of holes with nuclei

J.Fischer, W. A. Coish, D. V. Bulaev, and D. Loss, PRB 78 155329 (2008)

R.Fallahi, S. T. Yilmaz, and A. Imamoglu, PRL 105, 257402 (2010)

* Earlier attempt to measure hyperfine (HF) effects in

GaAs electron- and hole-QPC structures
Keane et al. Nano. Lett. 11, 3147 (2011)
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In this talk: demonstrate direct influence of HF effects in
EDSR dragging experiments via pumped Overhauser field



Examples EDSR-enabled DNP in DQDs with electrons

Vink, et al., Nat. Phys. v. 5, p. 764 (2009) Obata, et al., J. Phys. v. 193, p. 012046 (2009)
a [ :
0 05 10 b Tall ‘ ‘..r b
Peakl . %"
pryt ¢
’ % 'Peak 2
é 300 . 'r";"
g)' 200
- ' 0.9T * s '
90 : 5.16GHz 6.3GHz 5.16GHz 6.3GHz
-100 =50 - 0 50 1.08T
Magnetic field (mT)
" T B- Sweep direction I i
0 0.5 1.0 1.5 .
fPeak1 | ~60 mT
f-sweep up
§ '.;L_iér- ‘ v
§> 13‘ 2 }Peak2
g SR Y :
2 0.98T - .
£ -33 MW power (dBm) -23
= ‘ (a) O |irorc /dV; ~ const|(e Teoon)
e Note: Unidirectional DNP (strong pumping in one sweep direction)

-100 -50 0 50
Magnetic field (mT)

7



Details of the hole Double Quantum Dot (DQD)

L. A. Tracy, et al. "Few-hole double quantum dot
in an undoped GaAs/AlGaAs heterostructure,”
APL, v. 104, 123101 (2014).

< global
accumulation gate

< Ti/Au depl. gates

AlGaAs <— GaAs/AlGaAs
X DQD heterojunction

buffers, superlattice

(a) Cross section, and (b) SEM image of the DQD device
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Hole EDSR in large coupling regime: tunable g*

S.S. et al., Nat. Comms. Phys. (2019) Large interdot coupling t, = 60 peV
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Small coupling, asymmetric regime: Charge stability and transport diagrams

Small interdot coupling ty = 7 peV

-540 -540

lDOT (PA)

-580 -580
-0.16
0.8
-160 -140 -120 -160 -140 120
Vv, (mV) V, (mV)
0.012 .
T PR .
W N 1 Lead couplings:
3 0_003-;(% M * R FL =6.9GHz
R mﬂ‘; z . Iy = 122MHz
M Wm =
“’ % 2
T T T i 0-1= T T T
-520 -518 -516 -514 0 200 400 600
VvV, (mV) Ae (neV)

10



EDSR measurements: hyperfine interactions cannot be ignored

20190929 _001, f=30.45GHz B=1.505T Weak interdot coupling t,=6.8 peV
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EDSR measurements: hyperfine interactions cannot be ignored

20190929 _001, f=30.45GHz B=1.505T Weak interdot coupling t,=6.8 ”ev
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EDSR measurements: hyperfine interactions cannot be ignored

20190929_001, f=30.45GHz B=1.505T Weak interdot coupling t, = 6.8 peV
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Note: DNP effect in p-DQD is bidirectional
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Overhauser field locks dynamically when sweeping is stopped

Stop field sweep
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Observed Overhauser field By locked over 30 hours

Nuclear spin pumping effects with long duration,

e.g. Ono, Tarucha, PRL 92, 256803(2004)
Hennel et al. PRL 116, 136804 (2016)
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DNP pump-probe measurement of nuclear relaxation time
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DNP pump-probe measurement of nuclear relaxation time

f = 38.7GHz, 40mT/min, power = -25dBm
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Overhauser field dependencies on power and sweep rate

f = 38.7GHz, detuning = 535 ueV
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Dragging of hole-EDSR resonance: what’s going on?

Theoretical model (under construction by M. Korkusinski)
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Dragging of hole-EDSR resonance: what’s going on?

Theoretical model (under construction by M. Korkusinski)

0.6 - Unassisted EDSR /
) f = 38.7GHz, 20mT/min Hole

~

Nuclei

power = -16dBm (1)

— / EN,Z = gN/uB,NBz
< .
& 04 :
z M B>
= ] EDSR involving flip flop | E—
O processes — —
5 o024 (2 (1) : Z
3 . (2) |
§ : Eh,Z = g uBBZ '
|_

0.0 \‘Mf‘\l’“ )

> —

MW:s

T T T T T y T T 1 Mz=0
1.87 1.88 1.89 1.90 1.91 1.92 1.93
B field (T) K ; /

Hpe = A;S,l, +A (S,1,+S1)

Biot=BexttBn

My = ... TLTL...
LT B, ~ M

19



Maximum Overhauser field for heavy holes in GaAs
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Double-pulse measurements demonstrating >As nuclei contribution

Similar to: Nichol, et al., Nat. Comm. (2015)
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Analysis of the EDSR dragging effect oscillations
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Summary

Hyperfine heavy-hole effects demonstrated directly using
Overhauser effect in EDSR-dragging experiments

« The heavy hole Overhauser effect is bi-directional and very
symmetric for both +/- directions

* Relaxation time ~90s of the Overhauser field measured in gated
hole quantum dot using common pump-probe technique

 Up to 25% nuclear polarization achieved

« A double-pulse experiment reveals temporal oscillations in the
position of the EDSR peak with frequency corresponding to
Larmor precession of 7°As nuclei

Thank you
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The Dragging Effect Using Detuning Gates

20190929 001, f=30.45GHz B=1.505T
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Double pulse technigue to demonstrate 7°As nuclei contribution
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