Tuning Singlet and Triplet Excited State Energies and Frontier Orbitals of Imidazole Host/Emitter for Hybrid White OLEDs

2,3,4

Muazzam Idris,' Chan Ho So,> Moon Chul Jung,' Peter I. Djurovich,' Stephen R. Forrest*** and Mark E. Thompson'

1: Department of Chemistry, University of Southern California, Los Angeles, CA

2. Departments of Physics 3: Electrical Engineering and Computer Science 4. Department of Materials Science and Engineering , University of Michigan, Ann Arbor, MI

Background & Rationale Objectives Monochromatic OLED Devices
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has lead to nearly 100% efficiency (photons/electrons) across the visible spectrum. Mixing dopants in an OLED can with wide S:/T, energy gaps so that or or ol o)
give broadband emission and has been used to prepare white OLED (WOLEDs). the energy levels of the fluorescent ‘.aé 0.4 -
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Density Functional Theory (DFT) calculations have been employed to screen through prospective libraries of compounds (depicted below) to assess . Due to their high PL efficiency § 10 g 3 |
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Hybrid f1/ph WOLED their likelihood of success based on critical parameters, 7e. S;, T1, HOMO/LUMO energies and S4-T1 gap, A(S+/T4) (B3LYP/6-31G** level of theory using (80%) in neat films, monochromatic % ::2_4 S, _
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In this research program we ware focusing on an alternate solution that keeps all of the ““Pros” of a positions of the phenanthro[9,10-d]imidazole varies the 5:/T;, HOMO/LUMO and oscillator strength of singlet transition (f) on account of HOMO/LUMO blue fluorescent emitters achieved 3 v =y -1 | | | | _
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first proposed this approach in 2006 (Y. Sun, et. a, Nature, 2006, 440, 908-912).
Based on DFT calculation, host materials with wide S4/T1 energy gaps that can nest the fluorescent and phosphorescent dopants are synthesized and
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