

- 1 Gasoline Fuels Properties for Multi-
- 2 mode Operation – Observations in a
- 3 GDI and the CFR engine

5 Ashish Shah, Alexander Hoth, Christopher P. Kolodziej,

6 **Toby Rockstroh**

7 Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL
8 60439, USA

10 1 Abstract

11 The combustion behavior of five full boiling range RON98 gasoline blends
12 were evaluated for multi-mode operation in a GDI and the CFR octane
13 rating engine. The GDI engine tests were conducted with stoichiometric
14 air-fuel ratio in spark-ignition (SI), and with air-diluted homogeneous
15 charge compression ignition (HCCI) mode. In the CFR engine, the
16 knocking combustion was analyzed under standard RON testing
17 conditions at both peak knocking lambda and stoichiometric air-fuel
18 ratios, whereas compression ignited operation was characterized by
19 utilizing the HCCI number test protocol. Disparate knock limited SI and

20 HCCI combustion behavior was observed for the test fuels, despite four
21 of the fuels having the same RON and octane sensitivity. It was found that
22 knock-limited combustion phasing in the GDI engine did not align well
23 with the RON. However, a detailed comparison of knock-limited SI
24 operation in the GDI and CFR engine revealed that a more appropriate
25 effective RON based on a common knock intensity metric (MAPO) and
26 stoichiometric air-fuel ratio resulted in comparable knock
27 characterization between the two engine platforms. Furthermore, the
28 critical intake air temperature and the critical compression ratio were
29 proposed to characterize knock-limited SI operation, while the minimum
30 intake air heating and compression ratio were used to define a fuel's
31 autoignition propensity for compression ignition operation in the GDI and
32 CFR engine, respectively. Finally, each fuel's characteristic compression
33 ratio sweeps to obtain knock-limited SI (KLSI) and GCI operation was used
34 to calculate an effective multi-mode octane number (MM-ON) based on
35 the primary reference fuel blends.

36 **Keywords:** Octane sensitivity, Multi-mode Combustion

37 2 Introduction

38 The potential efficiency benefits of homogeneous charge compression
39 ignition (HCCI) in four stroke gasoline engines were recognized more than
40 three decades ago [1], [2]. However, it was also acknowledged that the
41 operational limits of HCCI required switching to conventional gasoline
42 engine operation to obtain high specific power output. This led to a

43 significant amount of research investigating lean part-load combustion
44 strategies in multi-mode engines [3]–[5]. Concurrently, partially
45 premixed combustion (PPC) with varying levels of stratification have been
46 investigated to try and bring full time gasoline compression ignition (GCI)
47 engines closer to market implementation [6]–[8]. Spark assisted
48 compression ignition (SACI) or “mixed-mode” combustion has been
49 shown to enhance combustion control and expand the operating range
50 of HCCI [9]–[12]. Multi-mode combustion has garnered renewed interest
51 of late with one vehicle OEM (Mazda) having started production of a
52 multi-mode engine in early 2019 [13]. Apart from SACI, several other
53 combustion control strategies have been implemented to enable multi-
54 mode operation. For HCCI operation the temperature at the end of
55 compression needs to be high enough to initiate auto-ignition while the
56 high load SI operation will be constrained by the onset of knock. A trade-
57 off therefore exists between compression ratio, intake air heating and/or
58 use of retained exhaust gas residuals to enable multi-mode operation as
59 well as combustion mode switching.

60 Similarly, the gasoline fuel for a multi-mode engine needs to fulfill two
61 seemingly contradicting requirements. For HCCI operation at low load a
62 fuel with a high auto-ignition propensity is desired, while the high-load SI
63 operation demands a fuel with high knock resistance. Historically,
64 gasoline knock resistance (or conversely, auto-ignition propensity) has
65 been described by the research octane number (RON) and the motor
66 octane number (MON) [14], [15]. It has since been shown that octane

67 number does not adequately describe knock resistance in modern SI
68 engines. However, the octane index has been implemented as a practical
69 means to utilize RON and MON as well as engine operating parameters
70 to define a more accurate definition of the “octane appetite” in both
71 modern SI and HCCI engines [16]–[20]. The applicability of the octane
72 index rests on the premise that the cylinder conditions of the compressed
73 gas mixture can be related to those attained during the RON or MON test.
74 Modern charge boosted SI engines operate at compressed pressures that
75 are higher than those obtained in the CFR engine under RON conditions.
76 At the same time, intercooling of the intake charge reduces the
77 temperature and therefore results in engine operation “beyond RON”
78 [21]–[23]. Conversely, HCCI engine operation requires high compressed
79 gas temperatures which generally push the operating range into the
80 MON or “beyond MON” region [23]. It has therefore been argued that
81 fuel octane sensitivity (RON-MON) could play a critical role in
82 characterizing a fuel performance for a multi-mode engine [16].

83 The stochastic nature of knocking combustion in conventional SI engines
84 is well documented [24]–[27], and has been described to follow a
85 cyclically independent random process [28]–[30]. Knocking operation in
86 the CFR engine under standard octane rating conditions has conversely
87 been shown to be very repeatable, practically occurring during each
88 combustion cycle and resulting with a distinct burn rate profile not akin
89 to that observed in modern SI engines [31]–[37].

90 The variable compression ratio mechanism of the CFR octane rating
91 engine has also been leveraged to study compression ignition behavior
92 of gasoline like fuels. This has been done to study low temperature
93 chemistry and HCCI fuel rating metrics [38]–[42].

94 The aim of this study is to evaluate the suitability of gasoline fuels with
95 high RON and octane sensitivity towards enabling multi-mode operation
96 in a modern GDI engine. For this purpose, five full boiling range gasolines
97 with a RON of 98 were investigated. One of the test fuels had a low octane
98 sensitivity of around 3 while the remaining fuels had a high sensitivity of
99 around 10, albeit utilizing different chemical classes to generate the
100 octane sensitivity. A detailed comparison of the combustion behavior
101 under knock limited spark advance (KLSA) operation in the GDI and RON
102 rating conditions in the CFR engine was conducted. Furthermore,
103 autoignition properties of the fuel blends under HCCI combustion were
104 characterized in the CFR engine and the GDI engine.

105 3 Apparatus and method

106 3.1 Experimental Facility

107 The experimental data used for this study was generated using a single
108 cylinder gasoline direct injection (GDI) engine and a well-instrumented
109 Cooperative Fuel Research (CFR) F1/F2 octane rating engine at Argonne
110 National Laboratory (ANL). A brief description of these devices relevant
111 to the present investigation is provided here, and the reader is referred

112 to previous publications [34], [43], [44] for more details about the
113 experimental facility and their respective operating procedure.

114 3.1.1 Gasoline direct injection (GDI) engine

115 The setup consists of a prototype single-cylinder variant of a state-of-the-
116 art multi-cylinder light duty gasoline direct injection engine, coupled to
117 an AC dynamometer to dissipate power at required engine speed.

118 Pertinent engine specification can be found in Table 1.

119 Intake air was supplied by an Atlas Copco compressor and throttling was
120 achieved by using a pressure regulator upstream of the intake surge tank.

121 A close coupled Osram-Sylvania SureHeat-MAX 6kW electric heater was
122 used to maintain the desired intake air temperature. Gasoline fuel was
123 supplied to the DI injector at a constant pressure of 150 bar by a stand-
124 alone high-pressure fuel delivery system. Air and fuel flow rates were
125 measured by Micro-motion Coriolis flow meters, and an AVL i60
126 integrated five-gas analyzer emissions bench was used to measure
127 exhaust gas composition and thereby calculate engine's operating
128 equivalence ratio.

129 Crank angle resolved indicated data was recorded using an AVL 620
130 Indimodule coupled to an AVL 365X crank angle encoder delivering 0.1
131 CAD resolution. Cylinder pressure was measured with a Kistler 6125C
132 piezoelectric pressure transducer, and the intake and exhaust manifold
133 pressures were measured by Kulite ETL-184A-190M and EWCTV-312(M)
134 piezo-resistive pressure transducer, respectively. Other auxiliary

135 processes' pressures and temperatures, such as coolant temperature,
136 were measured by general purpose pressure transducers and
137 thermocouples through an in-house LabVIEW based data acquisition
138 system at 1Hz sampling rate. All measurement devices were in calibrated
139 state as per their respective manufacturer's recommendation at the time
140 of use.

141 3.1.2 Cooperative Fuel Research (CFR) engine
142 In this work, the standard octane rating engine was equipped with state
143 of the art instrumentation without affecting the engine's compliance
144 with the ASTM D2699 RON method, as described in previous publications
145 by the authors [34], [44]. The standard engine geometry is provided in
146 Table 1. In addition to the ASTM knock-meter, the engine was also
147 equipped with an AVL GU13Z-24 spark plug pressure transducer to allow
148 for the simultaneous detection of high frequency pressure oscillations
149 during knocking combustion. While the accuracy limitations of spark plug
150 pressure transducers are well established, a previous study by the
151 authors showed good correlation to a Kistler 6045 AU20 transducer flush
152 mounted in the knock meter port under RON test conditions [45]. A
153 wideband lambda sensor was used to enable accurate control for engine
154 operation over a range of air-to-fuel ratios.

155 *Table 1: Engine Specification*

Parameter	GDI Engine	CFR Engine
-----------	------------	------------

Combustion Chamber	4-valve, 40° pent-roof	2-valve, pancake
Bore x Stroke [mm]	89.04 x 100.6	82.55 x 114.3
Connecting Rod [mm]	166.44	254
Displacement [L]	0.63	0.61
Compression Ratio [-]	12.6:1 & 15.3:1	Adjustable 4:1 - 18:1
Valve timings [aTDCf]		
Intake open/close	-378 / -140	-378 / -140
Exhaust open/close	145 / 367	145 / 367
Fuel delivery	DI, 6-hole, solenoid	Carbureted
Ignition System	Inductive discharge	Capacitive discharge

156

157 3.2 Test Fuels

158 In order to better understand the impact of chemical compositional
 159 variety on multi-mode engine combustion, the Co-Optima core research
 160 gasolines designed as part of the Co-Optima Initiative [46] were utilized
 161 for this study. Although the major chemical compositional classes of each
 162 gasoline is diverse, all fuels were formulated to achieve similar research
 163 octane numbers (RON), which facilitate investigation of chemistry
 164 interactions that may differently respond to the auto-ignition

165 characteristic under knock-limited SI and compression ignited engine
166 conditions. The key properties of the fuels are shown in Table 2, with the
167 detailed chemical compositions and distillation properties given in the
168 Appendix A. The Alkylate (ALK) fuel consists mostly of saturates resulting
169 in near-zero octane sensitivity (i.e., the difference between RON and
170 MON). The remaining four fuels contain approximately 30 volume
171 percent of major classes - Ethanol (Oxygenates), Aromatics, Olefin and
172 Naphthenic - identified by E30, A30, O30 and N30, respectively. This
173 formulation leads to high octane sensitivity, but substantially different
174 fuel autoignition chemistry.

175 *Table 2: Fuel properties*

Property	Method	ALK	E30	A30	O30	N30
RON (R)	D2699	98.0	97.4	98.1	98.2	98.0
MON (M)	D2700	96.6	86.6	87.8	88.0	87.1
S ^a	R - M	1.4	10.8	10.3	10.2	10.9
HoV ^b		309	565	412	337	393
PKL ^c		0.89	0.97	0.97	0.92	0.97

176 ^aS = Octane sensitivity

177 ^bHoV = Heat of vaporization [kJ/kg]

178 ^cPKL = Peak knock lambda at RON test conditions

179 3.3 Chemical Kinetic Calculations

180 The static auto-ignition characteristics of the fuels were used to aid
181 pressure-temperature analysis of the cylinder charge under knock-

182 limited SI and compression ignited operation. For this purpose, isopleths
183 of static auto-ignition delay were derived by performing constant-volume
184 calculations using an advanced kinetic solver, Zero-RK [47] for a pressure
185 range of 5-80 bar in steps of 5 bar, and 600-1200 K in steps of 20K, for
186 stoichiometric as well as lean conditions relevant to HCCI operation. The
187 latest version of a detailed kinetic mechanism for transportation fuels
188 developed by Lawrence Livermore National Laboratory [48] was used. In
189 this model, the core chemistry sub-model, C0–C4, is replaced with the
190 recent Aramco 2.0 mechanism developed by NUI Galway [49], with
191 updated sub-models for alkanes C5–C7 [50]–[52], iso-alkane [53], [54],
192 aromatic compounds [55]–[57] cyclopentane chemistry [58]–[60], and
193 EtOH chemistry [61]. It has been shown that trace amounts of NO can
194 have a significant influence on auto-ignition chemistry [62]–[66]. In order
195 to access the effect of NO under conditions relevant to this study,
196 additional static auto-ignition delay calculations were performed, for
197 which, the initial mixture included residual mass fraction determined by
198 the Fox model [67]. For each fuel, the measured concentration of NO was
199 used, while all other incomplete combustion products (UHC, CO) were
200 excluded. The remaining residual mass was prescribed to be a mixture of
201 complete combustion products (CO₂, H₂O and N₂), coming from a
202 stoichiometric combustion, determined individually for each fuel
203 according to the following formulae.

204 $CH_{\alpha}O_{\beta} + \left(1 + \frac{\alpha}{4} - \frac{\beta}{2}\right)(O_2 + 3.773N_2)$

205 $= CO_2 + \frac{\alpha}{2}H_2O + \left(1 + \frac{\alpha}{4} - \frac{\beta}{2}\right)3.773N_2$

206 where $\alpha = Molar \frac{H}{C} ratio, \beta = Molar \frac{O}{C} ratio$

207 Mole fraction for complete combustion:

208 $CO_2 = \frac{1}{4.773 + 1.44325\alpha - 1.8865\beta}$

209 $H_2O = \frac{\alpha/2}{4.773 + 1.44325\alpha - 1.8865\beta}$

210 $N_2 = \frac{3.773 \left(1 + \frac{\alpha}{4} - \frac{\beta}{2}\right)}{4.773 + 1.44325\alpha - 1.8865\beta}$

211 The effect of NO was only estimated for stoichiometric conditions.

212 3.4 Experimental procedure

213 3.4.1 Gasoline direct injection (GDI) engine

214 Since the engine is not equipped with variable valve timing, a geometric
215 compression ratio of 12.6:1 was used for SI mode and 15.3:1 was
216 implemented for HCCI. After engine warm-up, the engine was run in SI
217 mode at 1500 rpm, with a stoichiometric air-fuel ratio and 9 bar IMEP
218 load. This operating condition was chosen in collaboration with industry
219 partners as a representative knock-limited operating point for a SI engine
220 at the chosen compression ratio of 12.6:1. In addition, this load also
221 closely resembles the operating load of the CFR engine during standard
222 RON tests, which was useful for the fuel performance comparison
223 presented in this article. However, due to this similarity, it should be

224 noted that the analysis provided in this article mainly relates to naturally
225 aspirated SI engine operating at full load, rather than knock limited
226 operation in a highly boosted SI engines. The combustion phasing (crank
227 angle at 50% mass fraction burnt – CA50%) was maintained at 20.5
228 degree after the firing top dead center ($^{\circ}$ aTDCf), while sweeping the
229 intake air temperature from 35 – 75 °C or until a 300-cycle mean knock
230 intensity, defined as maximum amplitude of pressure oscillation (MAPO),
231 of 0.35 bar was reached.

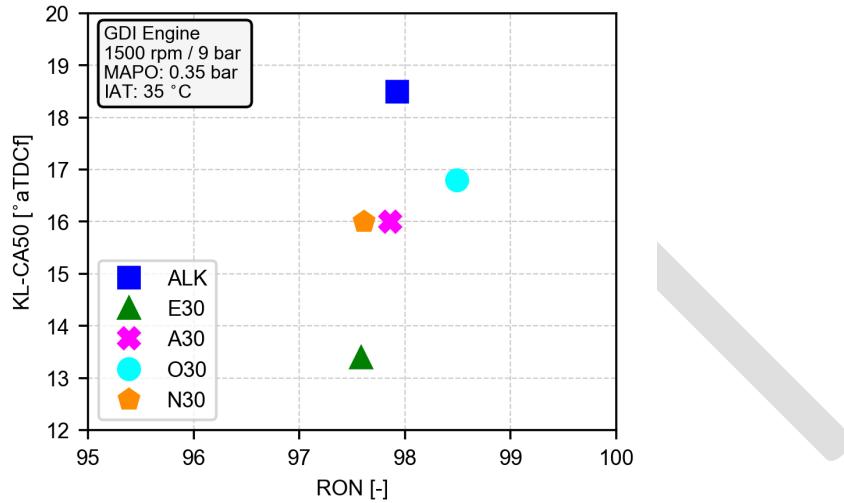
232 For HCCI operation the intake air temperature and air-fuel ratio were
233 adjusted until a combustion phasing of 12 $^{\circ}$ aTDCf and 3 bar IMEP was
234 reached at 1500 rpm and intake air pressure maintained close to
235 naturally aspirated at 1.05 bar absolute. The resulting excess air ratio
236 (defined as actual air-fuel ratio divided by the stoichiometric air-fuel
237 ratio, lambda, λ) was in the range of 3.35 – 3.85.

238 3.4.2 Co-operative Fuels Research (CFR) engine

239 The standard ASTM RON testing protocol was followed to characterize
240 the RON ratings of the test fuels in the CFR engine [14]. This implied that
241 each fuel was tested at 600 rpm and with a constant spark timing of -13
242 $^{\circ}$ aTDCf. While a typical RON test procedure would only require reporting
243 the knock intensity at peak knocking lambda (PKL) operation, lambda
244 sweeps were also conducted up to stoichiometry in this case. The
245 compression ratio, spark timing, intake air pressure and intake air
246 temperature upstream of the carburetor used during standardPKL

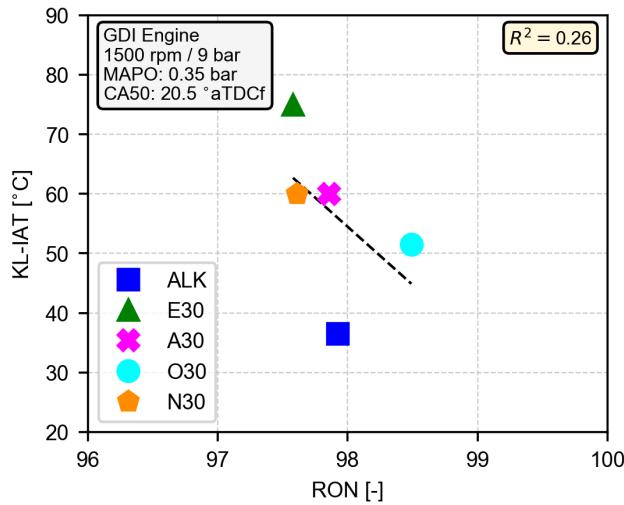
247 operation was kept constant throughout the lambda sweep and the
248 change in knock intensity was recorded.

249 The HCCI fuel ratings were conducted according to the “MON-like” Lund-
250 Chevron HCCI number test protocol [48] at 900 rpm. With a fixed intake
251 temperature of 149 °C and excess air ratio of three ($\lambda = 3.4$), the
252 compression ratio was adjusted for each fuel until stable combustion
253 phasing (CA50) was obtained at 3 aTDCf.


254 4 Results and discussions

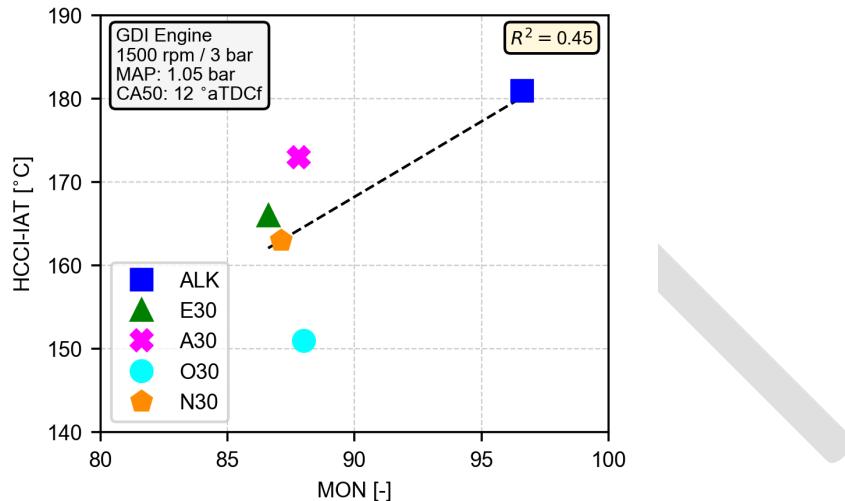
255 4.1 Multi-mode temperature delta

256 The applicability of RON and octane sensitivity towards describing the
257 performance of the test fuels in the multi-mode engine was evaluated by
258 correlating the RON and MON to the respective knock-limited SI and HCCI
259 operation. Fuels with high RON and high-octane sensitivity (RON-MON)
260 have previously been proposed as suitable for multi-mode SI-HCCI
261 operation [16], [48].


262 In Figure 1 the knock-limited combustion phasing (KL-CA50) is shown as
263 a function of RON. Recall that the knock limit was defined as 0.35 bar
264 maximum amplitude of the pressure oscillations (MAPO), averaged over
265 200 consecutive cycles. Despite the fuels having a similar RON of 98,
266 discernible differences in the knock-limited behavior of up to five crank
267 angle degrees can be seen. The poor knock resistance of the ALK fuel with
268 its low octane sensitivity agrees with the octane index framework.

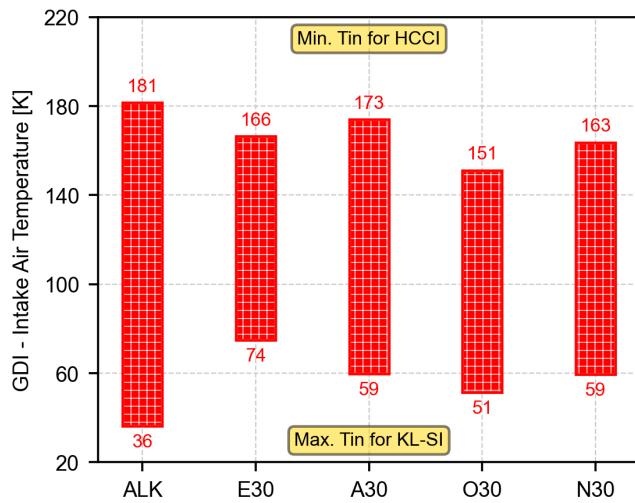
269 However, although the remaining test fuels have a similarly high-octane
270 sensitivity of around ten, significantly different knock-limited behavior
271 was found.

273 *Figure 1 Knock-limited combustion phasing (KL-CA50) shown as a function of RON
274 for the test fuels*


275 This behavior was also replicated when analyzing the knock limited intake
276 air temperature (KL-IAT), where a temperature difference of up to 40 °C
277 was found between the test fuels, as shown in Figure 2. In this case the
278 peak limited intake air temperature is depicted at a constant knock
279 intensity of 0.35 bar (MAPO). For multi-mode engine operation fuels with
280 a high KL-IAT need to be considered in order to enable knock-free SI
281 operation at elevated compression ratios and high residual gas
282 temperatures at intake valve closing during SI-HCCI transition.

284 *Figure 2 Knock-limited (0.35 ± 0.1) intake air temperature (KL-IAT) shown as a
 285 function of RON for the test fuels*

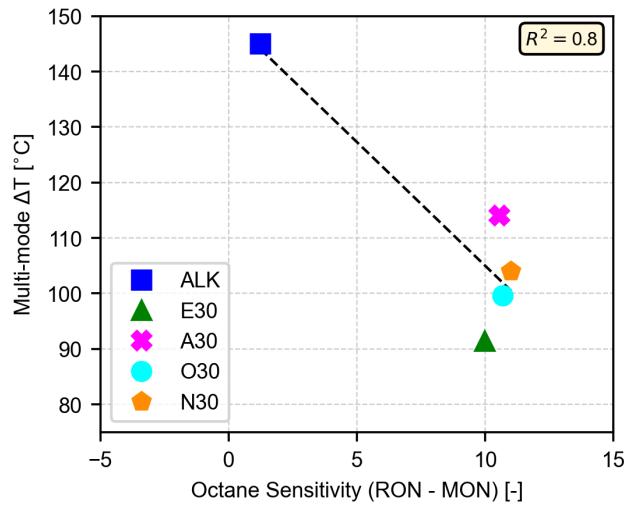
286 Under low load HCCI conditions the fuel's autoignition propensity can be
 287 described by the intake air temperature requirement to obtain stable
 288 combustion. The minimum intake air temperature for HCCI operation
 289 (HCCI-IAT) is shown as a function of MON in Figure 3. The MON has been
 290 suggested to be a more suitable method by which a fuel's performance
 291 under HCCI operation could be characterized, and the intake
 292 temperature conditions required for HCCI operation are relatively close
 293 to the mixture temperature of 149 °C prescribed in the MON test
 294 protocol.. It is perhaps worth highlighting here that the MON method was
 295 originally conceived to replicate the higher cylinder temperature
 296 conditions prevalent in SI engines at the time [68]. While the ALK fuel
 297 with the highest MON did require the highest amount of intake air
 298 heating, discernible differences were noted among the remaining test
 299 fuels, with A30 and O30 being distinct outliers. These observations are


300 echoed in a recent study by Szybist and Splitter who noted that highly
301 aromatic gasoline blends required higher intake air temperatures for GCI
302 operation, while olefinic blends were more reactive [69].

304 *Figure 3 Minimum intake air temperature for HCCI operation (HCCI-IAT) shown
305 as a function of MON for the test fuels*

306 In order to enable knock-free SI operation at high load and stable HCCI
307 combustion at low load, a fuel with somewhat contrasting autoignition
308 characteristics is required. A “low temperature sensitivity” is desirable to
309 prevent knocking operation under SI operation, while a “higher
310 temperature sensitivity” under compression ignition operation would
311 ease the transition to HCCI operation. This requirement can be replicated
312 by the intake air temperature sweep shown in Figure 4, which is defined
313 as the difference between the maximum knock limited intake air
314 temperature and the minimum intake air temperature for HCCI
315 operation. The ALK fuel was found to exhibit the highest intake

316 temperature sweep, needing the most intake air heating for HCCI
317 operation and requiring the lowest air temperature at high load for knock
318 limited SI operation. Although the remaining fuels have the same RON
319 and octane sensitivity, discernible differences in the temperature
320 dependencies for stable low load HCCI combustion and knock-limited
321 high load SI combustion were found.



323 *Figure 4: A bar plot showing intake air temperature change required for switch*
324 *from knock-limited high load SI operation to low-load compression ignited*
325 *operation*

326 As noted earlier, octane sensitivity (RON – MON) at a fixed RON has been
327 suggested to be a pragmatic method by which a fuel's performance in a
328 multi-mode engine could be characterized. Following this argument, the
329 octane sensitivity of the fuels was plotted against the intake temperature
330 swing required on the multi-mode GDI engine (Multi-Mode ΔT) as shown
331 in Figure 5. While a directional agreement with octane sensitivity could

332 be argued for the ALK and the remaining fuels, it should be noted that
333 the temperature delta among the octane sensitive test fuels was found
334 to be approximately 25 °C. Meanwhile, the temperature sensitivity
335 between ALK and A30 was approximately 30 °C.

336 The intake air temperature for the RON test is controlled to
337 approximately 52 °C and the mixture temperature for the MON test is
338 approximately 149 °C. While the compressed temperature conditions
339 characterize a fuel's temperature sensitivity to some degree, more
340 complicated underlying autoignition properties of the fuels are at play,
341 which are not captured by their octane numbers. In order to gain further
342 insight, a detailed analysis of the SI and HCCI operation in the two engine
343 platforms was conducted as will be discussed next.

345 *Figure 5: Plot showing correlation between octane sensitivity and Multi-mode*

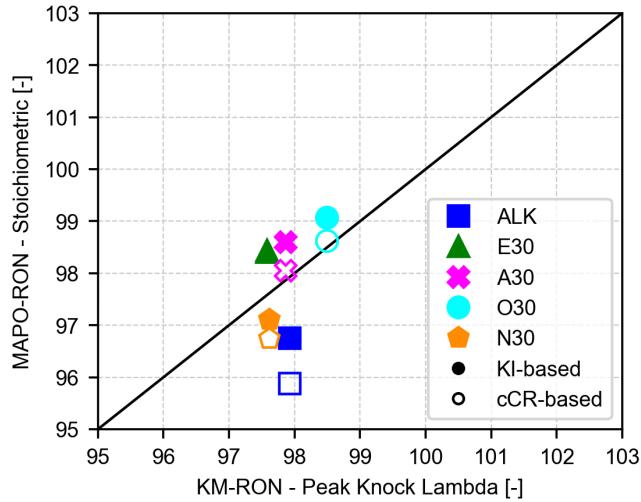
346 $\Delta T_{in.}$

347 4.2 Knock-limited SI operation

348 4.2.1 Intake temperature sweep in the GDI engine

349 The impact of intake air temperature on the knock intensity (MAPO) and
 350 the knock limited CA50 is shown in Figure 6. For the ALK fuel, the knock
 351 intensity limit of approximately 0.4 bar mean MAPO was reached at the
 352 lowest intake temperature of 35 °C, while E30 allowed for the intake
 353 temperature to be swept by a further 40 °C before the knock threshold
 354 was reached at 75 °C. The A30 and N30 fuels displayed similar behavior,
 355 while the O30 fuel was a bit more knock limited at elevated intake air
 356 temperatures. This ranking of the fuels' knocking behavior was also
 357 evident at 35 °C, where E30 depicted lowest knocking operation while
 358 some knocking cycles were detected for O30 and the knock threshold was
 359 reached for ALK. The cycle to cycle variation in knock intensity increased

360 for each of the fuels as the intake temperature was elevated, and the
361 cyclic variability appears to be consistent among the fuels at their
362 respective peak intake air temperatures. It is also worth highlighting that
363 E30 appeared to provide a stronger knock resistance at elevated
364 temperatures, which has previously been attributed to its higher HoV
365 [70]. The knock limited combustion phasing CA50 behavior at a constant
366 knock threshold of 0.35 bar followed the same trends for each of the test
367 fuels. It is worth noting that the E30 fuel allowed for a significantly more
368 optimal combustion phasing at 35 °C intake temperature, while this
369 benefit started to diminish as the intake air was heated. However, at a
370 fixed combustion phasing of around 19 aTDC, E30 allowed for
371 significantly higher intake air heating than the remaining octane sensitive
372 test fuels. Since the autoignition and knock propensity is dependent on
373 the thermodynamic state of the gas at the end of compression, more
374 insight may be gleaned from a cylinder pressure and temperature
375 analysis that will be discussed later.


377 *Figure 6: Variation of a) knock intensity (mean MAPO) with intake air*
378 *temperature as fixed combustion phasing, and b) knock limited combustion*
379 *phasing with intake air temperature*

380 4.2.2 Lambda effect on RON in the CFR engine

381 The RON test rates a fuel's octane number at "peak-knocking lambda"
382 (PKL), whereby the equivalence ratio is swept until the peak knock
383 intensity according to the ASTM knock-meter is found. For most fuels that
384 excess air ratio (Lambda) is slightly rich of stoichiometric in the region of

385 0.88 – 0.95. The respective PKL for the test fuels can be found in Table 2.
386 A detailed discussion of the impact of the Lambda ratio on the knock-
387 meter reading and knock intensity measured in terms of the maximum
388 amplitude of pressure oscillations (MAPO) was presented by Hoth et al.
389 [44]. These authors presented a method to provide corrected RON
390 numbers based on the knock meter and MAPO reading at stoichiometric
391 operation.

392 The RON values of the test fuels used in this study were re-calculated for
393 stoichiometric operation in order to provide a more direct comparison to
394 the knock limited SI operation in the GDI engine. The corrected numbers
395 according to the method proposed by Hoth et al. [44] are shown in Figure
396 7, using both knock intensity (KI) interpolation and critical compression
397 ratio (cCR) interpolation method. Regardless of the interpolation
398 method, the effective stoichiometric RON of the ALK fuel reduces by
399 more than one octane unit, while that of the sensitive fuels are relatively
400 unchanged. The ALK fuel was also found to be most sensitive to the
401 interpolation method, resulting in nearly one octane unit difference
402 between KI-based and cCR-based rating method. In contrast, E30 was
403 found to be insensitive to the interpolation method.

405 *Figure 7: Plot shows correlation between knock-meter based Octane rating at*
 406 *peak knocking lambda ("Standard" RON) and MAPO-based Octane rating at*
 407 *stoichiometric conditions on the CFR engine. Octane rating based on*
 408 *interpolation on knock-intensity space (KI-based) at fixed compression ratio*
 409 *("standard" method), and interpolation on critical compression ratio space (cCR-*
 410 *based) at fixed knock intensity of 0.6 bar MAPO are shown.*

411 4.2.3 Cyclic knock variability in the GDI and CFR engine

412 Knocking combustion in SI engines is well known to be a stochastic
 413 process and this behavior is shown in Figure 15. It shows the bivariate
 414 distribution of the knock intensity and combustion phasing. Referring to
 415 the GDI engine data, the distribution of combustion phasing, at nominally
 416 constant CA50 of 20.5 aTDCf is shown to be wide but normally
 417 distributed. While a significant portion of the combustion cycles did not
 418 display any knocking behavior, some cycles with extremely high knock
 419 intensity constrained the knock limited combustion phasing (KLCA50).

420 The knock and combustion behavior of the CFR engine is shown to be
421 significantly more repeatable, displaying a normally distributed behavior
422 for both combustion phasing and knock intensity, under both PKL and
423 stoichiometric operating conditions. The knock intensity was found to be
424 similar between the two equivalence ratios, although a higher knock
425 occurrence and subsequently earlier combustion phasing can be noted
426 for the ALK fuel. For the remaining fuels, the equivalence ratio does not
427 appear to affect the knock or CA50 phasing distribution, with the minor
428 exception for the N30 fuel with an earlier combustion phasing. This
429 analysis was extended by comparing the skewness and kurtosis of MAPO
430 distributions for all operating conditions from the GDI engine (presented
431 in Figure 6) to the operation in the CFR engine. Overall, the combustion
432 phasing in the CFR engine is mostly defined by the fixed spark advance of
433 13 CA bTDC and the critical compression ratio defines the level of knock
434 intensity. In the GDI engine the relatively high compression ratio of 12.6:1
435 necessitated a retarded KLSA resulting in a delayed combustion phasing.

436 4.2.4 Heat release behavior in the GDI and CFR engine
437 In order to analyze the combustion behavior in the two engine platforms,
438 a heat release analysis was conducted, as shown in Figure 16. These plots
439 show the most representative cycle determined by matching IMEP,
440 CA50% and knock intensity of individual cycles with the sample mean,
441 using weighing factors of 1, 2 and 4, respectively. As highlighted earlier,
442 the start of combustion in the GDI engine can be seen to commence after
443 the end of compression and burn late into the expansion phase. In the

444 CFR engine the combustion starts before TDC and centers around 10
445 aTDCf, leading to a higher rate of heat release than in the GDI engine. It
446 should be noted that the rate of heat release was normalized here using
447 total cycle fuel energy,in order to remove the effect of fuel loading and
448 engine speed. The heat release rate in the GDI engine was found to be
449 consistent amongst the test fuels, except for the N30 fuel where a higher
450 rate was found for the representative combustion cycle. In the CFR
451 engine the equivalence ratio did not affect the heat release rate greatly,
452 except for the ALK fuel which can be seen to have an earlier start of
453 combustion, as previously highlighted in Figure 15. The circular marker
454 on the cylinder pressure trace indicates the onset of knock. As highlighted
455 in previous CFR engine studies, the so called “knock point” was defined
456 as the inflection point in the cylinder pressure, where the onset of
457 autoignition resulted in an increased burn rate [31], [37]. The knock point
458 was subsequently shown to closely coincide with the onset of high
459 frequency pressure fluctuations, indicative of knocking combustion.
460 While the inflection point in the CFR engine pressure trace can be
461 identified using a low pass filtered signal, the knock point inflection in the
462 GDI engine is found more robustly by detecting the onset of high
463 frequency pressure oscillation. Previous studies have highlighted that the
464 knock point in the CFR engine can occur at burnt mass fractions of 50 –
465 80 %, depending on the compression ratio, i.e. octane rating of the fuel
466 [31], [32]. In modern GDI engines, the quantity of the end-gas undergoing
467 autoignition is generally only around 10 % .

468 To investigate this behavior, the normalized heat release rate is depicted
469 as a function of mass fraction burnt, as shown in Figure 17. The onset of
470 autoignition in the CFR engine can be clearly defined by the increase in
471 the burn rate, which was found to occur around 60 – 70 % of the mass
472 fraction burnt depending on the fuel. For the E30 and N30 fuel, the
473 stoichiometric air-fuel mixture appeared to result in an earlier onset of
474 autoignition, while the equivalence ratio did not play a role for the
475 remaining fuels. It was notable that the onset of autoignition in the GDI
476 engine also appeared to occur at a mass fraction burnt of around 70%,
477 which could be due to the fact that the most representative cycle with
478 higher-than-average knock intensity was plotted.

479 4.2.5 Thermodynamic state analysis at knock onset

480 In order to allow for a more thorough analysis of the thermodynamic
481 state at the onset of autoignition in the two engine devices, compressed
482 pressure and temperature maps were constructed as shown in Figure 18.
483 For each of the fuels, the compressed temperature was estimated
484 assuming isentropic compression. The gas temperature at intake valve
485 closing was estimated using the empirical model of Fox et. al. [67]. In
486 addition, an ignition delay contour map was created using constant
487 volume chemical kinetic simulations, as described in section 3.3.. Nitrous
488 oxide (NO) in the residual gas can have a profound impact on the
489 autoignition behavior of the cylinder charge, as highlighted in recent RCM
490 [71] and engine studies [62]–[64]. The ignition delay contours for a
491 mixture including NO concentration from the residual gas fraction were

492 therefore included to study their impact on the ignition delay behavior,
493 as described in section 3.3. A detailed investigation into the kinetic
494 behavior of NO is beyond the scope of this study and will be addressed in
495 a future publication. Furthermore, it should be noted that the impact of
496 LTHR in the end gas is not considered using the isentropic compression
497 analysis in this study. Recent studies have highlighted the impact of low
498 and intermediate temperature chemistry in characterizing knock
499 behavior [], especially under high load “beyond RON” operation. For the
500 “near RON” operating conditions under consideration here the impact of
501 preliminary was deemed to have less of an effect and was subsequently
502 not included.

503 Starting with the ALK fuel in the top left, the observations of the fuels will
504 be discussed in a clockwise manner in Figure 18. For the ALK fuel, one
505 compression trajectory for the GDI engine is depicted since the knock
506 limited intake temperature was constrained to 35 °C. The star marker
507 indicates the ignition point at around 20 bar and 800 K, while the round
508 markers show the location of CA10 followed by CA50. The start of
509 autoignition is demarcated by the blue square marker for the case of the
510 ALK fuel and lies approximately on the 2 ms ignition iso-tau contours. For
511 the CFR engine, the black line depicts the stoichiometric operating case,
512 while the grey trajectory shows the PKL case. The mixture is ignited at
513 around 12 bar and 680 K, and the combustion midpoint roughly coincides
514 with the CA10 marker of the GDI engine at around 30 bar and 850 K. For
515 the stoichiometric case the start of autoignition occurs around 35 bar and

516 900 K, while the PKL occurs at a slightly higher pressure. Since the CFR
517 engine is operating at less than half the speed of the GDI engine, the
518 knock point correlates with the 4 ms ignition delay isopleth.

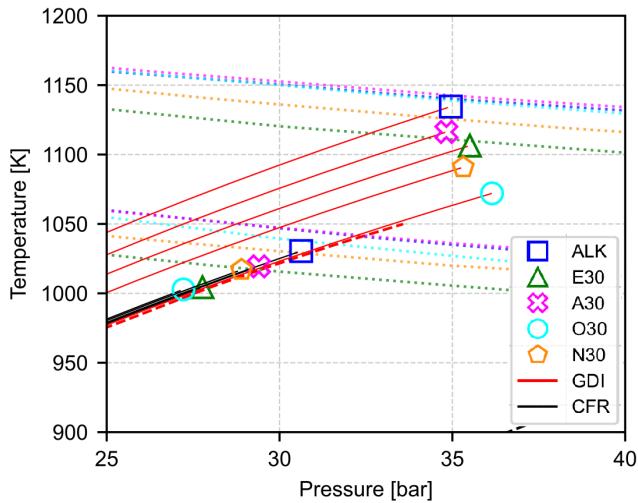
519 For the other fuels, the intake temperature sweep depicted in Figure 6
520 translates into different compression trajectories in the GDI engine. As
521 the intake temperature was increased, the compressed temperature at
522 the time of spark increased as well and could span a range of up to 100
523 K, in the case of E30. The onset of autoignition meanwhile appeared to
524 occur at relatively similar temperatures, aligning approximately with the
525 profile of the isopleth contours.

526 The impact of NO can be seen to be more pronounced in the negative
527 temperature coefficient (NTC) region for each of the fuels. This suggests
528 that NO could therefore have a profound impact on the knocking
529 behavior in the CFR engine, since the compression trajectories traverse
530 the NTC region and the onset of autoignition occurs at the cusp of this
531 region before transitioning into the intermediate temperature regime. It
532 should be noted that the effect of NO during standard RON conditions
533 may differ due to operation with slightly rich air-fuel ratios, where both
534 the static auto-ignition characteristics of the fuel and the effect of NO
535 may be different.

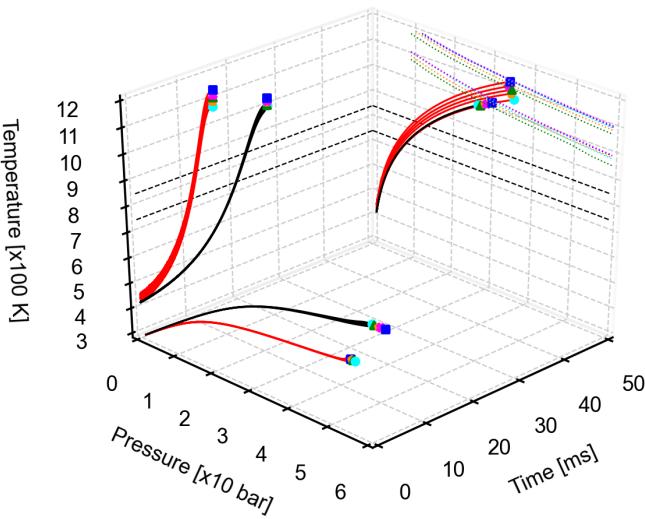
536 In order to investigate the impact of rate of compression between the
537 two engines, the pressure-temperature framework was expanded to
538 include the time domain as shown in Figure 19. The compression

539 trajectories were depicted on a temperature-time and a pressure-time
540 plane. The NTC temperature band is provided for guidance in order to
541 discuss the potential impact of low-temperature chemistry during the
542 compression process. The significantly longer duration of the
543 compression process for the CFR engine is self-evident. However, it is
544 interesting to note that the time spent in the temperature range above
545 700 K and up to the start of autoignition is similar in both engines. As
546 highlighted in Figure 4, significant differences in the knock-limited intake
547 temperatures were found amongst the fuels in the GDI engine, although
548 this behavior was not replicated by the critical compression ratio in the
549 CFR engine.

550 4.3 Low-load Compression Ignited Operation in the GDI and
551 the CFR engine


552 Compression ignition operation in the GDI engine was achieved by intake
553 air heating while the compression ratio was adjusted in the CFR engine.
554 In both cases the compressed gas temperature was elevated until
555 autoignition was achieved, as will be discussed in more detail here.

556 4.3.1 Thermodynamic state analysis at CA10


557 The compression trajectories for the compression ignited operation are
558 shown in Figure 8. The compression histories for the GDI engine are again
559 depicted in red, with the fuel specific marker indicating the start of
560 combustion (CA10). Similarly, black trajectories are implemented for the
561 CFR engine, with the fuel markers indicating the location of CA10. The

562 standard RON and MON trajectories are provided for reference. The ALK
563 fuel required the highest compressed temperature of around 1150 K,
564 while O30 ignited at around 1070 K in the GDI engine. The same order of
565 reactivity amongst most of the test fuels was noted in the CFR engine,
566 except for E30 which was found to be more reactive in the CFR engine
567 than in the GDI engine. Since the CFR engine was operating at almost half
568 the engine speed of the GDI engine, the start of combustion correlates
569 with a constant ignition delay time of around 2 ms instead of 0.5 ms for
570 the GDI engine case.

571 The effect of the compression time can be highlighted by again expanding
572 the PT-framework into the time domain, as shown in Figure 9. Compared
573 to the 600 rpm SI case highlighted in Figure 19, the compression times for
574 the HCCI cases are closer to those in the GDI engine. The dashed line
575 provides the approximate NTC region for the test fuels and indicates that
576 the 'residence time' in this region is similar in both engine platforms.

578 Figure 8: HCCI PT trajectories with iso-tau lines (0.5 and 2 ms)

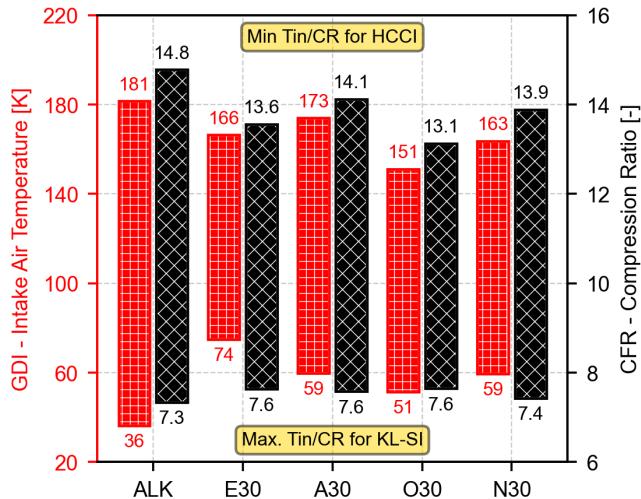
580 Figure 9: HCCI P-T-time plot

581 4.3.2 Heat release analysis in the GDI and CFR engine

582 Figure 20 shows representative cycles of the cylinder pressure and heat
 583 release rates observed in both engine platforms for all of the test fuels.

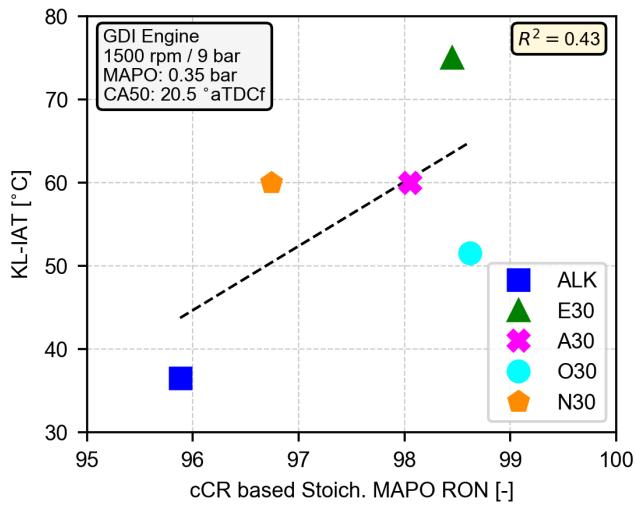
584 In the GDI engine the earliest combustion phasing was limited to 12
 585 °aTDC in order to avoid excessive combustion noise, while in the CFR

586 engine this phasing was controlled to 3 °aTDC with the aid of the
587 compression ratio, in line with the HCCI number (HCCI#) rating method
588 described previously [38], [72]. Although the equivalence ratio was fairly
589 similar between the two engine platforms, the peak rate of heat release
590 was significantly higher in the GDI engine than in the CFR. It should be
591 noted here that the heat release rate was again normalized in order to
592 remove differences due to fuel loading in the two platforms. It is worth
593 mentioning here that the turbulence intensity in the GDI engine is
594 expected to be significantly higher than in the CFR engine, due to the
595 higher engine speed and the intake ports that are designed to generate
596 tumble. Although the CFR engine is equipped with a swirl inducing
597 shrouded intake valve, the turbulence level are evidently lower than
598 those in the GDI engine.


599 While appreciable differences were noted in the intake air and
600 compression ratio requirements for the different test
601 fuels, the subsequent heat release behavior was found to
602 be very comparable between the fuels. This behavior is
603 also depicted in Figure 21, where the normalized heat
604 release rate is plotted as a function of mass fraction
605 burnt. Preliminary exothermicity was not noted during
606 any of the tests.

607 4.4 Discussion

608 The deficiencies of the RON and MON method to characterize knock
609 behavior for modern SI engines are well established. While the octane
610 index provides a practical method to correct for the thermodynamic
611 states in current engine designs, the method has its limitations and has
612 been shown to not be entirely fuel independent [19], [75], [76].
613 Furthermore, the octane index metric has been shown to break down
614 when trying to characterize autoignition quality properties for the use in
615 gasoline compression ignition engines. Since the RON and MON number
616 characterize a knock intensity rather than autoignition quality, this non-
617 conformance may perhaps be expected. Of course, knock onset is
618 inarguably linked to the onset of autoignition, however, the resulting
619 knock intensity has been shown to be fuel dependent. Furthermore,

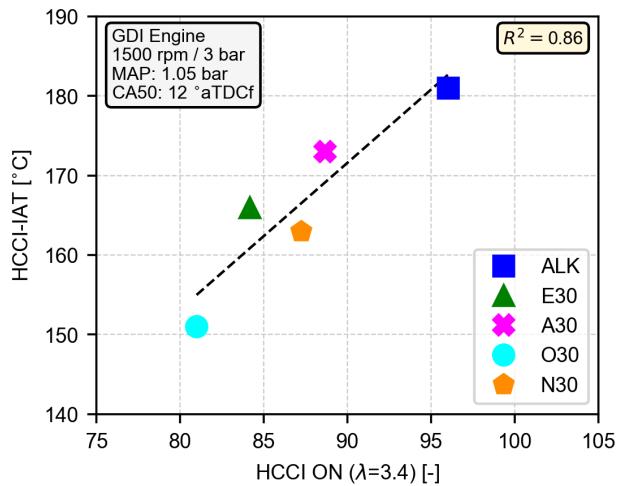

620 discrepancies between knock intensity and the knock-meter reading
621 during the standard octane test have also been highlighted.

622 The detailed combustion analysis of the RON98 fuels under SI and HCCI
623 operation further highlights the non-conformance of RON and octane
624 sensitivity towards characterizing fuel performance in a multi-mode
625 engine. This is replicated in Figure 10, where the intake air temperature
626 and compression ratio change are shown for the GDI and CFR engine,
627 respectively. When comparing the non-octane sensitive ALK fuel to the
628 remaining test fuels, the octane sensitivity provides a directional
629 indication of a fuel's knock resistance and autoignition propensity.
630 However, significant differences in the critical temperatures for SI and
631 HCCI operation in the GDI engine were found for four of the test fuels
632 having the same RON and octane sensitivity. Similar behavior was noted
633 when analyzing the critical compression ratio for the two combustion
634 modes in the CFR engine.

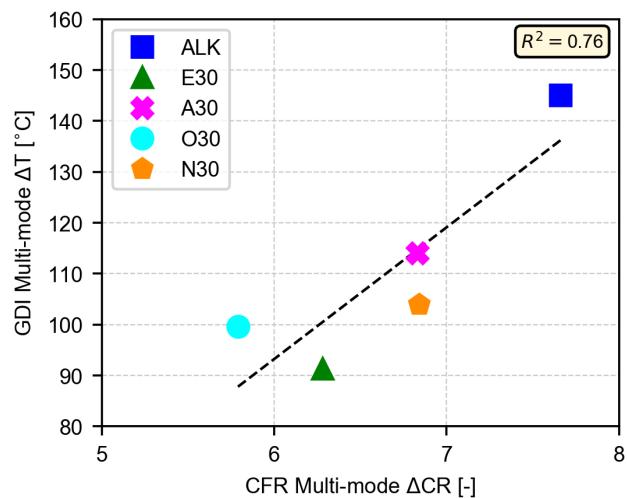
636 *Figure 10 A bar plot showing intake air temperature change or compression ratio*
 637 *change required to switch from knock-limited SI operation to low-load*
 638 *compression ignited operation in the GDI and CFR engine.*

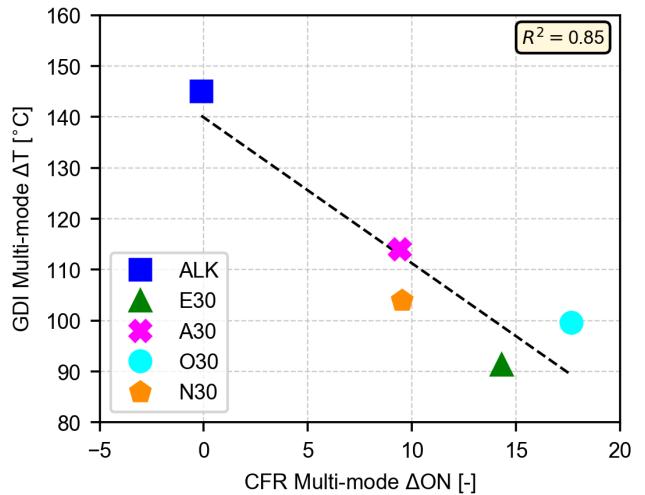
639 One of the major differences between the CFR engine operating
 640 conditions and those in conventional SI engines, is the effect of the
 641 equivalence ratio on knocking behavior. The RON 98 fuels investigated in
 642 this study had considerably different octane ratings when corrected for
 643 stoichiometric operation, as was highlighted in 4.2.2. When correcting
 644 the RON for stoichiometric operation and utilizing the MAPO knock
 645 intensity metric, an improved fit with the KL-IAT was found, as shown in
 646 Figure 11.

648 *Figure 11 KL-IAT in the GDI engine as a function of Stoichiometric MAPO-based*
 649 *RON obtained from the CFR engine.*


650 The variable compression ratio mechanism of the CFR engine also lends
 651 itself to characterize the autoignition quality in HCCI mode, as discussed
 652 in 4.3. In Figure 12 the minimum intake air temperature in the GDI engine
 653 is shown as a function of the HCCI#. A good correlation was found,
 654 implying that the ranking of autoignition propensity of the fuels is
 655 captured similarly in both engine platforms. This is also in agreement with
 656 the comparison of the minimum intake temperature and critical
 657 compression ratio in the two engine platforms, highlighted in Figure 10.

658 This GDI Multi-mode ΔT , as previously shown in Figure 5, is now shown
 659 in Figure 13 as a function of the Δ -cCR in the CFR engine. This resulted in
 660 a good correlation, indicating that the compression ratio metric captured
 661 the temperature sensitivities in the GDI engine under multi-mode
 662 operation. The critical compression ratio was then converted to an


663 effective ON (by interpolation critical compression ratio space for PRF

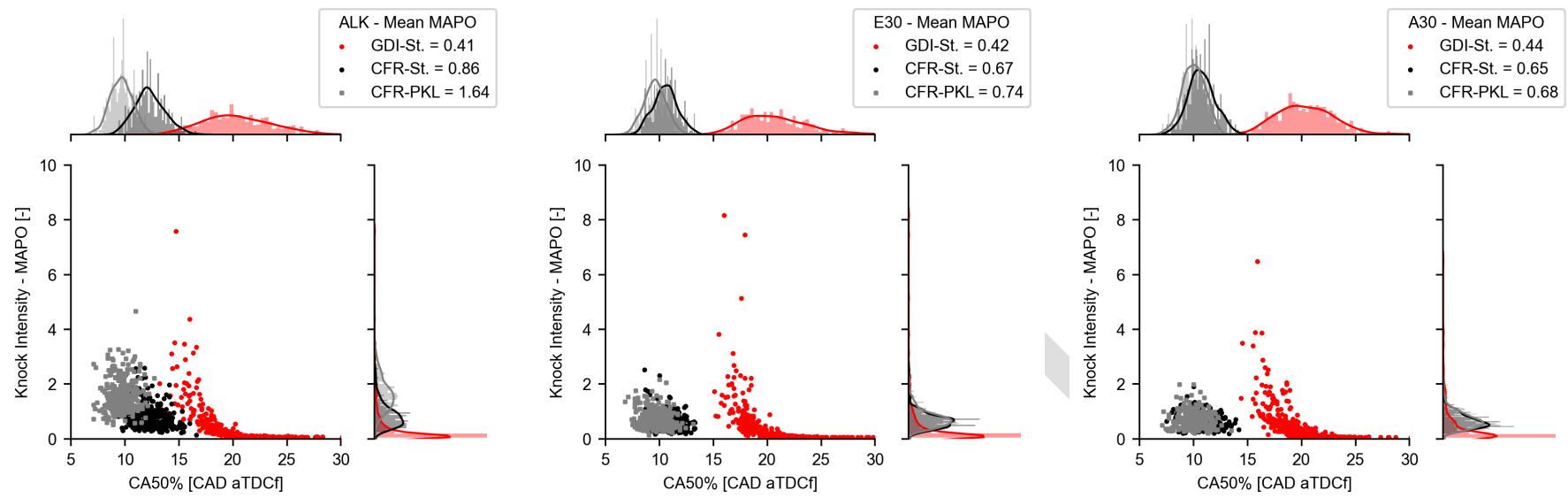

664 fuels) as shown in Figure 14, which further improved the correlation.

DRAFT

666 Figure 12 Plot shows correlation between the HCCI ON (measured at 900 rpm, 1
 667 bar, 150 °C, $\lambda = 3.4$ in the CFR engine) and the minimum intake air temperature
 668 required for HCCI in the GDI engine

673 *Figure 14: Plot showing correlation between CFR engine-derived $\Delta\text{-ON}$ for multi-*
 674 *mode operation, and ΔT_{in} for multi-mode operation on the GDI engine.*

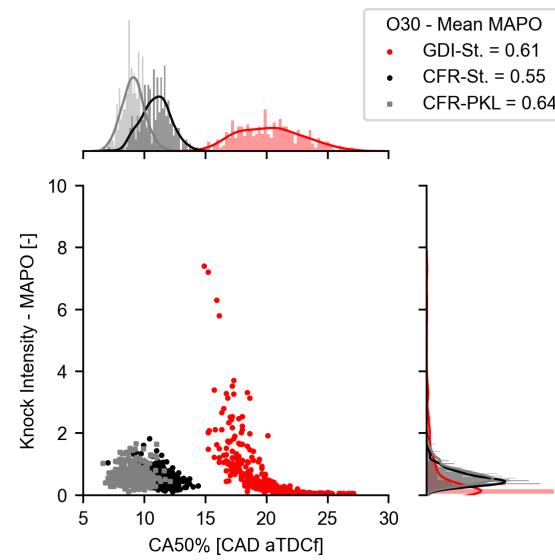
675 5 Conclusion


676 A detailed analysis of the combustion behavior in the CFR engine and a
 677 multi-mode GDI engine was conducted, and the following conclusions
 678 can be drawn:

- 679 • Standard RON, MON and S are insufficient to describe autoignition
 680 behavior in a multi-mode engine
- 681 • RON and MON describe a (low pass filtered) knock intensity which,
 682 by its nature, appears to be insufficient to describe autoignition
 683 characteristics under compression ignited operation.
- 684 • Correlation between KLSI and RON can be improved by correcting for
 685 stoichiometry and knock intensity metric

686 • A critical compression ratio metric for SI and ACI operation on the
687 CFR engine appears to show some promise in rating fuels for modern
688 multi-mode engines

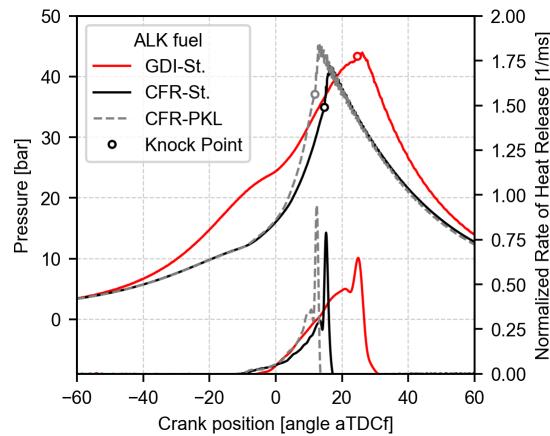
689 6 Acknowledgements


690 The submitted manuscript has been created in part by UChicago
691 Argonne, LLC, Operator of Argonne National Laboratory ("Argonne").
692 Argonne, a U.S. Department of Energy Office of Science laboratory, is
693 operated under Contract No. DE-AC02-06CH11357. Funding for this work
694 was received from the Office of Vehicle Technology, Office of Energy
695 Efficiency and Renewable Energy, U.S. Department of Energy, as part of
696 the Co-Optimization of Fuels & Engines (Co-Optima) project. The authors
697 would like to acknowledge the support of Lawrence Livermore National
698 Laboratory for their support with the chemical kinetic mechanisms and
699 Dr. Song Cheng for running the kinetic simulations using the Zero-RK
700 toolset.

(a)

(b)

(c)


(d)

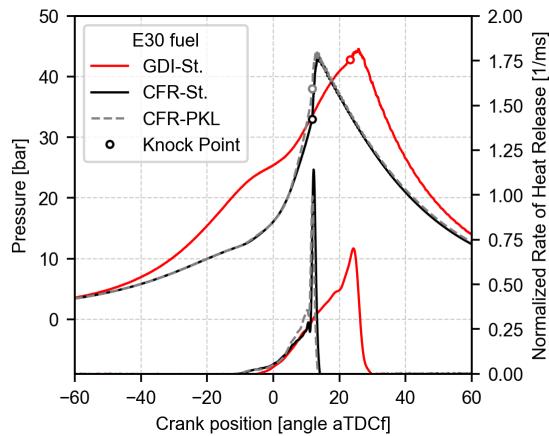
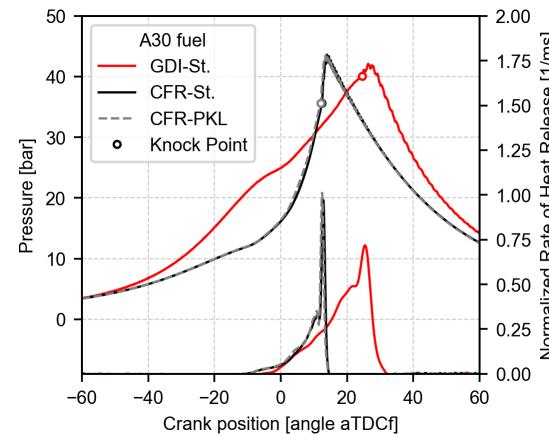
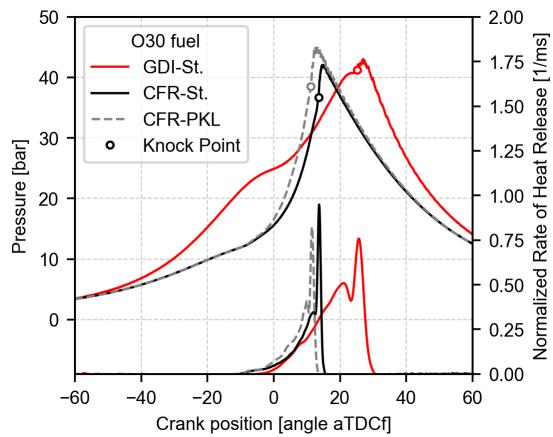
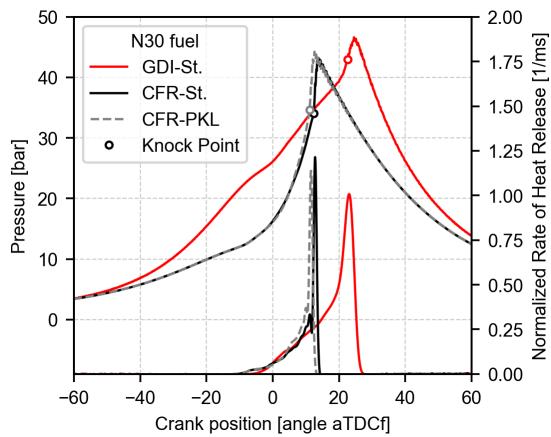

(e)

Figure 15: Bivariate distribution of combustion phasing (CA50%) and knock intensity (MAPO) for operation in the GDI engine at stoichiometric condition (red) and CFR engine at peak-knock-lambda (blue) and stoichiometric condition (orange)


DRAFT


(a)


(b)

(c)

(d)

(e)

Figure 16: Cylinder pressure and heat release rate characteristics in the GDI engine at stoichiometric condition (red) and CFR engine at peak-knock-lambda (blue) and stoichiometric condition (orange)

DRAFT

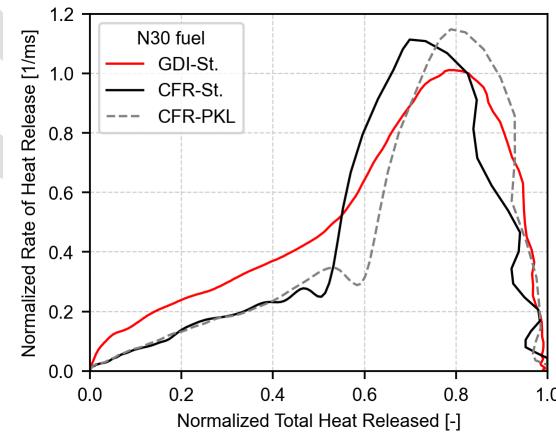
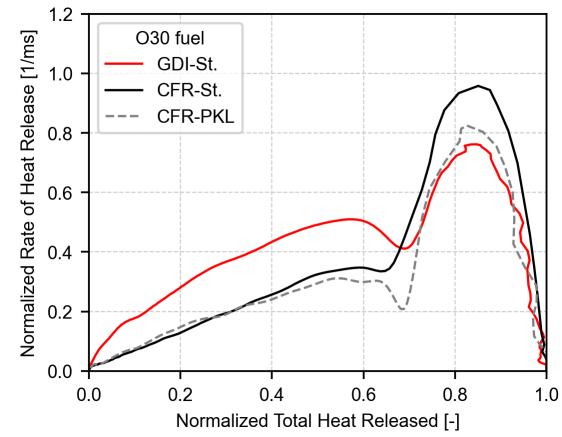
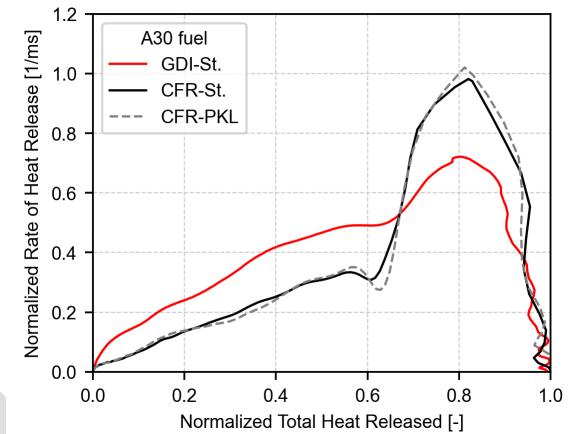
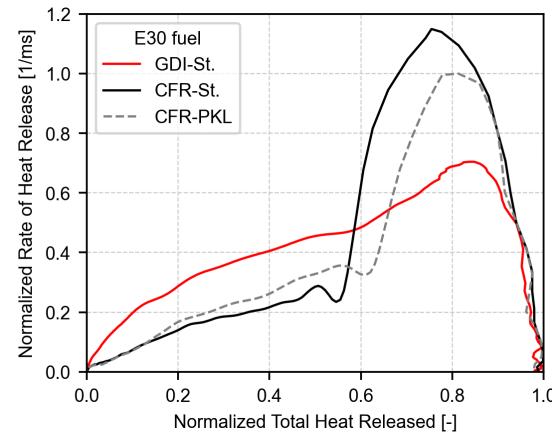
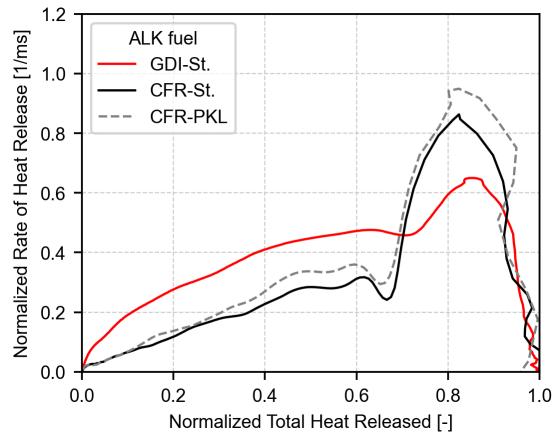






Figure 17: Normalized heat release rate plotted against normalized total heat released for operation in the GDI engine at stoichiometric condition (red) and CFR engine at peak-knock-lambda (blue) and stoichiometric condition (orange)

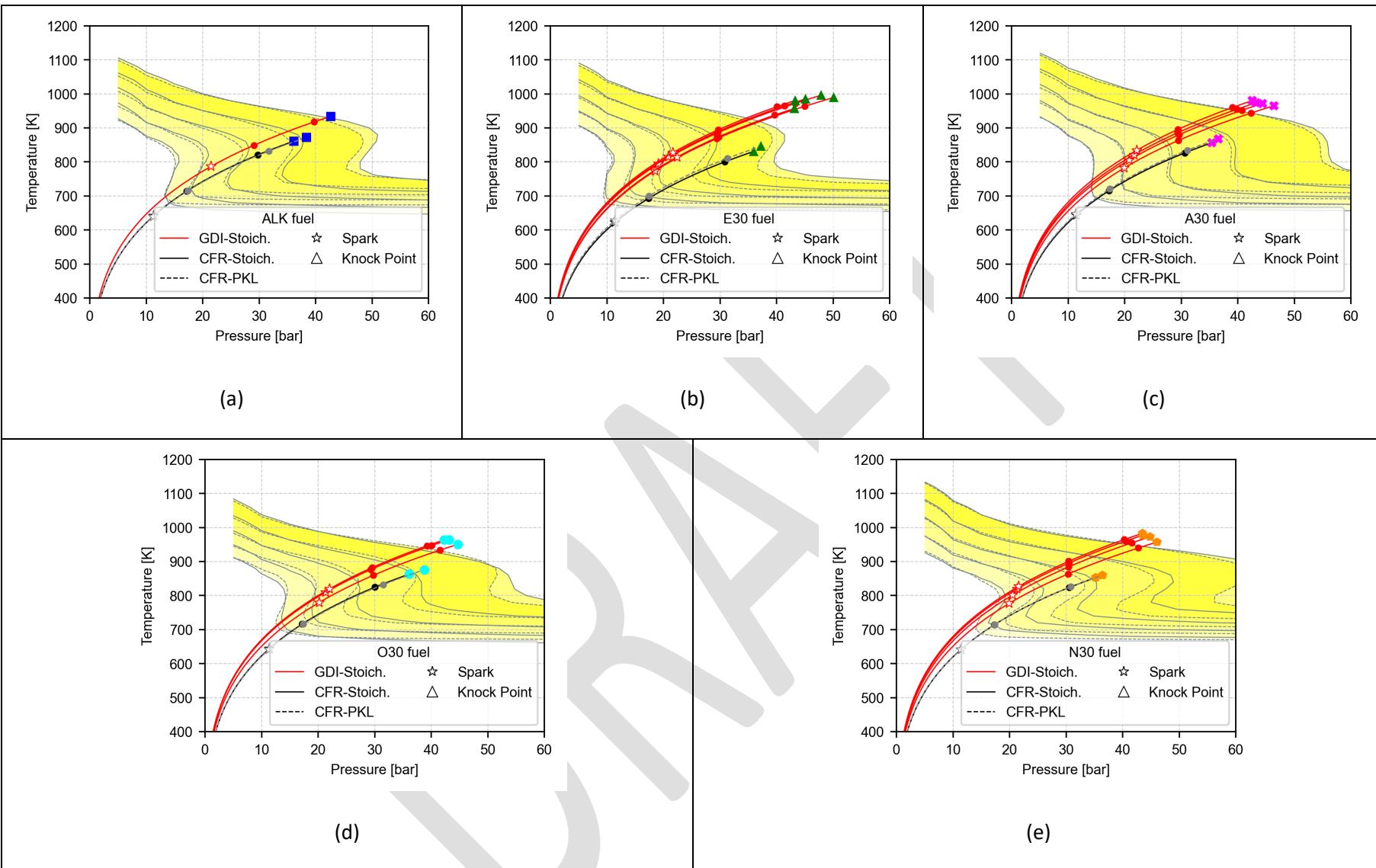


Figure 18: KL-SI PT trajectories with iso-tau lines (2, 4, 8, 16, 32 ms). Solid lines is without NO, dashed line is with NO.

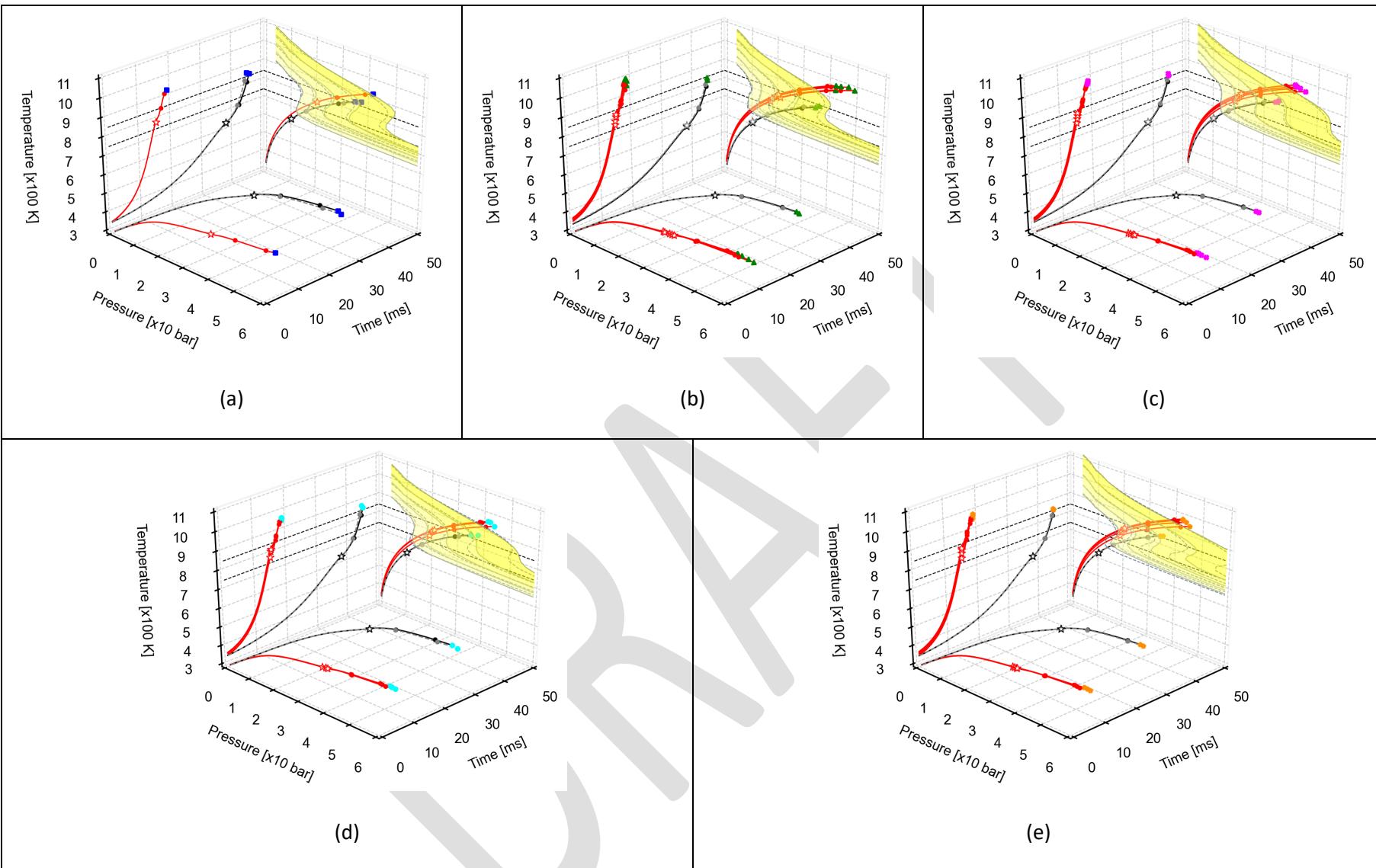
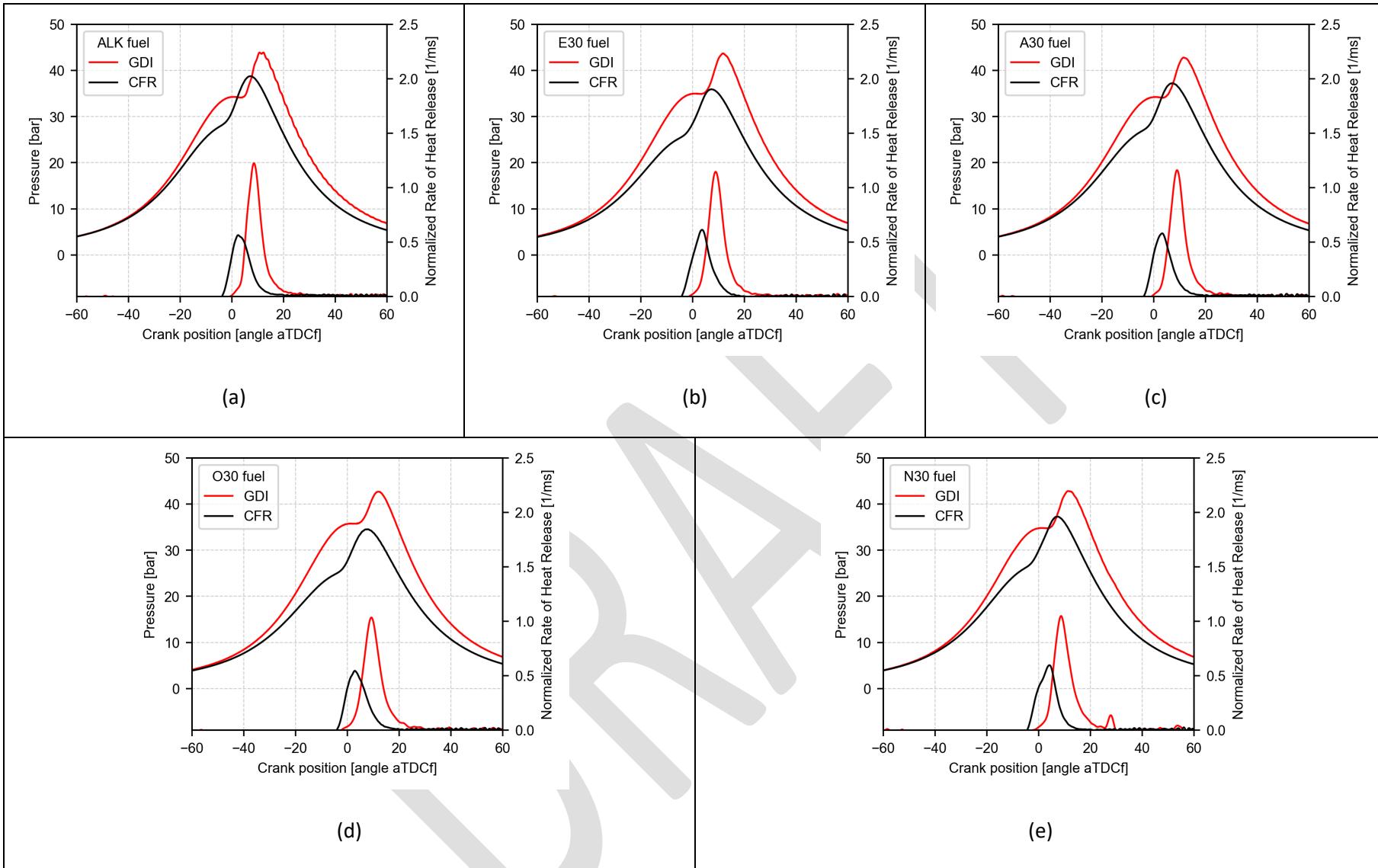
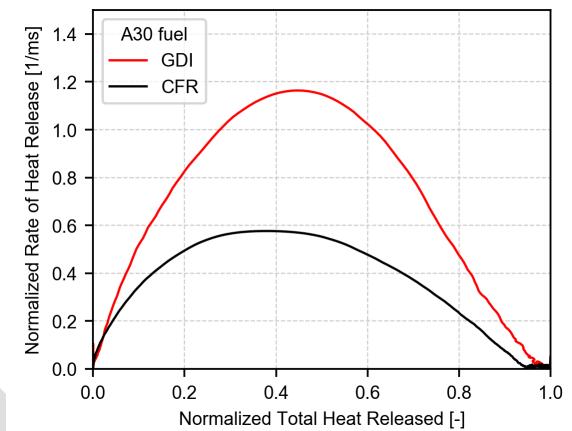
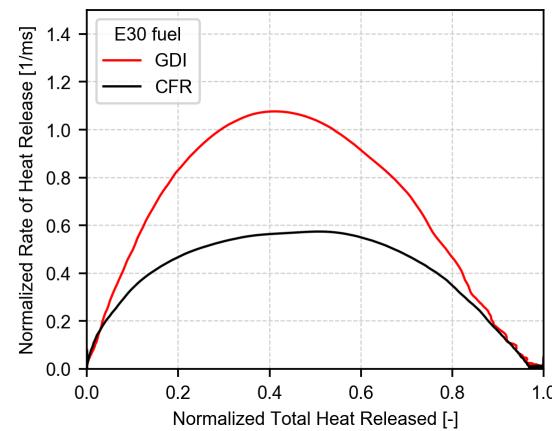
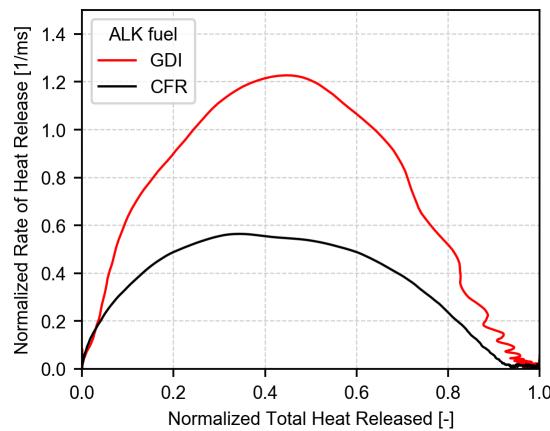
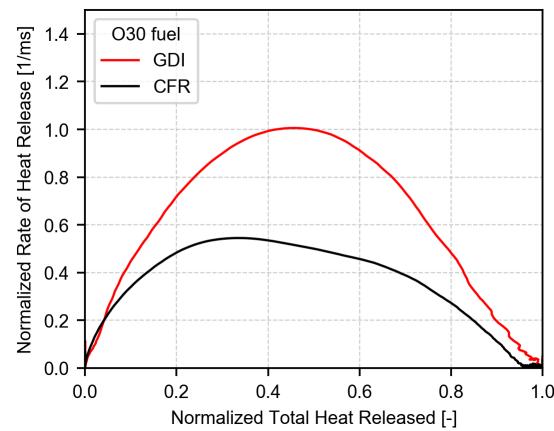
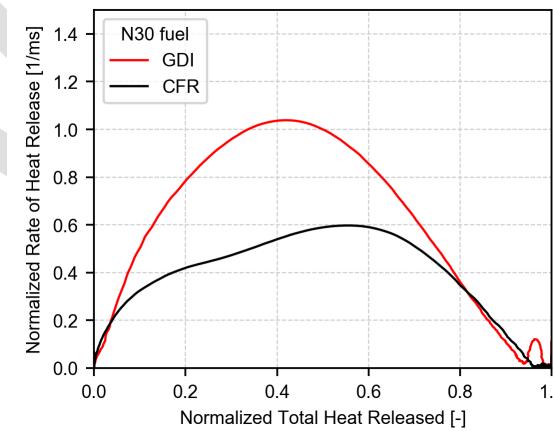


Figure 19: KL-SI P-T-time plot.


Figure 20: Cylinder pressure and heat release rate characteristics in the GDI engine (red) and the CFR engine (black) under compression ignited low-load operating condition


(a)

(b)

(c)

(d)

(e)

Figure 21: Normalized heat release rate plotted against normalized total heat released for operation in the GDI engine (red) and the CFR engine (black) under low-load compression ignited operation

7 Bibliography

- [1] P. M. Najt and D. E. Foster, "Compression-Ignited Homogeneous Charge Combustion," *SAE Int.*, 1983.
- [2] R. Thring, "Homogeneous Charge Compression Ignition (HCCI) Engines," *SAE Int.*, 1989.
- [3] A. Kulzer, J. P. Hathout, C. Sauer, R. Karrelmeyer, W. Fischer, and A. Christ, "Multi-mode combustion strategies with CAI for a GDI engine," *SAE Tech. Pap.*, vol. 2007, no. 724, 2007.
- [4] D. Dahl, I. Denbratt, and L. Koopmans, "An evaluation of different combustion strategies for SI engines in a multi-mode combustion engine," *SAE Int. J. Engines*, vol. 1, no. 1, pp. 324–335, 2009.
- [5] N. Milovanovic, D. Blundell, S. Gedge, and J. Turner, "SI-HCCI-SI mode transition at different engine operating conditions," *SAE Tech. Pap.*, vol. 2005, no. 724, 2005.
- [6] M. Sellnau, W. Moore, J. Sinnamon, K. Hoyer, M. Foster, and H. Husted, "GDCI Multi-Cylinder Engine for High Fuel Efficiency and Low Emissions," *SAE Int. J. Engines*, vol. 8, no. 2, pp. 2015-01-0834, 2015.
- [7] M. Sellnau, M. Foster, W. Moore, J. Sinnamon, K. Hoyer, and W. Klemm, "Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions," *SAE Int. J. Enginess*, vol. 9, no. 2, 2016.

[8] S. Ciatti, M. Johnson, B. Das Adhikary, R. D. Reitz, and A. Knock, "Efficiency and Emissions performance of Multizone Stratified Compression Ignition Using Different Octane Fuels," *SAE Tech. Pap. 2013-01-0263*, no. 2013-01–0263, Apr. 2013.

[9] D. Polovina *et al.*, "Steady-state combustion development of a downsized multi- cylinder engine with range extended HCCI/SACI capability," *SAE Int. J. Engines*, vol. 6, no. 1, pp. 504–519, 2013.

[10] D. Robertson and R. Prucka, "A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies," *SAE Tech. Pap.*, 2019.

[11] L. Li, H. Xie, T. Chen, W. Yu, and H. Zhao, "Experimental study on spark assisted compression ignition (SACI) combustion with positive valve overlap in a HCCI gasoline engine," *SAE Tech. Pap.*, no. Ci, 2012.

[12] M. Sjöberg and W. Zeng, "Combined Effects of Fuel and Dilution Type on Efficiency Gains of Lean Well-Mixed DISI Engine Operation with Enhanced Ignition and Intake Heating for Enabling Mixed-Mode Combustion," *SAE Int. J. Engines*, vol. 9, no. 2, pp. 750–767, 2016.

[13] Mazda, "MAZDA Next-generation Technology, Press Information," 2017. .

[14] *Standard Test Method for Research Octane Number of Spark-*

Ignition Engine Fuel. USA: ASTM International, 2013.

- [15] ASTM Int., "Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel 1," *Annu. B. ASTM Stand.*, vol. i, no. C, pp. 1–56, 2011.
- [16] G. T. Kalghatgi, "Auto-ignition quality of practical fuels and implications for fuel requirements of future SI and HCCI engines," *SAE Tech. Pap.*, no. 724, 2005.
- [17] V. Mittal and J. B. Heywood, "The Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines," vol. 4970, 2008.
- [18] G. T. Kalghatgi, "Fuel Anti-Knock Quality - Part I. Engine Studies," *SAE Tech. Pap. Ser.*, vol. 1, no. 724, 2010.
- [19] A. Amer *et al.*, "Fuel Effects on Knock in a Highly Boosted Direct Injection Spark Ignition Engine," *SAE Int. J. Fuels Lubr.*, vol. 5, no. 3, pp. 1048–1065, 2012.
- [20] T. Davies, R. Cracknell, G. Lovett, L. Cruff, and J. Fowler, "Fuel effects in a boosted DISI engine," in *SAE Technical Papers*, 2011, vol. 2020.
- [21] A. D. B. Yates, A. Swarts, and C. L. Viljoen, "Correlating auto-ignition delays and knock-limited spark-advance data for different types of fuel," *SAE Tech. Pap.*, 2005.
- [22] A. Prakash *et al.*, "Understanding the Octane Appetite of Modern Vehicles," *SAE Int. J. Fuels Lubr.*, vol. 9, no. 2, pp. 2016-01–0834,

2016.

- [23] M. Tao, P. Zhao, J. P. Szybist, P. Lynch, and H. Ge, "Insights into engine autoignition: Combining engine thermodynamic trajectory and fuel ignition delay iso-contour," *Combust. Flame*, vol. 200, pp. 207–218, 2019.
- [24] G. Kalghatgi, K. Morganti, and I. Algunaibet, "Some Insights on the Stochastic Nature of Knock and the Evolution of Hot Spots in the End-Gas during the Engine Cycle from Experimental Measurements of Knock Onset and Knock Intensity," *SAE Tech. Pap.*, vol. 2017-Octob, no. 1, 2017.
- [25] J. C. Peyton Jones, S. Shayestehmanesh, and J. Frey, "A dual-threshold knock controller," *Int. J. Engine Res.*, vol. 18, no. 8, pp. 837–846, 2017.
- [26] A. J. Shahlari and J. B. Ghandhi, "A comparison of engine knock metrics," *SAE Tech. Pap.*, vol. 4, no. 1, 2012.
- [27] G. Kalghatgi, "Knock onset, knock intensity, superknock and preignition in spark ignition engines," *Int. J. Engine Res.*, vol. 19, no. 1, pp. 7–20, Jan. 2018.
- [28] J. M. Spelina, J. C. P. Jones, and J. Frey, "Characterization of knock intensity distributions: Part 1: statistical independence and scalar measures," *Proc. Inst. Mech. Eng. Part D J. Automob. Eng.*, vol. 228, no. 2, pp. 117–128, 2014.

[29] J. M. Spelina, J. C. P. Jones, and J. Frey, "Characterization of knock intensity distributions: Part 2: parametric models," *Proc. Inst. Mech. Eng. Part D J. Automob. Eng.*, vol. 227, no. 12, pp. 1650–1660, 2013.

[30] M. Kassa, C. Hall, M. Pamminger, and T. Wallner, "Knock Intensity Distribution and a Stochastic Control Framework for Knock Control," *J. Dyn. Syst. Meas. Control*, vol. 141, no. 11, pp. 1–9, 2019.

[31] A. Swarts, A. Yates, C. Viljoen, and R. Coetzer, "Standard knock intensity revisited: Atypical burn rate characteristics identified in the CFR octane rating engine," *SAE Tech. Pap.*, 2004.

[32] A. Swarts, A. Yates, C. Viljoen, and R. Coetzer, "A further study of inconsistencies between autoignition and knock intensity in the CFR octane rating engine," *SAE Tech. Pap.*, 2005.

[33] A. Swarts and A. Yates, "Insights into the role of autoignition during octane rating," *SAE Tech. Pap.*, no. 724, 2007.

[34] T. Rockstroh, C. P. Kolodziej, M. C. Jespersen, S. S. Goldsborough, and T. Wallner, "Insights into Engine Knock: Comparison of Knock Metrics across Ranges of Intake Temperature and Pressure in the CFR Engine," *SAE Int. J. Fuels Lubr.*, vol. 11, no. 4, pp. 545–561, 2018.

[35] J. Pulpeiro Gonzalez, A. Shah, A. Hoth, T. Rockstroh, and C.

Kolodziej, "Statistical analysis of fuel effects on cylinder conditions leading to end-gas autoignition in SI engines," *SAE Tech. Pap.*, vol. 2019-April, no. April, pp. 1–19, 2019.

- [36] A. Swarts, G. L. Anderson, and J. M. Wallace, "Comparing Knock between the CFR Engine and a Single Cylinder Research Engine," *SAE Tech. Pap. Ser.*, vol. 1, 2019.
- [37] V. Arrigoni, G. M. Cornetti, G. Spallanzani, F. Calvi, and A. Tontodonati, "High Speed Knock in S . I . Engines," 2015.
- [38] I. Truedsson, M. Tuner, B. Johansson, and W. Cannella, "Pressure Sensitivity of HCCI Auto-Ignition Temperature for Oxygenated Reference Fuels," *J. Eng. Gas Turbines Power*, vol. 135, no. 7, p. 072801, 2013.
- [39] I. Truedsson, M. Tuner, B. Johansson, and W. Cannella, "Pressure Sensitivity of HCCI Auto-Ignition Temperature for Primary Reference Fuels," *SAE Int. J. Engines*, vol. 5, no. 3, pp. 1089–1108, Apr. 2012.
- [40] V. Kalaskar, D. Kang, and A. L. Boehman, "Impact of Fuel Composition and Intake Pressure on Lean Autoignition of Surrogate Gasoline Fuels in a CFR Engine," *Energy and Fuels*, vol. 31, no. 10, pp. 11315–11327, 2017.
- [41] S. Cheng, Y. Yang, M. J. Brear, D. Kang, S. Bohac, and A. L. Boehman, "Autoignition of pentane isomers in a spark-ignition

engine,” vol. 000, pp. 1–8, 2016.

- [42] M. U. Waqas, A. Hoth, C. P. Kolodziej, T. Rockstroh, J. P. Gonzalez, and B. Johansson, “Detection of low Temperature heat release (LTHR) in the standard Cooperative Fuel Research (CFR) engine in both SI and HCCI combustion modes,” *Fuel*, vol. 256, no. June, p. 115745, 2019.
- [43] D. Kang, A. Shah, T. Rockstroh, and S. Goldsborough, “Utilizing Static Autoignition Measurements to Estimate Intake Air Condition Requirements for Compression Ignition in a Multi-Mode Engine - Application of Chemical Kinetic Modeling,” in *SAE Technical Papers*, 2019, vol. 2019-April, no. April, pp. 1–15.
- [44] A. Hoth, J. Pulpeiro Gonzalez, C. P. Kolodziej, and T. Rockstroh, “Effects of lambda on knocking characteristics and RON rating,” *SAE Tech. Pap.*, vol. 2019-April, no. April, pp. 1–14, 2019.
- [45] A. Hoth, C. P. Kolodziej, T. Rockstroh, and T. Wallner, “Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine,” *SAE Tech. Pap.*, vol. 2018-Septe, pp. 1–14, 2018.
- [46] R. L. McCormick *et al.*, “Co-Optimization of Fuels & Engines: Properties of Co-Optima Core Research Gasolines,” Golden, CO (United States), Aug. 2018.
- [47] M. J. McNenly, R. A. Whitesides, and D. L. Flowers, “Faster solvers

for large kinetic mechanisms using adaptive preconditioners,” *Proc. Combust. Inst.*, vol. 35, no. 1, pp. 581–587, 2015.

- [48] M. Mehl *et al.*, “A Comprehensive Detailed Kinetic Mechanism for the Simulation of Transportation Fuels,” in *10th U.S. National Combustion Meeting*, 2017.
- [49] Y. Li, C. W. Zhou, K. P. Somers, K. Zhang, and H. J. Curran, “The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene,” *Proc. Combust. Inst.*, vol. 36, no. 1, pp. 403–411, 2017.
- [50] J. Bugler *et al.*, “An ignition delay time and chemical kinetic modeling study of the pentane isomers,” *Combust. Flame*, vol. 163, pp. 138–156, 2016.
- [51] K. Zhang, C. Banyon, C. Togbé, P. Dagaut, J. Bugler, and H. J. Curran, “An experimental and kinetic modeling study of n-hexane oxidation,” *Combust. Flame*, vol. 162, no. 11, pp. 4194–4207, 2015.
- [52] K. Zhang *et al.*, “An updated experimental and kinetic modeling study of n-heptane oxidation,” *Combust. Flame*, vol. 172, pp. 116–135, 2016.
- [53] N. Atef *et al.*, “A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics,” *Combust. Flame*, vol. 178, pp. 111–134, 2017.

[54] Y. Zhang, Y. Pei, M. Tang, and M. Traver, “Injector Spray Pattern Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine,” pp. 1–11, 2019.

[55] Y. Zhang, K. P. Somers, M. Mehl, W. J. Pitz, R. F. Cracknell, and H. J. Curran, “Probing the antagonistic effect of toluene as a component in surrogate fuel models at low temperatures and high pressures. A case study of toluene/dimethyl ether mixtures,” *Proc. Combust. Inst.*, vol. 36, no. 1, pp. 413–421, 2017.

[56] G. Kukkadapu *et al.*, “Kinetic modeling study of surrogate components for gasoline, jet and diesel fuels: C7-C11 methylated aromatics,” *Proc. Combust. Inst.*, vol. 37, no. 1, pp. 521–529, 2019.

[57] S. W. Wagnon *et al.*, “Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole,” *Combust. Flame*, vol. 189, pp. 325–336, 2018.

[58] M. J. Al Rashidi *et al.*, “Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation,” *Combust. Flame*, vol. 183, pp. 372–385, 2017.

[59] M. J. Al Rashidi, M. Mehl, W. J. Pitz, S. Mohamed, and S. M. Sarathy, “Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics,” *Combust. Flame*, vol. 183, pp. 358–371, 2017.

[60] M. J. Al Rashidi *et al.*, “Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling,” *Proc. Combust. Inst.*, vol. 36, no. 1, pp. 469–477, 2017.

[61] Y. Zhang, H. El-Merhubi, B. Lefort, L. Le Moyne, H. J. Curran, and A. Kéromnès, “Probing the low-temperature chemistry of ethanol via the addition of dimethyl ether,” *Combust. Flame*, vol. 190, pp. 74–86, 2018.

[62] P. Risberg, D. Johansson, J. Andrae, G. Kalghatgi, P. Björnbom, and H.-E. Ångström, “The Influence of NO on the Combustion Phasing in an HCCI Engine,” in *SAE Technical Papers*, 2006, vol. 2006, no. 724.

[63] M. Sjöberg, D. Vuilleumier, N. Kim, N. Yokoo, T. Tomoda, and K. Nakata, “On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels,” *SAE Tech. Pap. Ser.*, vol. 1, no. 2, 2019.

[64] Z. Chen, H. Yuan, T. M. Foong, Y. Yang, and M. Brear, “The impact of nitric oxide on knock in the octane rating engine,” *Fuel*, vol. 235, no. August 2018, pp. 495–503, Jan. 2019.

[65] Z. Chen, P. Zhang, Y. Yang, M. J. Brear, X. He, and Z. Wang, “Impact of nitric oxide (NO) on n-heptane autoignition in a rapid compression machine,” *Combust. Flame*, vol. 186, pp. 94–104, 2017.

[66] S. Cheng, Y. Yang, M. J. Brear, D. Kang, S. Bohac, and A. L. Boehman, "Autoignition of pentane isomers in a spark-ignition engine," *Proc. Combust. Inst.*, vol. 36, no. 3, pp. 3499–3506, 2017.

[67] J. W. Fox, W. K. Cheng, and J. B. Heywood, "A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines," *SAE Int.*, no. 412, 1993.

[68] E. Bartholomew, "NEW KNOCK-TESTING METHODS NEEDED TO MATCH ENGINE AND FUEL PROGRESS," in *Pre-1964 SAE Technical Papers*, 1961.

[69] J. P. Szybist and D. A. Splitter, "Impact of Engine Pressure-Temperature Trajectory on Autoignition for Varying Fuel Properties," *Appl. Energy Combust. Sci.*, vol. 1–4, no. June, p. 100003, 2020.

[70] M. A. Ratcliff, J. Burton, P. Sindler, E. Christensen, L. Fouts, and R. L. McCormick, "Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance," *SAE Tech. Pap. Ser.*, vol. 1, pp. 1–14, 2018.

[71] Y. Song, Y. He, Y. Yu, B. Moreau, and F. Foucher, "Effect of Exhaust Gas Recirculation and NO on Ignition Delay Times of Iso-octane in a Rapid Compression Machine," 2020.

[72] M. U. Waqas, A. Hoth, C. P. Kolodziej, T. Rockstroh, J. P. Gonzalez, and B. Johansson, "Characterization of Low Temperature

Reactions in the Standard Cooperative Fuel Research (CFR) Engine," *SAE Int. J. Engines*, vol. 12, no. 5, pp. 597–610, 2019.

- [73] T. Rockstroh, A. Fridlyand, S. Ciatti, W. Cannella, and S. S. Goldsborough, "Autoignition behavior of a full boiling-range gasoline: Observations in RCM and GCI engine environments," *Combust. Flame*, vol. 209, pp. 239–255, Nov. 2019.
- [74] S. M. Sarathy *et al.*, "Three-stage heat release in n-heptane auto-ignition," *Proc. Combust. Inst.*, vol. 000, pp. 1–8, 2018.
- [75] T. Rockstroh, G. Floweday, and A. Yates, "Optimisation of synthetic gasoline blend recipes for use in modern charge boosted GDI engines," *Fuel*, vol. 186, pp. 800–820, 2016.
- [76] R. Cracknell *et al.*, "Is the 'k Value' of an Engine Truly Fuel Independent?," *SAE Tech. Pap.*, vol. 2020-April, no. April, pp. 1–10, 2020.

Appendix A Test fuel properties

Property	Method	ALK	E30	A30	O30	N30
LHV ^a	D4809	44.52	38.17	42.95	44.07	43.21
<u>Distillation</u>						
10%	ASTM D86 [°C]	93.1	60.7	59.4	77.1	55.7
50%		100.3	74.3	108.1	104.3	87.4
90%		105.9	155.2	157.9	136.2	142.7
Composition Information						
Aromatic	ASTM D6729 (wt%)	1	16.1	45.8	15	38.4
Olefin		0.1	5.2	4.1	32.1	1.5
<u>Total saturates</u>		98.5	43.8	48.5	52.1	59.6
n-paraffins		2.5	11.1	6.7	9.6	6.9
i-paraffins		96	25.5	33.9	39.6	28.7
Cycloalkanes		0	7.2	7.9	2.9	24
Unidentified		0.4	2.9	1.6	0.8	0.5
Oxygenates		0	32	0	0	0
Carbon	ASTM D5291 (wt%)	83.75	74.78	87.22	85.40	87.08
Hydrogen		15.80	13.79	13.12	14.50	13.24

^aLHV – Lower Heating Value [MJ/kg]