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DISCLAIMER 
 
This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility 
for the accuracy, completeness, or usefulness of any in formation, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring 
by the United States Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government or any 
agency thereof. 
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ABSTRACT 
 
This project aimed to develop and demonstrate a Data Integration, Assimilation, and Learning 
framework for geologic carbon sequestration projects (DIAL-GCS). DIAL-GCS is an 
intelligence monitoring system (IMS) for automating GCS closed-loop management by 
leveraging recent developments in machine learning technologies, complex event processing 
(CEP), and reduced-order modeling. The safe and efficient operation of GCS repositories 
requires integrated monitoring to track the injected CO2 as it moves within a storage reservoir. 
GCS projects are data intensive, as a result of proliferation of digital instrumentation and smart-
sensing technologies. GCS projects are also resource intensive, often requiring multidisciplinary 
teams performing different monitoring, verification, accounting (MVA) tasks throughout the 
lifecycle of a project to ensure secure containment of injected CO2. The success of GCS thus 
depends in a large part on our ability to access, assimilate, and analyze heterogeneous data and 
information sources in a timely manner. 

This project included a number of meaningful and necessary tasks to transform the human 
domain knowledge into machine-interpretable rules for automating knowledge extraction and 
discovery in GCS. The specific technical objectives of the proposed DIAL-GCS project were to 
• Task 2: Develop an ontology-driven GCS data management module for storing, querying, 
and exchanging GCS data (both historic and live sensor data) from multiple sources and in 
heterogeneous formats 
• Task 3: Incorporate a CEP engine for detecting abnormal situations by seamlessly 
combining expert knowledge, rule-based reasoning, and machine learning 
• Task 4: Enable uncertainty quantification and predictive analytics using a combination of 
coupled-process modeling, AI/ML methods, and reduced-order modeling, and 
• Task 5: Integrate and demonstrate the system’s capabilities with both real and simulated 
data  
 As far as we know, this is one of the first projects aimed to develop intelligent monitoring 
systems (IMS) targeting the GCS. Under this project, the team had developed a large number of 
web applications and scientific algorithms that contribute the main theme of intelligent 
monitoring. The team has published more than a dozen peer reviewed papers and disseminated 
the research results at multiple technical meetings. 
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1. INTRODUCTION 
The safe and efficient operation of GCS repositories requires integrated monitoring to track the 
injected CO2 as it moves within a storage reservoir. GCS projects are data intensive, as a result of 
proliferation of digital instrumentation and smart-sensing technologies. GCS projects are also 
resource intensive, often requiring multidisciplinary teams performing different monitoring, 
verification, accounting (MVA) tasks throughout the lifecycle of a project to ensure secure 
containment of injected CO2. The success of GCS thus depends in a large part upon the operator’s 
ability to access, assimilate, and analyze heterogeneous data and information sources in a timely 
manner. 

The main aim of this project was to develop and demonstrate a data integration, assimilation, 
and learning framework for geologic carbon sequestration projects (DIAL-GCS). DIAL-GCS was 
designed to be an intelligence monitoring system (IMS) for automating GCS closed-loop 
management by leveraging recent developments in artificial intelligence/machine learning 
(AI/ML) technologies, complex event processing (CEP), and reduced-order modeling.  

The DIAL-GCS project included a number of meaningful and necessary tasks to help transform 
the human domain knowledge into machine-interpretable rules for automating knowledge 
extraction and discovery in GCS. In terms of functional requirement, the IMS focused on 3 I’s that 
are critical to the success of real time anomaly detection, namely Instantaneity, Intelligence, and 
Integration. Instantaneity means real time—the IMS needs to be able to handle high volume, high-
frequency data. Intelligence means that the IMS needs to have significant machine learning 
capability, and Integration means that the IMS needs to integrate all the components in a seamless 
manner. 

1.1 Project objectives  
The project consists of the following main objectives/tasks (see also Figure 1): 

 Task 2: Develop an ontology-driven GCS data management module for storing, querying, 
and exchanging GCS data (both historic and live sensor data) from multiple sources and in 
heterogeneous formats 

 Task 3: Incorporate a CEP engine for detecting abnormal situations by seamlessly 
combining expert knowledge, rule-based reasoning, and machine learning 

 Task 4: Enable uncertainty quantification and predictive analytics using a combination of 
coupled-process modeling, ensemble-based data assimilation, and reduced-order 
modeling, and 

 Task 5: Integrate and demonstrate the system’s capabilities with both real and simulated 
data  

 
Figure 1. DIAL-GCS project is designed as a multi-tiered system: data tier (Task 2) handles raw 
data transformation and storage; middleware tier handles complex event processing (Task 3) and 
multiphysics modeling (Task 4), application tier handles presentation and visualization.  
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1.2 Organization of the report 
This report is organized as follows. The technical details and accomplishments are summarized 
for each of the tasks in Sections 2 to 5, followed by lessons learned and conclusions. The list of 
are publications and presentations are given in the appendix. 
 
2. TASK 2: DATA MANAGEMENT MODULE  

2.1 Database selection process 
Continuous monitoring sensors can generate significant volume information over time. For IMS 
to ingest the information, the raw data need to be cleansed and homogenized. In data science this 
is referred to as the data wrangling process. In the context of this IMS, it entails developing a set 
of scripts to transform the raw sensor data stream to event stream, which can then be analyzed 
(e.g., event correlation or event causal analysis) by the complex event processing engine. 
Datastreams are infinite, as opposed to finite-length data collected during some discrete sampling 
period. Therefore, the database chosen for the IMS backend must possess the following 
capabilities: 

 Ability to handle high-volume streams arising from real-time GCS sensing;  
 Ability to extract events from large temporal windows.  

The second requirement in the above has implications on the first requirement, namely, how much 
historical data the database should archive for historical event lookup or for training the ML codes.  

The relational database servers (e.g., Microsoft SQL Server, Oracle DB, PostgreSQL) have 
been extensively used to store sensor data in tabular forms, which are linked to each other through 
the so-called database keys to describe the relationship among data. Many of today’s online 
applications have high data storage requirements that exceed the capabilities of the legacy 
relational databases. Specifically, database schemas can slow down database performance even 
though they provide conceptual encapsulation of the data relationships. 
 A new generation of scalable database servers have been designed without using the 
relational database paradigm to reduce query latency and increase data retrieval performance. This 
new generation of databases are collectively known as NoSQLs, indicating their departure from 
the key design concept behind the legacy relational databases.  

Table 1 summarizes the main differences between a relational database and NoSQL server. It 
can be seen that a NoSQL database is ideal for handling data streams that are typified by high 
volume but relatively simple data structures. NoSQL databases are schema-free and two types of 
design are used in those databases: (a) key-value stores, which store the key-value pairs, and (b) 
wide column stores (also called extensible record stores), which store data in records with an ability 
to hold very large numbers of dynamic columns. Unlike a relational DB, the names and format of 
the columns can vary from row to row in a wide-column store. 

 
Table 1. Comparison between relational DB and NoSQL DB. Adopted from 
https://academy.datastax.com/resources/brief-introduction-apache-cassandra 

Relational DB NoSQL DB 
Handles moderate incoming data 

velocity 
Handles high incoming data velocity 

Data arriving from one/few locations Data arriving from many locations 
Manages primarily structured data Manages all types of data 

Supports complex/nested transactions Supports simple transactions 
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Supports moderate data volumes Supports very high data volumes 
Centralized deployments Decentralized deployments 

Data written in mostly one location Data written in many locations 
Supports read scalability (with 

consistency sacrifices) 
Supports read and write scalability 

 
At the beginning of this project, we surveyed existing datastream storage servers. An extra focus 
was on those servers that are open-source, but provide certain event processing capabilities. Table 
2 lists some of the databases that were surveyed. On the basis of IMS development needs, the team 
chose InfluxDB (https://www.influxdata.com) to serve as the backend server because it not only 
comes with out-of-box support for datastream storage and high-performance aggregate query, but 
also is seamlessly integrated with a complex event processing engine that is related to Task 3 of 
the project (Note: during later stage of the project, the team switched to a more integrated platform 
developed under the open-source Apache Superset project).  

 
Table 2. Examples of NoSQL products surveyed as part of Task 2. 

Database Open 
Source 

Main Feature Store Event Processing 
Capability 

Apache 
Cassandra 

Y Linear scalability and high 
availability 

Schema 
free; wide 
column 

Provides Cassandra Query 
Language, a limited set of 
full SQL, poor for 
aggregation query 

Amazon 
SimpleDB 

N Database as a service. 
Automatically creates 
multiple geographically 
distributed copies of each 
data item, providing high 
availability and durability 

Key-value  

InfluxDB Y Purpose-built for time series 
data, no special schema 
design or custom app logic 
required; key-value store 

Key-value Kapacitor, is InfluxDB’s 
data processing engine. It 
allows plugin of custom 
logic or user defined 
functions to process alerts 
with dynamic thresholds, 
match metrics for patterns 
or compute statistical 
anomalies. 

Hypertable  Y A high performance, open 
source, massively scalable 
database modeled after 
Bigtable, Google’s 
proprietary, massively 
scalable database 

Wide 
column 

 

Apache Flink Y A streaming dataflow 
engine that provides data 

N/A Supports stream 
processing and windowing 
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distribution, 
communication, and fault 
tolerance for distributed 
computations over data 
streams 

with Event Time 
semantics 

Tibco 
Streambase 

N A high-performance system 
for rapidly building 
applications that analyze 
and act on real-time 
streaming data 

N/A Support real-time stream 
analytics 

 

2.2 Database development using InfluxDB 
Under Task 2, we developed a suite of Python scripts for persisting monitoring data to InfluxDB. 
These scripts correspond to the data adaptor or middleware development mentioned under Subtask 
2.2 of the project SOPO. Figure 2 shows the main components used, including InfluxDB for data 
persistence, and Grafana for data stream visualization. 

During the course of the project, these Python scripts were constantly evolved and expanded 
so that different sensor data formats can be accommodated. Essentially, for each different type of 
sensor data, a data dictionary was developed that maps the content of the raw data files to key/value 
tuples for InfluxDB. For example, for pressure gauge data, the key would be timestamp and the 
value would be observed pressure values. For distributed temperature sensing (DTS) data, some 
complexity arose because of the additional dimension of “length-along-the cable.” We store the 
length-along-the-cable information as an additional column. The classic software design pattern, 
façade, was used to provide a generic interface for initiating data processing (Figure 3). The 
corresponding sensor names and their manufactures are given in Table 3. Best software practices 
were followed when developing the data importing routines so that they can be reused.  

 

 
Figure 2. DIAL data processing and visualization workflow. 
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Figure 3. Design of data adaptors or middleware using No-SQL schema. 

 
 

Table 3. List of data sources used under Task 2 for demonstration. 

Manufacturer / Instrument Type 
Ranger Gauge System (formerly Panex) 
/SRO downhole gauge 

Pressure, temperature 

Silixa / ULTIMA™ DTS Temperature 
Emerson / Micro Motion™ flow meter Mass flow rate 
(Vendor unknown) / SRO wireline pressure 
gauge 

Pressure and temperature 

Omega / pressure transducer  Pressure 
 

2.3 Data analytics/visualization portal 1.0 
Visual analytics is an essential component of any IMS. The team invested significant amount of 
time in identifying and developing a versatile data portal for data visualization. Based on the initial 
survey of web-based systems, the team chose Grafana (https://grafana.com), which provides a 
powerful and elegant tool to create, explore, and share data. Grafana is a data portal with full-
fledged user management capability. Users can make their own custom dashboard to display the 
time series in a number of styles. In addition to InfluxDB, Grafana can connect to a number of 
other datastream servers. 
 Figure 4 shows screenshots of the Grafana dashboard created for displaying downhole 
pressure and temperature time series collected during a field experiment. At the original 0.1s 
readout frequency, the amount of data can easily slow down many web-based visualization servers. 
With InfluxDB/Grafana, the time series are aggregated on the fly and temporal windowing of the 
data is easy by using slider control. Little latency was observed for all data series we tested.  

GCS sensor data often have spatial context. Thus, it is very desirable to show data with respect 
to their spatial locations to enhance visual analytics experience. For this purpose, the team 
expanded Grafana dashboard to handle geospatial data, for example, to display vector data and 
remote layers served through the web map service (WMS) (e.g., the lower-left and upper-right 
screen shots in  Figure 4). 
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Figure 4. Grafana dashboard for displaying downhole pressure and temperature data. 

 

2.4 Data analytics/visualization portal 2.0 
While the combination of InfluxDB/Grafana allows for high-performance data visualization, 
customization of Grafana became more challenging to accommodate the needs of complex event 
processing activities in Task 3. Grafana was programmed in Go, which is different from the Python 
scripting language that used by the project team. Starting from Year 2 of the project, the team 
switched to a more user-friendly platform, Apache Superset (https://superset.apache.org/). Apache 
Superset is an enterprise-ready business intelligence web application. It comes with a large number 
of data analytics features and can connect to a number of commonly used relational and NoSQL 
databases, including Amazon Athena, Amazon Redshift, Apache Druid, Apache Spark SQL, 
Snowflake, SQLite, and SQL Server. A comprehensive list can be found on the Superset site.  

We would to emphasize the decision to migrate from Grafana to Superset was made after a 
careful consideration of multiple factors, including team software expertise, development time, 
and more importantly, the potential to integrate with other tasks of this project. 

Figure 5 shows a demo of DIAL-GCS2.0 built using Superset. The time series are from the 
same data sources as those used in DIAL-GCS1.0 in the last subsection. In this case, the backend 
complex event processing engine examines each pressure data instance and assign it with either 
normal or abnormal flag. More details can be found in (Sun et al., 2019) and in next section. The 
Superset dashboard can be easily customized by the end user. Light programming is required to 
connect to custom complex event processing engines. 

2.5 Task Summary 
 In summary, Task 2 is a major component of the DIAL project, the outcome of which 
provides necessary infrastructures to support follow-on implementation of complex event 
processing using AI/ML. We have successfully developed a web-based data analytics portal for 
storing and displaying CCS related sensor data by combining a number of state-of-the-art data 
technologies. Many features of the web system surpassed the original functional spec given in the 
original project SOPO. Thus, the objectives of Task 2 were successfully met. 
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Figure 5. A dashboard developed using Apache Superset. 

  
3. DEVELOPMENT OF COMPLEX EVENT PROCESSING CAPABILITIES 
The purpose of Task 3 was to develop a CCS-specific complex event processing (CEP) capabilities 
for anomaly detection. In particular, the following subtasks were proposed in the SOPO, 

• Rule definition: define a set of rules related to event filtering, extraction, and reaction; 
• Reasoning and machine learning: identify events using human reasoning and machine 

learning from multiple sources; 
• Testing: validate the CEP using real site data 
Although the notion of CEP is not new and has been widely studied in many fields such as 

credit fraud detection, cyberintrusion detection, and machinery monitoring, its use in CCS industry 
had not been widely explored at the time of the project. The team perceived the following CCS-
specific challenges for implementing CEP, 

• Data are both spatial and temporal 
• No single anomaly detection algorithm fits all purposes 
• “Normal model” may be elusive in many situations 
• Anomaly can be “shadowed” by noise 
• Training data are rare 
• String domain knowledge is usually required to process and understand monitoring signals 

With these challenges in mind, the team has developed a suite of anomaly detectors. It is worth 
pointing out the project duration coincides with the fast evolution of AI/ML technologies in recent 
years. Thus, the anomaly detection methods developed under this project also evolved, ranging 
from the traditional ML algorithms to more advanced algorithms. This section summarizes the 
main activities conducted under Task 3.  

3.1 Principles of complex event processing 
A CEP engine processes continuous monitoring data to detect possible anonymous events. The 
CEP is domain dependent. Thus, a robust CEP can only be built with a solid understanding of 
anomalies and their causes. In this project, anomaly detection refers to the problem of finding 
patterns in data that do not conform to expected behavior (Chandola et al., 2009). In the literature, 
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these nonconforming patterns are often referred to as anomalies, outliers, discordant observations, 
exceptions, aberrations (Chandola et al., 2009). Below is simple taxonomy of anomalies in physics 
domains, 

 Point anomaly: an event that lies outside a predefined region. For example, if the maximum 
daily temperature is outside some long-term climatology, then it is considered an 
anonymously hot day. 

 Contextual anomaly: a type of event that can only be labeled abnormal when examined 
using multiple pieces of contextual attributes. For example, a pressure anomaly that is 
caused by increased injection rate is normal, but a pressure anomaly that appears in the 
absence of operation changes is abnormal.  

 Collective anomaly: The individual data instances in a collective anomaly may not be 
anomalies by themselves, but their occurrence together as a collection is anomalous. For 
example, in a pressure monitoring data stream, the single instance of pressure perturbation 
is probably due to noise, while the appearance of consecutive anomalies in a short time 
period is alerting. In other cases, the appearance of multiple types of anomalies (e.g., 
pressure and thermal) may also be considered a possible anomaly. 

 
 

 
Figure 6. Generic workflow related to a complex event processing (CEP) engine. A CEP engine 
may perform multiple functions, including transforming, filtering, correlating, and aggregating 
the raw data, followed by formulating of event streams. 

As mentioned before, significant challenges in CCS-related anomaly detection are related to 
the fact that anomaly signals may be hidden or shadowed by site noise.  So far, CCS monitoring 
has relied mostly on human workflow to process anomalous signals. In a typical scenario, an 
operator or researcher processes a single case at a time. While such manual process may suffice 
for pilot scale research projects, it can quickly become overwhelmed as the type/volume of 
monitoring data increases in a project. Therefore, CCS can greatly benefit from automation of 
anomaly detection processes. Figure 6 shows such an automated workflow that seamlessly 
translate raw sensor data into human interpretable results.  
 For each type of signal, a rule set may be developed to define normal and anomalous 
signals. This is often referred to as data labeling in machine learning. Labeling is required for 
supervised learning algorithms, which relates each instance in the training dataset to one or more 
classes through a parametric or nonparametric model. The rules can be in the form of statistical 
thresholds or categorical classes. The limitation of labeling is that it can be extremely challenging, 
often requiring involvement of human experts who are knowledgeable about the subject matter. 
Even so, labels are usually nonexclusive depending on data availability and subject to ambiguity 
related to process-level understanding. In CCS, labeling of leakage signals is rarely possible 
because of the lack of known incidents. Researchers have turned to analogs to increase sample 
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database. For example, Jordan and Benson (2009) reported that “well blowout rates in oil fields 
undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 
from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 
active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year.” 
Alternatively, a model-based approach may be used to simulate the rare events and quantify its 
attributes. During detection time, the model predicted outcome is compared to the data instance. 
If the deviation of the data instance from model prediction is greater than a certain threshold, then 
the new data is classified as an anomaly. 
 In unsupervised algorithms, training data are grouped into clusters based on certain 
similarity measure. Data instances that are far away from the “normal” clusters are considered 
anomalies. Thus, clustering techniques do not require labeling (i.e., unsupervised).  Limitations of 
clustering are that they do not use a priori knowledge on anomalies, and anomalies are more of a 
byproduct of the classification process that attempts to partition the data. For algorithms that are 
not designed to uncover anomalies, the anomalous data patterns may be hidden inside different 
clusters.  
 Common challenges to all anomaly detection algorithms include data dimensionality and 
data volume. Most anomaly detection algorithms are designed for handling low-dimensional data. 
Uncovering hidden patterns in high-dimensional data is still a challenging research topic. 
 Under this project, we have taken a number of different approaches for extracting 
anomalies, with a special focus on real-time online anomaly detection algorithms.   

3.2 Algorithm and Results 
The capabilities of CEP were demonstrated using a real dataset we collected at Cranfield, MS, 
during a series of controlled CO2 release field experiment. Details of the field experiments may 
be found in (Sun et al., 2016). 
3.2.1 Sequential z-score algorithm 
Z-score algorithm is one of the simplest and, yet, most commonly used online anomaly detection 
algorithm. Given an instance of ݔ of a data stream, ܺ௧, its z-score is defined as  

ݖ ൌ
ݔ| െ |ݔ̅
ݏ

 

where ̅ݔ and s represent the mean and standard deviation of the data stream, respectively. If z is 
greater than a certain threshold, say, 3, then the data instance is labeled as an anomaly. Other test 
statistics may be used when the sample size is small. 
 As a demonstration, we applied the z-score anomaly detection to pressure monitoring data. 
First, the z-score algorithm was trained using data from the first 1.5 hours. The period represents 
a baseline scenario where no operations were performed other than continuous CO2 injection. 
These data are then labeled as normal in our case. Later, we modulated the injection rate to 
introduce sinusoidal patterns in the signals. The idea is to train an algorithm using the baseline 
data and then test whether the algorithm can pick up significant pressure changes. Results show 
that the algorithm successfully detected the pressure changes during the later period (note that the 
time axis in the bottom panel was used for animation purpose and does not correspond to the actual 
time). In this case, the anomalies may be considered “point anomalies” because we used a pre-
defined threshold to filter each data instance. 
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Figure 7. Use of z-score algorithm to detect point anomalies. Top panel: raw pressure data stream 
from one of the monitoring wells during pulse experiments, in which the injection rate was 
modulated to create pressure anomalies (i.e., the sinusoidal waves shown in the later times). The 
entire data length is about 16 hours and the first 90 min of data were used to train the algorithm; 
Bottom panel: detected anomaly (dashed pink vertical lines). 

3.2.2 Sequential causality analysis 
Causality analysis generally seeks to understand the causal relationships, if there is any, between 
two types of events. Therefore, they are suitable for observing the “contextual anomalies” 
mentioned previously. In one of the field experiments, we performed CO2 venting in one of the 
monitoring wells to simulate leakage while observing pressure responses in a nearby monitoring 
well. In addition to the leak, the other source of pressure perturbations is injector. The idea of this 
sequential causality analysis was to test whether pressure responses in the monitoring well can be 
attributed to leaks. In other words, whether the algorithm was smart enough to differentiate 
between perturbations caused by injection (normal) and that caused by leak (abnormal). The result 
of causality test is given in p value, which is the probability, under the null hypothesis, of sampling 
a test statistic at least as extreme as that which was observed. The null hypothesis can be rejected 
in favor of the alternative hypothesis if p value is smaller than a preset threshold. In our case, the 
null hypothesis is pressure change in the monitoring well is not related to leaks. Figure 8 shows 
the p value of hypothesis testing is small in the first 2 hours of the experiment, suggesting strong 
linkage between leak and monitored pressure. As the leak rate was reduced toward the end of the 
experiment, the causal relationship became less obvious, as shown by large p values. Thus, this 
numerical experiment demonstrated that the causality test can be used to uncover contextual 
anomalies. This test may be extended to multivariate case, in which multiple pieces of evidence 
(or predictors) can be combined to detect causal relationships. 
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Figure 8. Use of causality test to examine causal relationship between events.  Right axis: bottom 
hole pressure of leak well (blue line, cause) and pressure response in the monitoring well (red 
line, effect). Left axis: p-value of the causality test on each test data. Here p-value is the result 
from Granger causality’s hypothesis testing, and lower p-value indicates high probability of 
invalidating the null hypothesis.   

3.2.3 Isolation forecast algorithm 
Isolation forecast (IFO) is an unsupervised ML algorithm specially designed to detect anomalies. 
It is based on the premises that anomalies have attribute values that are very different from the rest 
of the data instances and that anomaly instances are relatively few. To isolate anomalies from a 
data set, IFO partitions data samples recursively using an ensemble of random trees (Figure 9). 
When a sample has anomalous attributes, the number of partitions required to isolate the data 
sample is smaller than that for a “normal” sample. In other words, anomalies are more susceptible 
to isolation under random partitioning. IFO calculates an anomaly score by averaging path lengths 
(equivalent to number of partitions) over all random trees. The algorithm only requires two user 
parameters, namely, the number of trees to build and the subsample size. Subsampling is devised 
to alleviate the effect of masking (too many anomalies concealing their own presence) and 
swamping (normal instances located too close to anomalies), thus helping to build better trees more 
efficiently. We used the IFO function from the open-source machine learning package, scikit-learn 
(Pedregosa et al., 2011). 

 
Figure 9. The main idea behind the IsolationForest (IFO) algorithm is that anomalies are more 
susceptible to isolation under random partitioning. 
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In Figure 10, the IFO training and testing results are demonstrated. IFO detected no anomalies on 
the training data, during which no leaks were activated. When the trained IFO model was applied 
to the controlled release data sequentially, the model correctly labels almost every data instance as 
anomaly (Figure 10b). In (Sun et al., 2019), we showed that IFO outperformed the traditional 
support vector machine on this dataset. 

 
Figure 10. Anomaly detection on pressure data using IsolationForest: (a) results on trainingand 
testing data using the base case data (Jan 19, 2015, 11:00–15:30), where the vertical gray line 
indicates the separation of training and testing periods; (b) results on controlled release data (Jan 
30, 2015, 8:30–11:30). Anomalies are labeled with filled circles. 

3.3 Implementation of Complex Event Processing Engine 
We automated AI/ML algorithms using Apache Kafka, which includes tools for managing data 
schema, connectors, and servers. The ecosystem described in Figure 11 comprises the CEP engine 
behind DIAL-GCS2.0. 

Kafka is designed around four basic concepts:  
 Broker, a broker orchestrates message flow between different entities involved 
 Topic, a Kafka topic provides a way of organizing messages, which in turn serves as 

intermediate data containers for records to be transmitted between applications/systems. 
The topic data schema is defined by the user for different sensor types. Internally, each 
topic is organized in a number of partitions for faster information retrieval and data 
redundancy. 

 Producer, a Kafka producer pushes content to a topic 
 Consumer, a Kafka consumer pulls content from a topic 

To use Kafka, the user is responsible for defining producer(s) and consumer(s). Kafka provides 
application programming interfaces (API) for developers to create customized producers and 
consumers. This where the AI/ML anomaly detection algorithms reside. In addition, the Kafka 
connectors allow configuration of sources/sinks that connect Kafka topics to known applications 
or data systems via standard interfaces such as JDBC (relational databases), HDF (Hadoop and 
Hive), and Amazon S3. Custom connectors are used to link the CEP to the data layer and 
knowledge discovery layer, automating the information exchange between CEP and those layers.  
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Figure 11. System design of IMS includes a data layer, a processing layer, and a knowledge 
discovery layer. Complex event processing engine is located in the processing layer. All layers are 
loosely coupled through Apache Kafka connectors and web services. InfluxDB is used as a 
temporary datastream store, Confluent Kafka is used for event processing, and Apache Superset 
is used for data visualization. 

3.4 Task Summary 
Under Task 3 of the project, a number of anomaly detection algorithms were implemented to deal 
with different types of CCS data and anomalies. All algorithms were designed to work with data 
streams. The algorithms were integrated into a Web-based system consisting both the backend and 
frontend. Thus, all original objectives in the project SOPO were either met or surpassed. 
 
4. COUPLED MODELING AND ML-BASED SURROGATE MODEL DEVELOPMENT 
Task 4 was designed to support the online simulation capability of the IMS. Specifically, Task 4 
consisted of the following subtasks, 

• Subtask 4.1 —Coupled modeling  
• Subtask 4.2—Data assimilation 
• Subtask 4.3—Model reduction and metamodeling 

 
The main purpose of Subtask 4.1 was to develop coupled modeling capabilities for simulating 
commonly seen coupled GCS processes such as flow, transport, and geomechanics. Uncertainties 
are ubiquitous in GCS applications. Therefore, it is important to continuously improve the 
computational engine using newly acquired information in real time. This is supported by the data 
assimilation module. Finally, Web-based applications require that efficient reduced-order or 
surrogate models be developed to support real-time decision support, which was the main objective 
of subtask 4.3. When integrated together, the three subtasks were envisioned to enable online 
decision making using process-based surrogate models.  

4.1 The need for coupled modeling in CCS 
Like many other geological repositories, GCS operations require a thorough characterization of 
the target site and design of monitoring network for site permit. The main purpose of GCS 
monitoring network is to reduce the potential leakage risks and maximize the protection of public 
safety. During GCS operations, the reservoir pressure can significantly increase, which may drive 
the fluid migration from storage formations. Thus, it is important to use a reliable predictive model 
to simulate reservoir response and identify potential risks. Under Task 4, the team developed a 
number of coupled modeling capabilities to support the IMS. The capabilities generally fall under  

 CCS monitoring network optimization 
 Carbon reservoir modeling using deep learning techniques (DL) 
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4.2 Coupled modeling results 
4.2.1 Monitoring network design 
Under this subtask, the team considered two types of pressure-based optimization problems, 
namely, optimization of monitoring under geologic uncertainty and optimization of the location of 
brine extraction wells. 

Leakage from geologic faults and abandoned wells represents one of the major risks to 
commercial-scale GCS projects. Current CCS regulations and best practice guidance recommend 
that operators develop risk-informed MVA plans to protect public safety and reduce property and 
environmental damage. Deep subsurface pressure monitoring is regarded as one of the most cost-
effective technologies for early leakage detection in CCS projects. In practice, the number of deep-
pressure monitoring wells that an operator can drill often remains limited because of the high costs 
associated with drilling, instrumentation, and operations. The former two costs belong to capital 
expenses (CAPEX), while the latter cost is considered operation expenses (OPEX). Thus, optimal 
design of the pressure monitoring network is essential to minimize monitoring and liability costs 
and gain public support. In this project, we developed a general, binary integer programming 
approach to solve an optimal monitoring well network design problem under multiple constraints. 
Specifically, our approach enables CCS operators to design a cost-optimal monitoring network 
that can cover all potentially leak locations (in a worst-case-scenario sense) while satisfying a 
prescribed carbon dioxide storage performance criterion (e.g., 99% storage permanence) and 
considering geological uncertainty. It is worth mentioning that in general such an optimization 
problem falls into the category of combinatorial problems that are hard to solve. 
 A common practice in previous studies is to use risks as surrogate of costs. However, most 
of the decision space is supported by monetary values than probability values. Instead of using 
cost surrogates as has been done in many previous studies, our formulation allows the user to 
directly assess total costs in terms of monitoring cost and potential economic losses associated 
with brine and CO2 leakage.  
 User inputs to the binary integer programming problem include costs related to brine and 
CO2 leakage, the maximum number of wells to be placed, the storage performance criterion, the 
CAPEX and OPEX related to monitoring wells, and pressure-based detection threshold. A 
synthetic numerical example was developed using CMG-GEM. The optimization problem was 
solved on a parallel computing cluster available at Texas Advanced Computing Center. Our 
numerical examples demonstrated that a cost-optimal monitoring network may save millions of 
dollars in total costs, including well construction and leakage costs. Factors exerting the most 
influence on cost-optimal monitoring network design are unit leakage damage costs, pressure 
threshold for leakage detection, and geological uncertainty. Results were published in (Jeong et 
al., 2018).  

In a separate effort, the team developed an ensemble-based method for identifying optimal 
well locations for brine extraction. An improved ensemble-based stochastic gradient method was 
developed. Ensemble-based stochastic gradient methods, such as the ensemble optimization 
method (EnOpt), the simplex gradient method (SG), and the stochastic simplex approximate 
gradient method (StoSAG), approximate the gradient of an objective function using an ensemble 
of perturbed control vectors. These methods are increasingly used in solving reservoir optimization 
problems because they are not only easy to parallelize and couple with any simulator, but also 
computationally more efficient than the conventional finite-difference method for gradient 
calculations. In this work, we showed that EnOpt may fail to achieve sufficient improvement of 



DE-FE0026515 Final Report 
 

15 
 

the objective function when the differences between the objective function values of perturbed 
control variables and their ensemble mean are large. On the basis of the comparison of EnOpt and 
SG, we proposed a hybrid gradient of EnOpt and SG to save the computational cost of SG. As a 
use case, we considered pressure management in carbon storage reservoirs, for which brine 
extraction wells need to be optimally placed to reduce reservoir pressure buildup while maximizing 
the net present value. Results show that our improved schemes reduced computational cost 
significantly (Jeong et al., 2020). 

4.3 Data assimilation 
The team adopted an ensemble smoother algorithm for assimilating pressure data. Two ensemble-
based data assimilation algorithms can be identified, the smoother and filter. The main difference 
is that the smoother incorporates all observations to calibrate parameters. It has been shown 
iterative smoother may achieve good performance while avoiding the restarting problem (i.e., the 
simulation needs to be run from the beginning time every time after an assimilation step is done). 
Figure 12 illustrates the workflow used to assimilate pressure data. We designed a 3D reservoir 
model to demonstrate this workflow, in which a pulse injection pattern is applied at the injector 
and pressure observations from three monitoring wells are used. Results indicate that data 
assimilation reduced the uncertainty in model prediction (gray hairlines) compared to the “true” 
pressure history (solid red line) Figure 13. After data assimilation, the mean of the ensemble gave 
reasonable estimate of the “true” plume shape. The team also implemented a scheme to automate 
ensemble simulation. 

 
Figure 12. Workflow for using ensemble smoother to assimilate pressure data. 



DE-FE0026515 Final Report 
 

16 
 

(a) (b)

 
Figure 13. (a) bottom hole pressure at the injector, (b) bottom hole pressure at the monitoring 
well. 

4.4 Surrogate modeling through deep learning 
Surrogate modeling or reduced-order modeling refers to methods for obtaining proxies of the 
physically based models. Surrogate modeling is of significant interest to many subsurface 
modeling projects because of the needs for quantifying model uncertainty. Fully coupled physics 
based models can be time consuming to run. The team was one of the first in using deep learning 
techniques to develop surrogate models (Sun, 2018).  
 The framework we developed allows for fast forward and inverse modeling. Figure 14 
shows an example of surrogate modeling, in which a deep convolutional neural network (CNN) 
was trained to learn the CO2 plume evolution in a heterogeneous reservoir. Results show that the 
CNN-based model was able to achieve very high accuracy in predicting the shape of the plume. 
The full set of results was reported in (Zhong et al., 2019). 

 
Figure 14. Comparison between simulated (1st row) and ML-predicted (2nd row) CO2 plumes for 
different output times. The residual is shown in the 3rd row. 

 In reality, reservoir forward modeling is inseparable from history matching and inverse 
modeling. A longstanding research question is how to combine data assimilation and online 
prediction. While the traditional data assimilation offers one approach for doing this, it becomes 
less feasible when the ensemble model runs require signficant computational time. Deep learning 
provides a viable alternative. In (Zhong et al., 2020), a multiphysics forward and inverse modeling 
framework was proposed for the first time, which allows the traditionally separated rock 
petrophysics, 4D seismics, and reservoir modeling steps to be united under one framework. This 
work, detailed in (Zhong et al., 2020), is visionary and paves the way for operational assimilation 
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of multi-source, multi-domain data. Figure 16 gives an example of using the proposed multiphysics 
surrogate model to perform forward and inverse modeling between seismic acoustic impedance 
(the product of seismic velocity and density) and reservoir CO2 plume saturation.  
 

 
Figure 15. A machine learning enabled multiphysics surrogate modeling for connecting rock 
petrophysics, 4D seismics, and multiphase reservoir flow modeling. 

 
Figure 16. Demonstration of the multiphysics surrogate model on a 2D reservoir model (vertical 
slice), where a CycleGAN was applied to map from acoustic impedance in seismic domain to CO2 
saturation in porous flow domain. 
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4.5 Optimal reservoir management 
In addition to predictive online modeling, the DL-based surrogate model can also be wrapped in 
an optimization framework. In (Sun, 2020), I adopted elements of the recently developed Deep Q 
learning (DQL) algorithms to tackle a model-based sequential optimization problem, which can 
be found in many applied energy applications such as microgrid energy demand management, and 
reservoir production planning. Specifically, the sequential optimization problem is formulated as 
a Markov Decision Process (MDP), which involves an agent interacting with a dynamic 
environment through a sequence of actions, observations, and rewards. The agent is not told what 
to do, but instead seeks to maximize the cumulative future reward by discovering an optimal policy 
through interactions. This type of problem falls under reinforcement learning, which is a general 
class of algorithms in machine learning that aims to help an agent learn how to behave in a dynamic 
environment, where the only feedback consists of a scalar reward. 

The main contributions of (Sun, 2020) include (a) developed a DQL-based framework for 
optimal multiperiod planning involving high-dimensional, multistate geosystem models and (b) 
formulated a deep multitask learning (DeepMTL) approach to approximating multistate transition 
functions under variable forcing conditions, thus reducing total computational costs. Figure 17 
shows a high-level schematic plot for training the DQL model. As a case study, I applied the DQL 
framework to multiperiod carbon storage planning, which is a geosystem-based measure for 
greenhouse gas emission reduction that has received significant renewed interest in the U.S. 
because of the recently passed carbon tax incentives, Section 45Q (Internal Revenue Service, 
2018). In a synthetic example, I showed how the DQL can be applied to identify the optimal 
injection schedule by taking various operational constraints into consideration. 

 
Figure 17. A deep reinforcement learning framework for optimizing carbon reservoir injection 
schedule. 
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Figure 18. Optimal injection schedule recommended by the DQL framework for a demonstration 
problem. 

4.6 Task Summary 
Under Task 4 the team worked on enriching the DIAL system capability using latest AI/ML 
technologies. The new capabilities are complementary to the project’s overarching goal, namely, 
improving the current MVA capability and enabling the access, assimilation, and analysis of 
heterogeneous data and information sources in a timely manner. The team successfully 
demonstrated the proposed workflows for surrogate modeling, data assimilation, and coupled 
modeling via meaningful use cases in the field of GCS. 
 
5. INTEGRATION AND WEB DEVELOPMENT 
Integration and web development were continuously performed throughout this project. The data 
analytics dashboard was already described in the previous sections. Under this research, web 
applications or modules were often developed as part of the research application. For example, 
Figure 19 shows a web module that uses a deep learning model as backend to predict reservoir 
CO2 plume evolution. Figure 20 shows a web-based module that uses a CO2 flow surrogate model 
as backend to predict leakage risk during the design stage (Sun et al., 2018). 
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Figure 19. A web-based module for CO2 plume saturation prediction. 

 
Figure 20. A web-based module for online leakage risk assessment. 
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6. SUMMARY  
In summary, a multi-faceted research was carried out under this project that all contributes to the 
development of the first-of-its-kind CCS intelligent monitoring system. As part of the project, the 
team had developed a suite of tools for automating common MVA tasks in CCS projects. The tools 
combined state-of-the-art machine learning technologies with domain knowledge, and were 
demonstrated over real and synthetic use cases and data. Throughout the project, the team was 
actively involved in dissemination of the research results, through peer-reviewed publications and 
meeting presentations. Our results suggest that adapting off-the-shelf open-source platforms for 
CCS monitoring projects is cost effective, but domain knowledge is critical for testing and 
validating the products. The experience gained from this project allowed us to contribute directly 
the recent SMART initiative led by NETL.  

Some of the lessons learned from this project are 
 Combining AI/ML with domain knowledge may significantly improve efficacy of GCS 

management and risk mitigation 
 Time series anomaly detection can be automated effectively with the current open-source 

technologies, but require domain knowledge for software product design and testing 
 High-dimensional datasets (e.g., distributed acoustic sensing) present more challenges to 

data storage and anomaly detection 
 All anomalies are different and no single method works for all cases 
 In lieu of developing a tightly coupled IMS system, a loosely coupled IMS is probably the 

best way to go for maximizing system reusability. The Superset data dashboard we selected 
clearly demonstrated this aspect. 
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