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IMPLEMENTATION OF THE HIGH-ORDER SCHEMES QUICK AND LECUSSO
IN THE COMMIX-1C PROGRAM

1 Introduction

1.1 Need for High-Order Schemes in Space and Time

Multidimensional analysis programs based on the finite-difference method have been
commonly used to simulate thermohydraulic phenomena in nuclear reactor components.
Among these programs, the COMMIX-1C computer program! was developed at Argonne
National Laboratory in the U.S., and designed to analyze steady-state/transient, single—
phase, three-dimensional flows with heat transfer in a reactor component/multicomponent
system.

In this program, first-order schemes with respect to both space and time are used.
Namely, the first-order upwind scheme is used for all convection terms in the governing
equations, and the flow-modulated skew-upwind (FMSUD) scheme is used for convective
terms in the energy equation only. A fully implicit or fully explicit scheme with respect to
time is used.

However, the first-order upwind scheme has failed to predict temperature oscillations
caused by the up and down motions of the thermal stratification interface, and the use of
high-order schemes is therefore necessary, especially when convective effects dominate in
multidimensional flow and temperature fields with a steep gradient of transported
quantities.2

Further, fluid flow fluctuations have been observed even in natural circulation tests
performed in the SLAB facility at KfK in Germany.3 These turbulent phenomena play an
important role in the movement of the thermal stratification interface and its temperature
distribution. When we perform the direct numerical simulations for these fluctuating fluid
flows, we need at least the second-order numerical schemes in space and time to
essentially eliminate the numerical diffusions of the second-order derivative in space, and
to correctly evaluate the molecular viscosity effects.

Moreover, the first-order schemes in space cannot realize the higher-order
phenomena such as von Karmann vortex shedding and the secondary or tertiary vortex
developed at the comers in shear-driven cavity flows. ‘

1.2 Review of High-Order Schemes in Space

Reflecting the above situations, a growing need has recently developed for highly
accurate analysis of multidimensional fluid flows that involve heat transfer. However, usually
‘high-order schemes, such as the central schemes, third-order upwind scheme,4 and the




QUICK scheme,5 tend to suffer from unphysical oscillations (numerical oscillations) when
mesh Reynolds or Peclet numbers exceed a critical value (=2), especially in regions of steep
gradient.

To cope with the numerical oscillations, some revised schemes®.7 and more
sophisticated methods such as ENO8 and TVD?® are proposed. The last two schemes are
mainly for analysis of compressible fluids. On the other hand, artificial techniques to
suppress the local numerical oscillations, such as FRAM,10 FCT,1! and a modified scheme of
QUICK, such as EXQUISITE,12 are proposed. The FRAM technique uses the transient
Lagrangian transport equation as a tool to locate the region with oscillations in the Euler
solution, and to devise an appropriate technique to damp the oscillations. Because the
Lagrangian equation does not include the convective term, its numerical solution is free
from numerical oscillations. '

Recently, new modern schemes free of any mesh Reynolds number restriction were
proposed, which use either four-base points (LECUSSO13) or five-base points (LSUDS14).
The "essence of these modern schemes consists in determining adaptive upwinding weight
such that the difference equations satisfy the exact solution of the convection-diffusion

- equation with constant coefficients. These schemes are derived in uniform mesh size grids.
The LECUSSO scheme was recently extended into nonuniformm mesh size grids based on
the conservative form of Sakai.15

1.3 Review of High-Order Schemes in Time

For time integration, fully implicit schemes such as SIMPLE!é and SIMPLER!7 are
preferred to explicit schemes like SMAC,18 because they are not subject to the Courant
restriction for a time increment. In the case of steady-state calculations, the time
increment has nothing to do with the numerical accuracy of final steady-state solutions
obtained in the time-marching technique. Hence, the fully implicit scheme is quite
preferable for steady-state calculations. However, the numerical accuracy in the case-of
transient calculations is closely related to the time increment. It is especially important to
use higher order schemes when we use an implicit scheme in time coupled with a higher
order scheme in space for transient calculations, because the leading term of the truncation
error is the second-order derivative with respect to space, and its magnitude becomes
larger than that coming from the first-order upwind scheme in a case that uses the larger
time increment beyond the Courant condition.

Regarding the time integration schemes with second-order accuracy, the Lax-
Wendroff, Adams-Bashforth, and RRK methods!® are known for explicit integration. The
RRK method is unconditionally stable and free from the Courant restriction. The Crank-
Nicolson and ADI20 methods for implicit integration are unconditionally stable and they
satisfy the Lax-Richtmeyer’s stability criteria. But attention should be paid to the Crank-
Nicolson scheme, which could produce oscillatory solutions, if one uses a time increment
larger than the Courant restrictions.2l Because a large time increment degrades the
accuracy of numerical solutions in transient calculations, it is preferable to use a small time
increment as much as possible, even when we use implicit schemes that are free from the
Courant restriction.




1.4 Objectives

Reflecting the above reviews of high-order schemes, the objectives in the present
study are as follows:

Reformulate the finite-volume equations to deal consistently with all governing
equations with high-order schemes. The high-order scheme has not been used
earlier for the continuity equation, which also includes a convection term for mass
per unit volume. Conventionally, the derivations of finite-volume equations in the
COMMIX-1C program have been based on transported quantities per unit mass.
When we consider the high—order scheme for all governing equations, inclusive of
the continuity equation, it is preferable to base the constitution the balanced
equations on transported quantities per unit volume, such as the mass per unit
volume p, the momentum per unit volume pv, the energy per unit volume ph, the
turbulence kinetic energy per unit volume pk, and the dissipation of turbulence
kinetic energy per unit volume pe.

Implement the second-order scheme QUICK, which is widely used in the field of
nuclear engineering, for the convection terms in all governing equations, such as
mass, momentum, energy, turbulence kinetic energy, and turbulence diffusivity
transport equations. As pointed out in the first objective, the high-order scheme
has not been employed for the continuity equation, which is considered important
for strongly coupled momentum/energy problems in natural convection and fluid
flows with phase change.

Employ the FRAM method as a damping technique against oscillations, because the
QUICK scheme suffers from numerical oscillations.

Implement the LECUSSO scheme, which shows quite stable solutions, in the
convection terms of all governing equations. The two-dimensional LECUSSO
scheme was already implemented by Sakai and Weinberg22 in COMMIX-2(V),
which is a highly vectorized version of KfK; however, the three-dimensional
LECUSSO scheme has never been implemented.

Implement the second-order scheme for various boundary conditions, and the
shear flow condition (tangential velocity component) on the boundaries with
second-order accuracy, because when we perform high-order calculations, it is
necessary to increase the numerical accuracy for boundary conditions to also
maintain the same accuracy as that in the interior region. For this purpose, a finer
mesh grid should be used near the boundary, or generally, it is preferable to use
high-order schemes on the boundaries also. '

Regarding high-order schemes in time, implement the semi-implicit treatment
with an arbitrary value of the implicitness parameter «. The case when o = 0.5
corresponds to the Crank-Nicolson scheme with second-order accuracy.

There are a number of high-order schemes with respect to time, as we reviewed
above. The concept of implicitness parameter o has been implemented in the




COMMIX-1C program; hence, it is easy to change the program by using the o to
realize high-order accuracy in time.

* Examine the present improved COMMIX-1C program through basic numerical

experiments with the Burger equation, shear-driven cavity flows, and
experimental analyses of von Karmann vortex shedding and Strouhal numbers.

2 Numerical Diffusions and Numerical Instability

2.1 Numerical Diffusions

2.1.1 One-Dimensional Flows

As pointed out in Sec. 1, numerical diffusions can be introduced from the transient
term as well as the space terms. In Ref. 23, we can clearly see this situation, which we
briefly summarize below. ‘

Let us consider a one-dimensional transient transport equation for a scalar quantity f as
follows:

of _of
Errai . (2.1)

where u is the transporting velocity, t is time, and x is the coordinate. For simplicity, we
assume that u is constant and positive. Forward discretization in time and upwind
discretization of the convective term yields

21 = 1- Off + 2, (2.2)
where
C = uAt/Ax (2.3)

is the Courant number.

We consider a Taylor expansion, both in space and time, of the numerical solution fj
around point (xj, tp):

n
nel _ n oY | 1 ,.0f3%f 3
fl = fi + At(i)l + 5 At {'a? + O(At ), (24‘)

i

and

n 2.\
AT Ax(ﬁj + 1 sz[if-] + o(Ax3). (2.5)



Introducing Egs. 2.4 and 2.5 into Eq. 2.2, one derives

(EJH + u(if-jn = Lluax 2 i - Ata—zf i + 0(Ax2) + o(At2) (2.6)
at )y xJ) 2 x2 ), ) | a

The second-order time derivative in Eq. 2.6 can be transformed into a spatial derivative by
using

3%f o 3% ' '
-a—té- u gx—z', . (2. 7)

which is derived by differentiating Eq. 2.1 with respect to time and spatial coordinate, and
then eliminating the 92f/dxot terms. Introducing Eq. 2.7 into Eq. 2.6, one obtains

n

B+ o8 = 2 of T3+ oo o).

i i A

The right-hand side (RHS) of Eq. 2.8 corresponds to the truncation error {TE). The
leading term of TE acts as a false diffusion with second-order derivative in space; the false
or numerical diffusion coefficient is

Lexp = —“%"—(1— C). (2.9)

The first term in Eq. 2.9 comes from the numerical error of the first-order upwind scheme
with respect to space. The second term, with C, in Eq. 2.9 comes from the numerical
error due to the discretization with respect to time.

Similar conclusions are obtained when the convective term of Eq. 2.1 is discretized
implicitly at time level n+1. For the case of an implicit scheme, the numerical diffusion
coefficient is given as follows:

Limp —2—'(1 + C). (2.10)

In the implicit case, the Courant number C can exceed 1, but Eq. 2.10 shows that this
occurs at the expense of an even greater numerical diffusion. Then, the numerical diffusion
due to time discretization is greater than that due to the first-order upwind scheme. This
is the reason why we need high-order schemes in time, even if we use implicit schemes
with respect to time.

2.1.2 Multidimensional Flows

In the case of one-dimensional flows, the numerical diffusions are introduced only in
the flow direction. But, in the case of multidimensional flows with a skewed angle between
the computational grids and the flow direction, a new numerical diffusion is introduced into

"the direction normal to the flow direction.




In a two-dimensional computational grid with the skewed angle 8 between the x—
coordinate axis and the flow line, we consider the convection terms with constant positive
transporting velocities u and v as follows:

of of
Uu— + v—.

ox ay , (2.11)

The first-order upwind scheme for the above convection terms yields the truncation error

2 2
TE = ~ qu—a-—g- L 1 vAyg—-g— + O(sz) + O(Ayz).
2 x* 2 "oy (2.12)

If we transform the (x—y) coordinate to the new (s-n} coordinate (see Fig. 2.1), in which s
and n are parallel and normal to the flow direction, respectively, we have

TE = (Lg cos® + Ly sine)ﬁg— + 2 siné cos8(Ly — Ly) o
ds dson
+ (L sin® + Ly cose) g + oas?) + o[an?), (2.13)
where
Ly = u Ax/2, (2.14)
and
Ly = v Ay/2. | (2.15)

The third term in the RHS of Eq. 2.13 stands for the numerical diffusion in the direction
normal to the flow direction. Because convection does not exist in the n direction, this
new numerical diffusion turns out to be a significant error, especially for a steep gradient of
the transported quantity f in the n direction. This is another reason why we need high-
order schemes or skewed upwind schemes in space in multidimensional flows.

2.2 Numerical Instability

According to the equivalence theorem of Lax, stability of numerical solutions (¢) is the
necessary and sufficient condition for ¢ to converge to the exact solution (¢p4f) of the
partial differential equation, given a well-posed initial-value problem and a finite-difference
approximation to it that satisfies the consistency conditions. The difference between ¢ and
¢par is numerical error (E), which is decomposed into two parts in terms of the exact
solution (¢g of the finite-difference equation as follows:
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Fig. 2.1 Numerical diffusion when computational grid lines are .
skewed to the velocity direction

E =¢ - ¢pdr
= E; + Eg, (2.16)
E; =¢ -6t ' " (2.17)
E2 = ¢t - ¢paf- | (2.18)

Here, E; comes mainly from accumulation of round-off errors and the errors inherent to
numerical solution procedures. Egz includes truncation errors, as well as numerical
oscillations, as discussed in Sec. 1.

2.2.1 Round-Off Errors
Here, we consider a well-posed transport equation

30 % _ 2%
St U = vig (2.19)

where t is time, x is coordinate, u is transporting velocity, and v is a diffusion parameter.

Discretization of Eq. 2.19 in a single step with respect to time, in a computation grid with
N mesh points, yields

(@n+1) = (A)(®71) + (B), (2.20)




with time step number n. In Eq. 2.20, A and B are N x N and N matrixes, respectively,
which are composed of time step At, space increment Ax, v, ¢'(i = 1, ... N), and boundary
values ¢g and ¢n+1 in the case of the Dirichlet condition.

For the numerical solution (®2+1) to be stable at each time step' n+1, we need

1a] < 1, (2.21)

. where [|A] stands for a norm of matrix A.24

When we want to obtain a steady-state solution by means of the time-marching
technique, for the steady-state solution (®=) to be stable, we get

plA) 21, (2.22)
where p means the spectrum radius of A.25

Periodic boundary conditions, among all boundary conditions, present the most severe
restrictions for stability. In the case of a periodic boundary condition, the stability
condition, Eq. 2.22, is equivalent to von Neumann analysis.21.26 Fig. 2.2 shows the stability
domain given by von Neumann stability analyses for the Forward Time-Centered Space
(FTCS) scheme, the QUICK scheme, and the LECUSSO scheme.

2.2.2 Numerical Oscillations

Numerical oscillations, which are different from numerical instability due to the
accumulation of round-off errors, are the indication of the performance of exact solutions of
finite-difference equations. Hence, we examine the performance of the exact solution of
the finite-difference equations.

Methods to perform numerical oscillation analysis are available. In the following, we
review and apply these methods to the turbulence equations.

2.2.2.1 Patanker’s Rules17?

According to Patanker’s rule for numerical stability, in the following difference
equation,

ap ¢o = Zaib + S, (2.23)
(Rule 2): a; >0(=0,1, ..},
and in the source term S = S, + agd,

(Rule 3): ag < 0.

In the two-equation turbulence model (k-g€), the source term Sk in the turbulence
kinetic energy (k) equation is
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Sk = Pk + Gk — pe.

(2.24)
In the vicinity of the wall, using the mixing length (L) theory, we get
Sk = Py + Gi — [Cap(k®)1/2/L]kn+, (2.25)
which satisfies Rule 3. The source term Se of dissipation of k is
Se = C1{Px + C3Gile/k ~ Coe2/k. (2.286)
We can linealize Eq. 2.26 by two methods:
Se = [C1(Pk + C3Gi)/k - Coen/klen+1, (2.27)

which seems to be most adequate in numerical accuracy, but does not always satisfy Rule 3;
and

Se = C1(Px + C3Gr)en/k — (Czen/k)er+1, (2.28)

which satisfies Rule 3. Hence, from the viewpoint of numerical stability, the second
method, Eq. 2.28, is adequate.

The high-order schemes such as QUICK never satisfy Rule 2, but they give
nonoscillating solutions for the mesh with Reynolds number <=2. Therefore, Patanker’'s
rule 2 is too restrictive. Hence, we should go to the next method.




10

2.2.2.2 Characteristic Polynomial Analysis

Discretization of the convection term in Eq. 2.19 without a transient term by using four
base points, and the diffusion term by a centered-space scheme for u > 0, yields

Adi+1 = Bos + Cos-1 ~ D12 = 0. | (2.29)
The general solution of Eq. 2.29 is |

01 = al1); + bA2); + clha), ,  (2.30)
where A, A2, and A3 are the roots of the following characteristic equation

AN -BA2+CL-D=0. ' (2.31)

Because numerical schemes are generally constructed in such a way as to realize a constant
solution (¢ = 1), we have the following relation

A-B+C-D=0. | (2.32)
Hence, the roots of Eq. 2.31 are given as follows '

_ 1/2 _ A - 32, (2.33)
A =1 A, = Bz A+ o B-A-3
2A 2A

X =(A-B)2-4AD. (2.34)

Even if one of the roots is negative, the solution of Eq. 2.30 oscillates. Therefore, the
necessary and sufficient condition for nonoscillating steady-state solution is given as follows:

220, 220 A320 (2.35)

In the case of the QUICK scheme, we have

A=1-3Rn/8 B=2+3Rny/8, C=1+7Ry/8, D=Rny/8,
where Ry is the mesh Re number. From the condition of Eq. 2.35, we get
Rm < 8/3. (2.36)

In cases of the second-order central scheme, the QUICK scheme and the LECUSSO
scheme with uniform-mesh-size grids, nonoscillating conditions are shown in Table 2.1.
This characteristic polynomial analysis was recently extended into nonuniform-mesh-size
grids and the numerical oscillation analysis on the LECUSSO scheme was performed in
nonuniform-mesh-size grids.27 It has been shown that the LECUSSO scheme can give
solutions that suffer from numerical oscillations in nonuniform-mesh-size grids, although
the LECUSSO scheme shows quite stable solutions as compared with the conventional
high-order schemes such as QUICK and the third-order upwind scheme.
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Table 2.1. Nonoscillating conditions based on characteristic polynomial analysis

Scheme  2nd-Order CS2 QUICKa LECUSSOa.b
A 1-Rmn/2 1 - 3Rm/8 1-(0.5-&Rm
B 2 2+3Rm/8 2 + 3 Ry
C 1+Rm/2 1+ 7Rn/8 1+ (0.5 + 38) Rm
D 0 Rm/8 & Rm
b3 Rm2/4 1 + Rm + 3Rm2/4 1 + R + (1/4 + 48)Rm2
A1 1 1 1
Ag 2 + Ry, 1+ 3R,/4+ 1+ 05R,, + 28R, + VT
2 - Ry 2(1 - 3R, /8) 2[1 -(0.5 - E)Rp,]
CO o RS e
Nonoscillating Rm £ 2 Rm 5 8/3 Nonrestriction
- Condition

a. Ry = VAx/v (mesh Reynolds number).
b £ = (Rm - 2)expRy ] + Ry, + 2

2Rm(eXP[Rm] -2+ eXP[_Rm])

2.2.2.3 Tomiyama’s Method28

Tomiyama recently proposed a general theory to obtain the onset condition of the
dynamic numerical oscillations in transient problems. Although this theory is rigorous and
includes boundary condition effects, we need to solve eigenvalue problems for each
computational grid. The nonoscillating condition depends on the node number in the
‘computational grid and the boundary conditions. In the case of QUICK with uniform mesh
grids, the nonoscillating condition of transient solutions is

Rm S (1.5 - 2.6).

Comparing Eq. 2.36 with Eq. 2.37, one finds that the dynamic oscillating condition for
transient solutions gives a more restrictive condition than the static oscillating condition

for steady solutions.

(2.37)
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3 General Form of Conservation Equations

All conservation equations of mass, momentum, energy, turbulence kinetic energy, and
dissipation of turbulence kinetic energy possess a common form. If we denote the general
dependent variable as ¢ per unit volume, the corresponding conservation equations have
the following form in the Cartesian coordinate system:

In continuum domain

HO * 500+ L0+ T = 2 2+ ay(wg_f,’) (r¢§:j+.§g .12)

Unsteady Convection : Diffusion

Source

In quasicontinuum domain29

3 Alyxu AlYy v9)  Aly, wo
9 ('YV ¢) + (YX ¢) + ( y ) + (YZ )
ot Ax Ay Az
o o
Unsteady Convection

d d d
ox ay oz
= + + + YvSp {3.1b)
AX Ay : Az —_——

Diffusion Source

)

3

Here, u, v, and w are the velocities in the x, y, and z directions, respectively; vy is the
volume porosity (fraction of the volume occupied by the fluid) and vx, Yy, and y; are the
directional surface porosities (fraction of the surface area that is unobstructed to fluid flow)
in the x, y, and z directions, respectively. The diffusion coefficient I'y and the source term
Sy are specific to each meaning of ¢. ¢ and the sources for all conservation equations are
given in Table 3.1.

The general form (Eq. 3.1} of the conservation equations in the cylindrical coordinate
system is the same as it is in the Cartesian coordinate system, when we place the
centrifugal and Coriolis force terms in the source term Sp. We can, therefore, apply all
formulations for the Cartesian coordinates to cylindrical coordinates with the simple
transformations shown in Table 3 of Ref. 1.

In the conventional COMMIX-1C program, ¢ is defined as a quantity per unit mass and
¢ = 1 is adopted for the continuity equation. But, by reformulating ¢ as a quantity per unit
volume, we can deal with all of the unified governing equations. Moreover, the convection
term involves the form of

Missing MathType’s Belmont font.
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Table 3.1. Source terms in Cartesian coordinate system?@

Diffusion
Equation Variable (¢) Coefficient _
{e) (e/m3) Direction  (I'g)(m2/s) Source Term (Sy)
Mass p Scalar : 0 0
Momentum
. dp
(i) pu X Vp+ Vi pg,+V,-R, | —
. ox |
s dp
(11) pv y Vy+ vt Pg, +V, - R, - g
(iii) pwW z V4Vt pg,+V,-R, - (g_p)
z
v d 5 .
En h Scal o, + -4 °p
ergy p calar ¢t o dt+grb+g+q>
Turbulence pk Scalar vy + Yt Pk + Gk - pe
Kinetic Energy Ok
Dissipation of . N c 9
Turbulence pe Scalar vy + EL Cy(P + Gk)i - Cy p%-
€

Kinetic Energy

aSymbols in the table are defined as follows:

Vx, Vy, VZ
Rx, Ry, R;

Qrb
Q
o
Ve
Vvt
Gy

Oh, Ok, O¢
Px

Gk

C1.Co

Balance of the viscous diffusion terms

Distributed resistances due to solid structures in a momentum
control volume ,

Rate of heat liberated from solid structures per unit fluid volume
Rate of internal heat generation per unit fluid volume
Dissipation function

Laminar kinetic viscosity

Turbulence kinematic viscosity vt = Cpk2/e

Laminar thermal diffusivity oy = A, /(pCp), (A 4: thermal conductivity; Cp:
specific heat)

Turbulent Prandtl number for h, k, and ¢, respectively
Production of k due to mean shear

Production or suppression of k due to buoyancy

Constant of coefficients

4 High-Order Schémes for Convection Terms

4.1 Control Volume and Computational Grid

In COMMIX-~1C, the computational cell is defined by the locations of the cell volume

faces, and a grid point is placed in the geometrical center of each cell volume.

Cell sizes

can be nonuniform. This type of construction is shown in Fig. 4.1. The convention used in
.COMMIX-1C for defining neighboring cells and faces is given in Table 4.1. '
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A typical cell volume

Fig. 4.1. Construction of cell volumes

Table 4.1. Convention used in COMMIX-1C to define
neighboring—cell control volumes

Cell Centers Cell Face Center

Subscript b4 y z X y z

0] i, 3. k

1 -1, j, k i-1/2  j, Kk

2 i+1, j, k i+1/2, j, k

3 i, j-1, k i, -1/2, k

4 i, j+i, k i, j+1/2 k

5 i, J k-1 i, i, k-1/2

6 i, s k+1 i, i» k+1/2

We use a staggered grid in the above cell system, in which all dependent field variables
(pressure, temperature, density, enthalpy, turbulence kinetic energy, dissipation of
turbulence kinetic energy, physical properties, etc.) are calculated at a cell center, as
shown in Fig. 4.2, and all flow variables (velocity components) are calculated at the surface
of a cell, as shown in Fig. 4.3. This staggered grid system plays a role in suppressing
spurious oscillations of pressure. The number in a circle in Fig. 4.2 denotes the surface
number used for a main control volume. The number and letter in a circle in Fig. 4.4
denote the surface number used for a momentum control volume. In the case of z-
momentum control volume, surface number is decomposed into two parts, @ and
, which denote, respectively, the negative and positive half surfaces of surface No.
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z-momentum
Control Volume
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Fig. 4.4. Momentum control volumes. The numbers and
letters in a circle denote the surface number

Table 4.2. Convention used in COMMIX-1C to define neighboring
control volumes for z-direction momentum equations

Momentum Control Momentum Control
Volume Centers Volume Face Centers
Subscript X y z X y z

0 i, s k+1/2
1 i-1, i k+1/2 i-1/2, i, k+1/2
2 i+l, j, k+1/2 i+1/2, i, k+1/2
3 i, -1, k+1/2 i, j-1/2, k+1/2
4 i, j+1,  k+1/2 i, j+1/2  k+1/2
5 i, i, k-1/2 i, i, k
6 i, i, k+3/2 i

i, J» k+1

A direct consequence of the staggered grid is that the control volumes to be used for
the conservation of momentum must also be staggered. The control volumes shown in Figs.
4.1 and 4.2 will now be referred to as the main control volumes. The control volumes for
momentum will be staggered in the direction of the momentum so that the faces normal to
that direction pass through the grid points (see Fig. 4.4). Thus, the pressures at these grid
points can be used directly for calculating the pressure force on the momentum control
volume. Table 4.2 shows the convention used for the subscripts of the z-direction

momentum control volume, and Fig. 4.4 shows the momentum control volumes for the x
and z directions.
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4.2 QUICK Scheme in Nonuniform Mesh Grids

Here, we derive the QUICK scheme in a computational grid with nonuniform mesh size
for equations written in the conservative form. We approximate the convection term in the
governing equations for positive transporting velocity u as follows:

d(ue)| _ Uir/28i1/2 - Uiy2di1/2
dx li Axi

{4.1)

in a computational grid with mesh increment Ax;, as shown in Fig. 4.5. In Eq. 4.1, the
transported quantities ;43,0 and bi1 ;2 on the surfaces of control volume i are
approximated by the following quadratic upstream interpolation for uj+1/2 > O and uj-y1/2 >

bie1/2 = ofi1/20i1 + Biii/201 + Yiv/2 i (4.2a)

and

i

P72 = ofayadig + B2 + Y2t (4.2b)
where superscript + denotes positive transporting velocity.

In the following, we derive the expressions of at, f+, and y* in Eq. 4.2a for nonuniform
mesh size. We have a second-order interpolation formula such that

- (x - Xi)(X ~ Xi) (x - Xi—l)(x - Xi41)
(x) = - i
o (Xi-l - Xi)(xi—l - Xi+1) b1 ¥ (Xi"“ Xi—l)(xi - Xi+1) ¢
+ (X - Xi—l)(x - xi) ¢i+1 . (43)

(X141 = Xi1)(Xim — %)
At x = x511/2 = X + AX;/2, we have
X —-X =X+ AXi/2 - x4 = AXi/2,
X = Xi+1 = Xi + AXi/2 — Xip+1 = ~(AXj + AXj+1)/2 + AXi/2 = -AXi+1/2,
X~ Xi-1 =A% + AX-1/2 = (28%; + Axi1)/2,
Xi-1 — X1 = —(Axj-1 + Axy)/2,

Xi-1 — Xj+1 = ~(AXj-1 + 2A%; + Axy41)/2,

Xi - Xi+1 = —(Ax; + Ax341)/2.
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i le— AXj '
Control Volume
Fig. 4.5. One-dimensional computational grid
Hence, ‘we get
+ AX; Ay '
Qjsl/2 =~ . (4.4a)
i (Axioy + Axi)(Ax; ) + 28%; + Axyy)
24%; + Axy1)AXy4
Blie = ( , (4.4b)
i (Ax;) + Axg)(Axy + Axyy) '
and
+ (24%; + Ax;)Ax;
Yi+l/2 = . {4.4c)
/ (Axp ) + 2A%; + Axyq)(Axy + Axyy)
For Ax; = AXxj4+1 = Axi-1, we get
- 1 6 3
= = F — O + = by
di+1/2 3 631 3 o1 3 Pi41
When uj;+172 < 0, 1412 is interpolated as follows
$1+1/2 = Chiz20; + Brasobua + Yi/2 0. (4.5)
We ha\(e interpolation formula
b(x) = (x - xin)(x - Xi+2) (x - x)(x - Xit2)
ox) = ¢ + div1
(% - X1+1)(Xi‘ - Xii2) (X141 = Xi)(Xir1 = Xir2)
(x - x)(x — X44)
+ b142- {4.6)
(xi42 - X )(Xi+2 = Xi41) *

At X = Xj41/2, We have

X~ Xjyl1 = - (Axi+1 + AXi+2)/2’
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X - Xj+2 = —{2Ax441 + Axi42)/2,
Xj — Xi+2 = —(Ax; + 2AXj41 + AXj42)/2,
and
Xi+l — Xi+2 = —{AXj41 + AXj42)/2.
Hence, we get

Axiq (24%44 + AX o)

“a1s2 = (Ax; + Axpy)(Ax; + 24%;,) + AXyyp) “.72)
Biayz = Ax; (28%44) + AXjyp) ’ (4:7b)
(Ax; + Axyy)(AXyyy + AXjig)
and
Yirjz = - Ay Axia1 ' (4.7c;)

(Axj + 24X, + AXyo)(AXiy) + AXjyo)

For AXjy = AXj+] = AXj+2,

I 3 6 1
Pi+1/2 = -§¢i + §¢1+1 - '8-¢i+2,

4.3 LECUSSO Scheme in Nonuniform Mesh Grids

Here, we extend the LECUSSO scheme to nonuniform-mesh-size grids based on the
conservative form. Following the methodology used in Ref. 13, we consider the following
one—dimensional steady convection/diffusion equation in the conservative form

d(up) _  d%
dx dx?’

(4.8)

where u is the fluid velocity; v is a diffusion parameter, such as kinematic viscosity or
thermal diffusivity; x is the spatial coordinate; and ¢ is the transported quantity. We
approximate the convection term for u > 0 as follows:

d(u¢)| - (ui+1/2$i+1/2 - ui-l/ztf)i-l/z) : (4.9)
dx li Axy ’

in a nonuniform-mesh-size grid with mesh increment Ax;, as shown in Fig. 4.5, and ¢; and
u; defined at x;.
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Similar to the idea in the QUICK scheme, the transported quantities ¢ on the surfaces

of control volume i are approximated by the following expressions for uj;+1/2 >0 and uy_1/2
>0

divr/2 = Of/20i1 + Biay2®i + Yivy2 G- ' ‘ (4.10a)
and
dim1jz = Oil1/20i2 + Blijodiy + Y120 . (4.10b)

Here, based on the basic idea of the LECUSSO scheme, we impose the condition that Egs.
4.10a and 4.10b satisfy an analytical solution of Eq. 4.8 with constant u. Namely, with the
requirement that Eq. 4.10a exactly realize ¢ = 1, ¢ = X, and ¢ = a-exp(Ry+1/2%) + b, where a
and b are determined by boundary conditions, but here may be arbitrary, and Rj:1/2 =
Ui+1/2/Vi+1/2, We obtain

ofsye + Blayz + Yiaye =1 ' (4.11a)
+ + y =
- oyze (Axy + Axy) + Yiazz (Axg + Axyy) = Axg, (4.11b)
and
a;-+1/2eXP[_Ri+1/2(AXi + AX1-1)/2] + Biiy2
+ =
+ Yi/2 exp[Riss2(Ax; + Axy)/2] = exp(Ry/24%/2). (4.11c)
From the above algebraic equations, we derive the solution as follows:

o172 = W-H-Axiexp[Ri+1/2(A%; + Axi+1)/2] + (AX; + AXjs1)exp(Ri+1/24%i/2) - Axis 1}
(4129

Bit1/2 = W-H{AX i, 1€xp[-Rys1/2(A%; + Axi-1)/2] — (Axje1 + 2A%; + AXj-1)eXp(Ri+1/2A%4/2)
+ (28%; + Axy-1)explRic1/2(AXi+ Axi41)/2]}, (4.12b)
and
Yiv/2 = W-HAx; + Axi-1)exp(Ris1/2 AXi/2)
+ Ax; expl-Ri+1/2(Ax4 + Ax-1)/2] ~ 2A%; - Axj 1}, (4.12¢)

where
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W = (Axj + Axj_1)exp[Ri+1/2(Axi + Axj41)/2]
+ (Axj + Axj41)expl-Ri+1/2(A%5 + Axi 1)/2]
— 2A%{ - AXi-1 — AXi+1, ' ’ (4.13)
and the mesh Reynolds number is defined as Ry, = Rj+1/2A%;. In the same manner as that in
the case of uniform mesh sizes, the coefficients of; /2 Bl /2, and Yia /2 are expressed in

terms of local variables, such as space mesh increments and mesh Reynolds number.

The coefficients for &i_l /2 can be obtained by changing the suffix i in Eq. 4.12 with the
suffix i~1, when uj-} /2 is positive.

In the case of uj;+1/2 <0, 011 /2 is approximated as follows:
Giv1/2 = Oia/2®i + Bra/2dia + Yin/2 G142 (4.14)

With the requirement that i)Hl ;2 exactly realize ¢ =1, ¢ = x, and ¢ = exp(Ry+1/2x%), we
obtain

Oi1/2 + Bz + Yz = L (4.15a)
Bisrs2 (AXy + Axyy) + Yiayz (Ax) + 24A%5+ Axyp) = Ax;, (4.15b)
o2 + Bria/2 €xXp[Riv1/a(AXy + Axy41)/2] + Viey2 exp[Ris1/2 (Axg + 24%;, + AXy,0)/2]

= eXpP(Ry+1/24x%41/2). ' (4.15¢)

From these linear equations, we derive the solution as follows:

~ (24%p4 + Axyy0)exp|Ryy /o (AXy + Axyy)/2]
+ (Axyy + Axyi9)exp(Ry /2 AX;/2)

_ + Axp exp[Ris1/g (Axy + 2A%3 + AXyi0)/2] (4.16a)

Cir1/2 = W ,
Ax4 eXP[R1+1/2 (Ax; +2A%;4) + AX1+2)/2]
— (AX; + 24X, + AXy,0)exp(Ry,1/0 AX;/2)

_ |t 284, + AXyg

Bitryz = W , (4.16b)

and

AX; + Ax Ris1/9 AX/2) — Axjexp|R; Axy + Ax)/2] - Ax;

Vije = (Ax; 1+1)eXP( 1+1/2 AXy/ ) 1eXP[ 1+1/2( i 1+1)/] 1+1,(4.160)

W
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where

W = (Ax; + Axy)exp[Ry 2 (Axg +2AX141 + AXy40)[2] + Ay + AXpyp

- (Ax; + 2A%44; + AXj o )exp|[Rys1/0 (A + Ax;41)/ 2]. (4.17)

We have another way to derive the conservative form of the equation directly from its
nonconservative form, which was derived. already in Ref. 22, by making use of the relations
between the coefficients in both forms. We call this form the straightforward scheme,
which is different from the above scheme which is based on QUICK. Both of the schemes
approach the second-order upwind scheme when the transporting velocity goes to infinity.
However, when the transporting velocity goes to zero, the scheme based on the QUICK
scheme approaches the QUICK formulation, while the straightforward scheme approaches
another second-order upwind formulation. In the case of uniform-mesh-size grids, the
truncation error of the QUICK scheme is

ax? 3% 3 ‘
TE = - P O(Ax ) . (4.18a)

whereas the truncation error of the straightforward scheme is given by

a2 %

TE =
12 ox3

+ o(Ax3). - (4.18b)

Because the TE of the scheme based on the QUICK scheme is smaller than that of the

straightforward scheme, hereafter we adopt the QUICK scheme as a conservative LECUSSO
scheme. ' ]

4.4 Optimized Flow-Modulated Skew-Upwind Scheme

As we discussed in Sec. 2, the pure upwind scheme causes increased numerical
diffusions in the direction normal to the flow direction for fluid flows inclined to
computational grid lines. A skew-upwind scheme is one of the methods to effectively
reduce those numerical diffusions.

In COMMIX-1C, the flow-modulated skew—upwind (FMSUD) scheme, which is a
modified version of the mass-flow-weighted skew-upwind scheme by Hassan et al,30 is
implemented. Derivation of the mass-flow—weighted skew-upwind scheme is heuristic
and involves ad hoc assumptions. Although derivation of the FMSUD scheme is
mathematically more systematic, it still involves some ambiguity. Namely, determination of
difference coefficients for corner cells in the FMSUD scheme is based on Patanker's
stability conditions to avoid numerical oscillations. However, Patanker’s conditions are too
restrictive for numerical stability, as we discussed in Sec. 2. Therefore, we can optimize
the difference coefficients of the FMSUD scheme from the viewpoint of truncation errors.
In addition, the mathematical formulation of the FMSUD scheme has not been derived

consistently. We try to derive an optimized FMSUD scheme from the viewpoint of reducing
numerical truncation errors.
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We consider the convection term in two-dimensional uniform flow field with u > 0 and

v > 0, as shown in Fig. 4.6. The convection term in the two-dimensional partial differential
equation (PDE) is

(PDE) : div(pvh) = %(puh) + -a—ay—(pvh). | | (4.19)

To derive its finite difference form (FDE), we have, in a frame of the first-order skew-
upwind scheme with u > 0O and v > 0O,

h; = oghy + By hy

aghg + Bohg

hy = oghg + Bshys hy

i

aghg + Bsghy

1 - . . N _
(FDE): Ej‘div(pvh)dv Siyaz (mxhg - myh; + myhy - myhs)

1 2
= Axayaz (2oPo — aihy - ashs - ajshys). (4.20)

where myx = puAyAz, My = pvAXAZ, AV = AXAyAz, ap = mxOg + My0s, a) = mMxo) ~ myB4,
ag = -mxP2 + myos, a1z = mxP; + myPs.

The truncation error between the (FDE) and (PDE)} is
(TE)AV = [(FDE) - (PDE}]JAV

dh oh ‘
= a()ho - alhl - a3h3 - a13h13 - mxAx—;(— - myAy—. . (4.21)

o oy

Taylor expansions for hj, hs, and hj3 with respect to the point (xg, yg) are

hy = hg + % (-Ax) + %g% (-ax)? + o(ax3), (4.22)
he = ho + 32-ay) + 225 (v + o) (4.2
hig = o + 2 (8 + 2 (oay) + 222

+ %gi—lz“(- y)? + 5}% (-ax)(-ay) + 0(ax3) + ofay®)

(4.24)
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Fig. 4.6. Two—dimensional computatioriai grid

where all the differentiations are evaluated at point (x,, yo). Substitution of Eqs. 4.22-4.24
into Eq. 4.21 yields

(TE)AV = (ao - a — ag - a13)h0 +v(a1 + 313)AX(%) + (3.3 + a13)Ay(g—;l-)

1 of %h 1 of 32h o%h
- [5(31 + aj3)Ax [5;2—] + 5(?3 + ajg)Ay [?‘ + a)3AxAy a3y )|

+ O(Ax3) + 0(Ay3)+ o(szAy) + o{axay?) - mxAx(%) - myAy(f’a-y*i} (4.25)

To reduce (TE) as much as possible, we get for
(Oth-order): ag-aj ~ag -ajs =0, (4.26)

a; + ajg = My,

(1st—order): { (4.27)

ag + ajzg = My.

Here, we require that a; and az are positive, i.e., a] > 0 and ag > 0. Therefore, Eq. 4.27
gives aj3 < my and aj3 < my. In the case of the FMSUD scheme, a;3 = min(mx, my), i.e., a13

< min(mx, my). In the following, ajs is determined by minimizing the second-order
truncation error.

The second-order truncation error is then characterized by
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1 a*h
A= —|:mxsza + 2a;3AXAY —— (4.28)

o2h 2 3%h
2

+mAy .
aay Yy ay2

It is impossible to reduce A to 0 with only one variable aj3 to be determined as shown in
Eq. 4.28. To minimize A by a;3, we make a coordinate transformation from (x, y) to (s, n),
as shown in Fig. 4.7, -

sy cos€@ sinB) (x (x) _ [cos® -sin@) (s (4.29)
n) (-sin® cos6) |y 0? y) ~ \sin® cos8) (n . :
We have i
i h, .
oh/ds _ c.ose sin®) (dh/dx ’ (4.30)
oh/on -sin® cos0) \oh/dy
and
2 2 2 2
B _ cos20 LR 4 2sin6coss T 4 sin?ed L . (4.31)
s ox aXaY dy>

Here, we define

U = vu? + v& At = \/sz + Ayz’.

Then, cos 6 = u/U and sin 6 = v/U. Multiplying &;TAV to Eq. 4.31 yields,

s2 2

9 2
(PU AT)A oh _ 1/cosd mxsza b, 2pUAt cos6 sin6 AxAyAza—h
9 cos¢ ax? dxdy

+

2
sin@ Ay 20 h] , (4.32)

sin¢ my ayz

where cos¢ = Ax/At and sing = Ay/At. Equation 4.32 gives the numerical diffusion in the
flow direction s.

Because A is the total numerical diffusion, and Eq. 4.32 gives the numerical diffusion in

2 2

the flow direction, it follows that the terms |1- cos 6 sz 9 121 and |1- sin © myAy 2 oh

cosd ox sin ¢ ayz

represent the numerical diffusion in the n-direction. A comparison of Eq. 4.32 with Eq.

4.28 yields

ayg = pUAtcosOsinbAz = (&%‘i) AtAz. (4.33)

Therefore, a3 represents a mass flow rate. There are two special cases for aj3:
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Fig. 4.7. Relationship between coordinates (x, y) and (s, n)
0 =0o0r0=mx/2, ajz = 0 (pure upwind), |
and
6 = n/4, a13 = pul(Ax2 + Ay2)/2]1/2Az (maximum).
When Ax = Ay, a13 = pUAXAZ = mx = my, wWhich corresponds to the FMSUD scheme.

5 Finite-Difference Formulation with High-Order Schemes
in Space and Time

Although the finite-volume formulation is applied to a grid in both the Cartesian and
cylindrical coordinate systems, only a Cartesian coordinate grid system is used here to
demonstrate the formulation of the finite-volume equations. Similarly, we have used only
the z-momentum equation to illustrate the formulation of the momentum equation. Finite-
volume formulations for the x and y momentum equations can be derived by a similar
procedure.

The finite-volume equations are derived by integrating the governing equation (Eq. 3.1)
over a control volume. We integrate each term separately. All terms, except the convection
term, are the same as those in the original COMMIX-1C.

5.1 General Form For Convection Terms
5.1.1 Field Variables in Main Control Volume

Integration of the convection terms in the governing equations Eq. 3.1 over the main
control volume in the staggered-grid system gives

[div(v ¢)av = [(v « f)¢da, . (5.1)
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where A denotes the surface area of the control volume and fi the unit vector normal to the
control surface. In the Cartesian coordinate system, the RHS of Eq. 5.1 is expressed as

J@ e B)odA = £ (0)g - £y ()1 +fa (Da— T3 ()3 +T6 (D — f5. (05 (5.2)

Here, f(transporting velocity x flow area) is the volumetric flow rate across the surface of
the volume, and subscripts 1-6 denote the west, east, bottom, top, south, and north
surfaces, respectively (see Fig. 5.1). For example,

fo = (vx Ax)z ‘ ‘ (5.3)

is_the volumetric flow rate at the east surface. <¢>2 is the value of ¢ associated with surface
, which is convected by the volumetric flow rate f3. The second-order upwind schemes
of QUICK and LECUSSO provide

(9)2=[0.15] (Oﬂf'ﬂ/z 011 + Blray2 01 + Viv/2 <I>i+1)
- [0.-f] (%11/2 01 + Biar/20ia +-Yiri/2 ¢i+2) : (5.4)

The operator {A,B] is defined as the maximum of the two real numbers A and B, i.e.,
[A,B}] =AifA>B

=BifB > A. (5.5)

Fig. 5.1. Convective volwne fluxes for main control volume
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In Eq. 5.4, superscripts + and - denote positive and negative transporting velocities,
respectively. o172, Bi+1/2, and vi+1/2 are given by Eq. 4.4 for the QUICK scheme or Eq. 4.12
for the LECUSSO scheme. Further, in Eq. 5.4 we use abbreviations in the x-axis, such as

Qi+172 = Oi+1/2,j.k ' \ (5.6a)
Bi+172 = Bi+1/2,5.k : (5.6b)
Yi+1/2. = Yi+1/2,i.k (5.6c¢)

61 = 61k ' | (5.6d)

Hereafter, we also use the abbreviation corresponding to Eq. 5.6 in the y- and z-directions
unless otherwise stated.

In accordance with the above convention, we rewrite Eq. 5.2 as
Jdi"(“’q’)dv= [0.£2] (0&211/2 o1 + Bl 01 + Yhisz 6ia)
- [0,~f5] (ai—+1/2 o + B.?+1/2 b1 + Yit1/2 ¢i+2)
- [0,1;] (0;1/2 02 + Bii/2 91 + Yiiy2 ¢i)
+ [0,-f;] (af-l/z di-1 + Bicyyz ¢ + Yicuy2 ¢i+1)
+ [0,f4] (01}11/2 031 + Birs2 &5 + Yinse ¢j+1)
- [0,-14] (a}+1/2 o5 + Bynye 05 + Yiay2 ¢j+2)
- [0,13] (a}'_l/z o032 + BLi2 041 + Y2 ¢j)
+ [0,~13] (a}_uz ¢31 + Brasz ¢ + Y172 ¢3+1)
+ [0,fg] (a1§+1/2 01 + Bks1/2 Ok + Yher/2 ¢k+l)
- [0,~16] (0!1_{+1/2 Ok + Bk+r/2 Okel + Tkil/2 ¢k+2)
- [0.15] (afi—l/z Ok-2 + BE-1/2 Ok-1 + Yi-1/2 ¢k)
+ [0,~f5] (Otf;-uz bx-1 + Br-1/2 ¢ + Vk-1/2 ¢k+1)- (5.7)

All six convective volume fluxes fj, fa, ... fg for the main control volume are listed in
Table 5.1. -
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fi = (Axu)i-1/2

fa = (Axu)i+1/2

Table 5.1. Convective volume fluxes for main control volume .. 13 =(AyV)j-1/2
‘ f4 = (Ayvlje1/2
f5 = (AzW)k-1/2
f6 = (AzWlk+1/2

5.1.2. Flow Variables in Momentum Control Volume
Figure 5.2 shows the control volume for the z-component of momentum. Integration

the z-component of the convection term in the momentum equation over the momentum
control volume, as shown in Fig. 5.2, yields '

Idiv(\‘r¢) dV = {<u A 4>, g+ <uA 6>, p-<uA, 0>y A
—SUA 0> p+ VAL O3, g <V A G>,
~ VA Gy - VA 0>5 p}/2 + <WA_$>5 ¢
A e, | (5.8)

with ¢ = pw. Suffixes 2-M and 2-P indicate the lower and upper surfaces of the east
surface, i.e., surface No. 2, respectively, as shown in Fig. 4.4 or Fig. 5.2. Suffixes 1-M and
1-P indicate the lower and upper surfaces of the west surface, i.e., surface No. 1,
respectively. Suffixes 4-M, 4-P, and 3-M and 3-P correspond to the above definitions of
surfaces No. 4 and 3 respectively.

Here we define

(z - x) term = {<u Ay ¢>2_M + <u Ax ¢>2-p — <u Ax ¢>1-M — <u Ax ¢>1-p}/2. (5.9a)
(z -y term = {<v Ay 0>4-M + <V Ay ¢>4-p ~ <V Ay 0>3-M — <V Ay ¢>3-p}/2. (5.9b)
(z - 2) term = <w Ay ¢>6-6 — <W Az $>5-0. {(5.9¢)

We calculate each term of Eq. 5.9 by using an interpolation or averaging technique.
5.1.2.1 (z - 2) Term

We decompose <w Az ¢> into two parts as follows:

<W A 0>6-6 = <W Az>g-6 <0>6-6. (5.10)
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Fig. 5.2. Convective fluxes and average velocties for z-momentum control volume. The

numbers in circles indicate surface numbers

Interpolation of the volume flow <w A;>. In COMMIX-1C, the location at which the flow
area Az is defined coincides with the location for the velocity w. We interpolate the
volumetric flow rate <w Az> at surfaces No. 6-6 by using ociﬂ/z, Bli{-q-l/z, and yﬁﬂ/z.

Namely, for <w Az;>gg > O:

<W A, > 6 = Ofy/e(w Ag)s + Bhase(w Az)y + Yhiye(w Ag)g
and for <w Az>g-6 < O:

<W Az >g6 = Oks1/2(W Az)y + Brr/2(W Az)g + Yes/2(W Az)gg

We use the linear interpolation as an initial guess as follows:

<W Az>6-6 = [(W Age + (W Az)ol/2.

(5.11a)

(5.11b)

(5.12)
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With respect to the sign of <w A;>_g obtained from Eq. 5.12, we perform appropriate
calculations of <w A;>g.¢ from Eq. 5.11.

Interpolation of the momentum ¢ = pw. The locations defined for density in a staggered-
mesh system are different from those for velocities. However, the surface centers of the z-
momentum control volume coincides with the location defined for the density of cells No. 6
and 0. Therefore, we need only to interpolate w at the surface centers and @
based on the QUICK or LECUSSO scheme, multiply pe or pg, and obtain ¢ = (pw)s-g and ¢ =
(pw)s-0.

Namely, for <w A;>g-6 > O,
<W>g g = Ofy/9Ws + Bla/aWo + Yh/2We ' (5.13a)

and for <w Az;>g-¢ < O,

<W>g g = Oki1/2Wo + Brs1/2We + Yk+1/2Wee- : (5.13b)
Then we get
<¢>6-6 = Pg <W>6-6- (5.14)

Finally, we obtain

(z — z) term = <w Az>6-6 Pg <W>6-6 — <W Az>5 0 po <W>5-0 (5.15a)
= (fz)6-6 p6 <w>6-6 — (fz)5-0 po <W>5-0 (5.15b)
= (F2)e-68 <w>g-6 ~ (Fz)5-0 <W>5-0 (5.15c¢)

= [O.Fz]s_s(aﬁﬂ/zws + PBkirszWo + Y§+1/2W6)
- [0-F,]g_g(0k+1/2W0 + Brer/2We + Yicr1/2Wes)

- [O,Fx]s_o(aﬁ-l/zwﬁ + B§-1/2W5 + Y§-1/2Wo)

+ [0,-Fz}5_0(0€:-1/2w5 + PBk-1/2Wo + Yi—l/zws), (5.15d)

where
(Fde-6 = p6 (f)6-6 = p6 <W Az>6-6 = Fye, (5.16a)
(Fds-0 = po (f)5-0 = po <W Az>5-0 = Fys. (5.16b)

which correspond to the mass flow rate.
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5.1.2.2 (z - x) Term

<u Ax ¢>1-M = <u Ax p W>1-Mm on surface No. 1-M. Because the density is not defined on
surface No. 1-M, we calculate approximately by decor_nposing <u Ax p w > into three terms
as follows: ‘

<u Ax pW>1-M = <U Ag>1-M <p>1-M <W>1-M. (5.17)

The first term:

The first term on the RHS of 'Eq. 5.17 can be calculated exactly on surface No. 1-M.
Namely,

<u Ax>1-M = uilAx)i (5.18a)
= fxi. (5.18b)
The second term:

An interpolation method is needed for the calculation of <p>1-p. We can use the QUICK or
LECUSSO interpolation,

<p>m = of)ig pir + BiNe b+ ¥iYe po (for uyp > 0) (5.19a)
= oc;_:li% P+ B;_*%Z po + yi'_’%z P2 (for u; < 0); {5.19Db)

the linear interpolation,
<p>1-M = [p1 AX] + po Ax0)/(Ax) + AXQ); (5.20)
or the first-order upwind interpolation,
<p>1-Mm =pP1 (u1 > 0) (5.21a)
= po. (u; < 0. (5,21b)
The conventional COMMIX-1C uses the first-order upwind method. Although the QUICK or
LECUSSO interpolation with high-order accuracy is recommended, we now use the linear
interpolation. Because COMMIX-1C is a single-phase code, linear interpolation is adequate.

For a two-phase flow system, high-order interpolation is strongly recommended.

The third term:
For the third term <w>j1_p, we use the QUICK or LECUSSO interpolation

<SW>_M = a;'_’ll"}z wyy + B;ﬁ’}z wy + y;“_'lﬁz wo (for u; > 0) (5.22a)
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= oci'_’li% wy + B;_’Ilwm wg + Yi_-'lﬁz Wo (for u; < 0). (5.22b)
Finally, we get
<u Ax pw>1-M = Fx1 <w>1-Mm, (5.23)
where
Fx1 = <u Ax>1-M <p>1-M ' (5.24a)
= uj Ax1 <p>1-M. : (5;24b)

<u Ax ¢>1-p = <u Ax p w>1_p on surface No. 1-P. In the same manner as that for <u Ay ¢>1-M,

we get '

<u Ax pw>1-p = Fxg1 <w>1_p, (5.25)
where

Fx61 = <u Ax>1-p <p>1-p ' (5.26a)
= ug] Ax61 <p>1-P. (5.26b)
<p>1-P = (P61 AX1 + ps Ax)/(AXx] + Axp), (5.27)
<w>p = oafly wip+ BiT/e w1 + Yit, wo  (for ug > 0), (5.28a)
= ol Wi+ Bhe Wo + Yihje Wo (for ug; < 0). (5.28b)

<u Ax ¢>2-M = <u Ax p W>2_-yz on surface No. 2-M. In the same manner as that for <u Ay
¢>1-M, we get

<u Ay pw>2.M = Fxo <w>9_Mm (5.29)
where

Fx2 = <u Ax>2 M <p>2-M (5.30a)

= ug Ax0 <P>2-M. {5.30Db)

<p>2-M = (po AXp + p2 Axg)/(Ax0 + Ax2), (5.31)

<W>o M = a;ﬁq/z w + 5;411\32 wg + Y;'—I;/I/z Wy (for uy > 0), (5.32a)

= o;)le Wo + Bille W2 + Yijiye Wog  (for ug < O). (5.32b)
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<u Ay ¢>2-p = <u Ay p Ww>3_p on surface No. 2-P. In the same manner as that for

<uAx ¢>1.-p, we get
<u Ax pw>2-p = Fxe2 <w>2 p
where
Fx62 = <u Ax>2-p <p>2-p
= ug2 Ax62 <P>2-P.
<p>2-p = (p6 AX0 + pe2 Ax2)/(Ax0o + Ax2),

+P +,P +P
<W>2p = Olie Wi + PBilie Wo + Yii1 W2 (for ug > 0),

ai‘_ﬁ' 19 Wo + Bﬁ.l;/z wo + 7;31’/2 wog  (for ug < 0).
Finally, we obtain

(z - %) term = {[O,sz](a;ff/z wy + B;ﬂ’;z wg + Y;’.%z wz)

- [0-Fea)oiMla wo + By w2 + ¥l was)
+ {O’Fxszl(“}ﬂ’/z w1+ B0 Wo + T2 Wz)
- [o-- x62](a;’.}{/2 wo + Bz W2 + Vil WZZ)
- [O,Fxl](a;”_’li’;z Wy + Bi"_’li’}z wy + v;’_’llv;z wo)

+ [o,-Fxl](a;;ﬁ’}z wy + BrYjs wo + viYls wa)

- [OFeil[of e win + BEY w1+ ¥ihss Wo)

+ [o,_. x61](0‘i_-'1i/2 wy + Bi“fl’/z wg + Yi—iﬁ/z W2)}/2-

In the same manner as for the (z - x) term, we get the (z - y) term.

(5.33)

(5.34a)
(5.34b)

(5.35)

(5.36a)

(5.36b)

(5.37)

Finally, we get the finite difference form for the convection terms of the z-component

of momentum as follows:

sl _ M 3
Jle(VQ))dV = {[O,sz](a;fi’l/z w1 + Bi)e wo + i)e wz)
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- [0-Feo)(oil)s wo + B2 wa + 7il)s Weo)

+ [O’erg](éf;lf/z w1+ Biii/s Wo * /2 WZ)

- [0"Fx62](ai—-;-1;/2 wo + Biie W2 + Yiiy W22)
= [0Falof Yy wir + BiYe w1 + vy wo)

+ [o,-in](a;;ﬁ’}z w1+ BrYe Wo + Yilje Wa)

- [O,Fxsl](ait'lf/z Wi+ Btp Wi+ 1 WO)

+ [O,—Fxsl](a;_'llblz wy + B;_'fl’/z wo + Y;_'llj/z Wz)} /2
+ { [0.Fyafoiidls wa + Bitls wo + 1il)s wa)

- [O’“Fy4](“3f\f/2 wo + Bie wa + Vi wa)

+ [O,Fym](a}‘ﬁ/z ws + BLie wo + viije W4)

- [0-Fyesforh e wo + Biie wa + 75hj0 was)
- o, Fy3](“}—’1¥[/2 was + Bjlyp Ws + gy WO)
+[0-Fysf03)s wa + Byls wo + Vil wa)

- [O’Fyes](“}i’?/z wss + Bll/z Wa + Y{/2 WO)

+ [O,—Fyég](a;€/2 wg + B};li/z wo + Y}.’E/z W4)}/2
+ [O’Fi]s.s(06§+1/2 ws + B2 Wo + Yk+i/2 Ws)
- [0,-Fz]6_6(0ti+1/2 wo + Brs1/2 We + Tkil/2 Wse)

- [O’Fz]5_o(a§—1/2 Wss + Bk-/2 Ws + Yio1/2 Wo)

+ [O,—FZ]5_0(a§_1,2 W5 + PBk-172 Wo t+ Yk-1/2 Ws)- (5.38)
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5.2 General Form for Diffusion Terms
The integration of diffusion terms is the same as in the original COMMIX-1C, as

follows.

5.2.1 Field Variables in Main Control Volume

()| Aong)  Aoun

) dxdydz
Ax Ay Az

= Da(¢2 - 60) - D160 - ¢1) + Dal64 - ¢0) - D3¢0 - ¢3) + De(6s — ¢0) ~ D5(60 - ¢5)
= D1 ¢1 + D2 ¢2 + D3 ¢3 + D4 ¢4 + D5 ¢5 + D6 ¢6
— (D1 +D2 + D3 + D4 + Dy + Dg) ¢0 . ' (5.39)
Here, D (= effective diffusivity x flow area/distance between the centers of two contrc;l

volumes) is the diffusion strength across the surface of the control volume, and I'y is the
effective diffusivity for the variable ¢.

To determine the value of D at a surface, we assume that the diffusivity I' varies

continuously from one main control volume to the next and we use the average diffusion
strength, e.g.,

D2 = (Adi+1/2(To + T'2)/(Axg + Ax). . (5.40)

The values of diffusion strength for the main control volume are listed in Table 5.2.

5.2.2 Flow Variables in z-Momentum Control Volume

The integration of the diffusion terms over the z-momentum control volume (Fig. 5.3)
results in an expression similar to Eq. 5.39, i.e.,

3 2 3
Antes)  Awhed) AvnE)
J + +
Ax Ay
= Dy¢; + Dadg + Dgds + Dads + Dsds + Deds

- (le + —52 + —]53 + 54 + _D-5 + ﬁe)q)o. (5.41)

The only difference is that we now use the momentum control volume diffusion strength D
instead of the main control volume diffusion strength D, e.g.,
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Table 5.2. Diffusion strengths for
main control volume

D) = (Ax)i-172(To + T'1)/(Axo + Ax})
Dy = (Agi+1/2(To + M)/ (Axo + Ax2)
D3 = (Ay)j-1/2(To + I'3)/(Ayo + Ay3)
D4 = (Ay)j+1/2(To + T4)/(Ayo + Ay4)
Ds = (Agk-1/2(T'o + I's)/(Azg + Azs)
Dg = (Azdxk+1/2(To + I'e)/(Azo + Azg)

Ve
Uf

61 ({- 6 o)
. SRS SO .

;e

Fig. 5.3. Diffusion fluxes for z-momentum
control volume

= T

Do = (A + (o ). (5.42)

The values of the diffusion strengths D for the z-momentum control volume are listed in
Table 5.3.

5.3 General Finite-Volume Equation with Unsteady Term

5.3.1 Field Variables in Main Control Volume

Integrating the general form of the conservation equation, Eq. 3.1, over the phase
volume dt dV (dV = y, dx dy dz) in a main control volume, based on the concept of
implicitness parameter o, and dividing by dt gives
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Table 5.3. Diffusion strengths for z-momentum control volume

D = %[(Ax)i-l/zk + (Ax)i—llz,kﬂj:(A(:Ic‘g: IA‘1131) * (A(iz‘ : IA13(16)1)]
Dy = i-:(Ax)i w72k t (Ax)i+1/2,k+l_:(A(}1;g : 2{)2) + (A()I: : Ziz)z)-
D = i-:(AY) okt (Ay)j_1/2,k+l::(A(§g : Z:;’)(;) * (A(;Z : Z;ZL):
D, = -};l(é;:)m ok T (AY)J-+1/2,k+1_L(A(§2 : 11;;)4) * (A(;z : 1/;346)4)

By = %[(Az)k + (Az)k-l](XFz—)o

Az

Bs = 3f(ak + (a2,

n+l _ 4n :
[-QT—EQ]VO + «(Eq. 5.7)*" + B(Eq. 5.7)"

= o(Eq. 5.39)** + B(Eq. 5.39)" + S, Vp + S, (a¢g+l + B¢3) Vo, . (5.43)

where S¢ and Sp are the source term coefficients associated with linearization of the source

term. In Eq. 5.43, B = 1 - «, and superscript n denotes the time step number. Hereafter,
we omit superscript n+l.

By substituting Egs. 5.7 and 5.39 into Eq. 5.43, and rearranging we obtain

6
aobo = azam + bg + co. (5.44)
£=1
Here,
ag = YQ + aapg,
At

aoo = Bii2[~f1.0] + Bfi1/2[f2.0] + Bj1/2[-13,0] + Bli1/2[fs.0]

+ Bi_1/2[—f5,01 + B§+I/2[f6’0] + Dy + D2 + D3 + Dy + Dg + DG - Spq)VO,
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a; = Bii/9[f1.0] + D; ag= Piaye[-f2.0] + D2

ag= Bli/2[f3.0] + D3 | ag = Bjse[-fa.0] + Dy
_ pt o

as = Bk—1/2[f5’0] + Dg ag = 13k+1/2[-f6’0] + Dg

bo = bjo + bgoo + bzg

6
b = Bza? o7

£=1

boo= ~ Baj, ¢6

bo= BBYo L 5 v,

co = acgo + Bcho-
oo =[f1,0](°!f-1/2 011 + Yit1/2 ¢o) - [*flyo](ai_-uz o1 + Yici/2 ¢2)
- [fa. 0(0‘ fr/2 01+ Vg2 ¢2) - f2,0](0‘i_+1/2 %0 + Yir/2 ¢22)
+ [f3.0](0f1/2 ¢33 + T2 %0) - [fa.0](051/2 03 + Y1z 04)
- [fa. 0](“ L/2 03 + Thase 0a) + [a, ]( %Ge/2 b0 + Yjrs2 ¢44)
+ [fs, 0(0‘ k172 955 + Yi-1/2 ¢o) [-fs’o](ai-l/z 05 + Vk-1/2 ¢6)
- [f6.0 (ak+1/2 05 + Yk+i/2 ¢6) + [ ](0‘11+1/2 %0 + Yk+1/2 ¢66)’

Equation 5.44 is solved by using any one of the matrix solvers in the COMMIX-IC - direct
solver YSMP, and iterative solvers SOR or PCG.

In deriving Eq. 5.44, only the six quantities w; (£ = 1, 2, .., 6) that are treated implicitly
in the original COMMIX-1C with first-order upwind scheme, are treated implicitly; the
remaining quantities are moved to the source term cg. Namely, only the nearest neighbor
nodes (¢ = 1, 2, .., 6) are treated implicitly, thus reducing the five-point formula to a three-
point implicit one. This makes the conventional algorithm treatable with a solution
package that is already available for three-point formulas. However, as a result, even if we
use « (implicitness parameter) = 1, this treatment is not fully implicit. If we want the fully
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implicit method, we can use an iterative procedure to solve Eq. 5.44 by using it 2 2.* This
situation also relates to the Courant condition. It is known that the fully-implicit method is
unconditionally stable with respect to time increments. However, the solution procedure
for Eq. 5.44 suffers from conditionally stable conditions because of the partly explicit
treatment. In actual calculations, this may not be a severe problem, because a larger time
increment than the Courant condition is allowable for a = 1. But we should pay attention to
this. If we perform the numerical stability anadlysis, such as the von Newmann analysis, we
could obtain the exact criteria regarding time increments for the above current solution
procedure. '

5.3.2 Flow Variables in z-Momentum Control Volume

Similar to the derivation of Eq. 5.43, the z-momentum equation in the z-momentum
control volume is

¢°"¢3\7 + ofEq. 5.38 Eq. 5.38)"
— |Vo o(Eq. 5.38) + B(Eq. 5.38)

= o(Eq. 5.41) + B(Eq. 5.41)> + S, Vo + S, (a¢o . 54,3)70,

(5.45)
with ¢ = pw.
By substituting Egs. 5.38 and 5.41 into Eq. 5.45, and rearranging we obtain
6
agwo = aZalwt + bo + Cp — G.dw(PS - Po) - Bdw(Pél - P(I)l) - (5.486)
£=1
Here,
PoVo
= —— 4 ,
ao AL ®app

ago = {[3;_'1;4/2[-11‘}(1,0] + B#f/z[sz,O] + B};I;'I/Z[—Fyg,,o] + 5};%2[Fy4,o]
+ B ol Fre10] + BiE olFuea.0] + B1%of-Fyea.0] + B o[Fyea 0] /2
+ B—k—l/Z[-Fzs’O] + B§+1/2[FZG’O]+ ﬁl + -52 + 1_53 + §4 + §5 + 56 - Spq)vO”

1 —
a; = E{B;——’%z[f“xl-o] + 875 o[Fxe1.0} + Dy,

- * Iteration number for the momentum calculation and energy calculation in the same time step.
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. ) _
ag = '2'{[31;114/2[-1‘}2’0] + Bi4fl>/2[_Fx62’O]} + Do,

a3= 5{8i¥falFya0] + B alFyea0]} + D,

a5l 0] + B8l mrenol + i

as Bf;-l/z[l*_"zs»o] + Ds,

ag = Bi+1/2[-F26s0] + Dg’

bo = bio + bao + b3o,

6
bio =B af w,
£=1

— n n
bgo = - ﬁaoo wo,

o Wi V, -
bgp = %‘Q + S¢p Vo,

co = dcgo + Bchos

Cop = ';‘{[Fxl’o](a;-'ll\}z Wi+ YiYe Wo) - [_Fxl’O](a;—'%z w1+ 1 W2)
+ [Fee1.0(05h /2 w11 + Y152 Wo) = [FFxer.00ih/ w1 + vid/z wa)
- [sz’o](am@z w1+ Y W2) + [—sz’Ol(ai”f}‘/z Wo + T2 W22)
- [erz’o](o‘;ﬁ/z w1+ Ve W2) + [_FXGZ'O](ai_-;—I;/2 Wo + Yiii/2 W22)
+[Fy3,0](a‘.*%2 was + y}f_'lfl/z Wo) - [Fyg,o](a}_'lfl/z w3 + Y7072 w4)

+ [Fy63,0](a}“_’11)/2 W33 + 'Y;_'I;/z Wo) - [Fy63,O](a3;};/2 W3 + ‘Y;_’I;/2 W4)

- [Fy4,O](0L}}_1¥I/2 w3 + y}ﬂ’[/z W4) + [—Fy4,0](a};1\1/[/2 wqg + yj".ﬁ'[/z W44)
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- [Fy64-0](0!j+£/2 w3 + T2 W4) +[- y64-0](°‘}£/2 Wo + Tji/2 W44)}

+ [Fzs-ol(qﬁ-l/z W55 + Yi-1/2 Wo) - [—P—"zs-ol(ai-llz W5 + Yk-1/2 We)

- [—er,o](ai;u/z W5 + Vke/2 We)'+ [—er,o](aiu/z Wo + Yk+1/2 Wee),

2Vo

av = 270
AZg + Azg:

6 New Pressure Equation

The pressure appearing in momentum Eq. 5.46 is unknown and must be determined
from the mass-conservation equation. This will be the pressure equation.

We discretize the mass continuity equation with high-order difference schemes.
Hence, the pressure equation is different from that in the original COMMIX-1C. We derive
the new pressure equation as follows. '

By integrating Eq. 3.1, with substitution of ¢ = p, diffusion coefficient I'y = 0, and

source S = 0, over a main control volume and At based on the concept of implicitness
parameter o, we obtain the finite volume equation for mass continuity as follows:

o _
[po Atpo]Vo + afAgug<p>y — Ajui<p>; + Agva<p>g ~ A3va<p>3

+ AgWg<p>g — AgwWs<p>5]+ BlAgug<p>y — Ajup<p> + AgVa<p>y
- Agvg<p>3 + Agwg<p>g - A5W5<p>5]n = 0. (6.1)

Here, for a quasicontinuum formulation, Vg = wAxAyAz is the fluid volume of the main
control volume, A; is the unobstructed flow area of surface i, and <p>; the high-order
upwind density of surface No. ¢ of the control volume under consideration. The subscripts,
1, ... 6 refer to the surface numbers of the main control volume, as shown in Fig. 5.1.

To convert the indirect specification of pressure in continuity Eq. 6.1 to an explicit
form, we rewrite momentum Eq. 5.46 by using the following relations:

- od™(Ps - Po) - Bd™(P§ - P¥)

= - adV(Pg - Py) - (1 - a)dw(Pél - P(I)l)

il

- ad®|(ps - PE) - (R - B§)| - a¥(e§ - BB)
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= - ad™(sPs - 8B;) - d¥(p§ - P§), . (6.2)

where 6P; = Pg - P§ and 8Py = Py - P§. By substituting Eq. 6.2 into Eq. 5.46, we obtain

6 6

Wo = -a—l- (4 Zalwl + Coo + BZ&?W? - a&)w{)‘ + C80
0 =1 £=1
pnvo — CL
#7070 Wi 4 5,V - dW(Pg - Pg) - ad™(sPg - 5P) A (6.32)
= Wo - od™(3Ps - 8Pp), (6.3b)
where
qv = 2Vo . : (6.4)
ao(AZO + AZs)
and
1 6
Wo = = o Zatw, + cgo | + B Zatw? - adow§ + <Bo
0 £=1 £=1
PoVo . n To_AW{pn _ n. ‘ .
+ At wo + SC¢V0 d (PG Po )J (65)

The reason that 8P (instead of P) is used in Eq. 6.3 is to speed up the convergence. This is
particularly helpful when the change in pressure is small compared to the absolute pressure
of the system and has been implemented early in the original COMMIX-1C.

By comparing the index conventions in the mass control volume, Fig. 5.1, and the z-

momentum control volume, Fig. 5.2, it is seen that wq in Fig. 5.2 is wg in Fig. 5.1. Hence,

with similar definitions of G, ¥, W, d, and V, the velocities appearing in Eq. 6.1 can be
expressed as

u = fll - di‘(ﬁPo - 8P1),
Ug = flz b dlzl(apz - SP()),

V3 = \73 - d§(8P0 - 6P3),

Vg4 = {’4 - dZ(8P4 - EPO).




and

w5

We

where

and

characteristic volumes are defined as

it

il

Wg - dg’(sPo - 8P5),

Wwe — dF (8P - 8Pp),

2TH

ag(Axg +

2T

a‘d(Axo +

2Ty

ad(Ayo +

2Vy

ad(Ayo + Ays)

vy

aB’(AZO + AZ5)’,

oVF

af(Azg + Azg)

(6.6)

(6.7)



45

VY = (Azg + Az?)/[ﬂ+ ﬂ)

Vo Vg
and
V¥ = (azo + AZS)/(AZ~O+ A—zﬁ] | (6.8)
Vo Ve

The high-order upwind density <p>, is calculated in a similar way to Eq. 5.4, i.e., as
follows:

ovi],
|V1|l ](af—l/zpu + B2 + Y?—1/2Po)

sy

<p> =

0,-vily _ - _
[ Ivlll](ai-1/2pl + PBio1/2P0 + 'Yi—1/292)’

o,v .
<p>y = LE'T’—](GLI/zPl + Bli1/2p0 + Yf+1/292)

O,~v _ B B
- |v2[2].(ai+1/2P0 + Brisope + Yi+1/2pzz),

o,v '
<p>3 = '['Fs—l:sl(a}—l/zpss + Bl1/2p3 + Y}'-l/zpo)

0,~v - _ ._
- [—T‘;gls—](“j—l/zps + Bj1/2p0 + 'Yj—l/294)’

o,v
<p>4 = Lﬁ—](a}h/zps + Ble1s2p0 + Y}L+1/2P4)

0,~-v - _ -
- Lm‘l—](ajﬂ/zpo + Bjr1/2Pa + 7j+l/2p44)’

o,w
<p> = LIKT](Gﬁ—l/zpss + Bl-1/205 + Yh-1/200)

[0.-ws
|ws|

](Oﬁf{-uzps + BE-1/2P0 + YE-1/206)-

and

<p>g = [0.we]

(efs1/205 + Bler/2p0 + Yi+1/206)

[wel
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O-wg|/ _ - -
Lﬁ?fl(akﬂ/zpo + Bie1/206 + Yk+1/2P66)- ' (6.9)

Substitution of Eq. 6.6 into Eq. 6.1 yields -

6
«afdP - @) ajdP, - b = O. | (6.10)
£=1
Here,
P _ u
ay = A1<p>1d1,

a5 = Ag<p>gdy,
ag = Ag<p>3dj,
ag = Ag<p>4dy,
a5 = Ag<p>5d§,

ag = Ag<p>gdy,

aj = af + af + a + af + af + al,
and
p Po — PO
bg = - —O—-At—-O—VO + (X.[A1<p>1f11 — Ag<p>gTlig + Ag<p>3 V3 ~ Agp<p>414

-+ A5 <p>5 W5 — A6<p>6 Wsl + B[A1<p>1u1 — Ag<p>ug + Ag<p>3 Vg
- Ag<p>4vy + Ag<p>5 W5 — Ag<p>g wgl .

Equation 6.10 is the required pressure equation. It is solved by using any one of the matrix
solvers — a direct solver YSMP and iterative solvers SOR and PCG.

7 Damping Technique for Numerical Oscillations — FRAM

Like other high-order numerical schemes, the QUICK and LECUSSO schemes may
suffer from spurious numerical oscillations of the dependent variables at regions of large
gradients. Because of the oscillations, the solution of the variables may contain values
outside of the range of physically meaningful values. Therefore, the unphysical oscillations
must be eliminated so that accurate and dependable solutions may be obtained. In this
- section, a new FRAM scheme is developed for use with the QUICK or LECUSSO schemes.
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The FRAM scheme was originally developed by Chapmanl® and has been implemented in
other codes.31

The FRAM scheme is based on the solution of the Lagrangian transport equation. This
equation can be written in the following form:

p28_
Dt % (7.1)

which is the nonconservative form (i.e., transport equation of ¢ - continuity equation) of Eq.
3.1. In Eq. 7.1, D¢/Dt contains the unsteady and convective terms, and sp contains the
diffusive and source terms in Eq. 3.1. The solution of Eq. 7.1 is denoted as ¢l in contrast to
the QUICK or LECUSSO solution ¢ of the corresponding Eulerian equation. Because
Lagrangian Eq. 7.1 does not contain a convective term, its solution is free from spurious
numerical oscillations. Therefore, ¢ can be used to construct a bound of physical values for
¢. Let us denote ¢y as the value of ¢ at Cell O, and ¢Ir;1in and cbIn‘mn as the minimum and
maximum values of L at Cell O and its surrounding cells (Cells 1, 2, ... 6), then an index 3
for Cell O is defined as »

01 if Gy, < 00 < OF
89 = max (7.2)
1; otherwise. .

From Eq. 7.2, when §; = 1, the solution ¢gis not physically meaningful. An appropriate
modification of the convective fluxes for Cell O then becomes necessary. For the surface
between Cell O and 1, for instance, we define

81 = max(3¢. &), : . (7.3)
Then, the flux between Cell 0 and 1 is calculated from

Fo.1 = (1'50-1)1“(?_1 + 8.1 Fg'y (7.4)

where Fg_l is the flux evaluated from the QUICK or LECUSSO scheme and F(‘)‘_1 is the flux
evaluated from the first-order upwind scheme. We use the first-order upwind scheme
because it does not produce spurious oscillations. Based on the newly calculated convective
fluxes on all control surfaces of Cell O, the coefficients of the original Eulerian transport
equation are re-evaluated and the final solution is obtained.

The procedure described above is based on the concept of the original FRAM scheme.
It was found that, in some cases, it is difficult to obtain converged solutions.12 The reason
is because § jumps between O and 1 when ¢g = q’;in or ¢g = ¢; . @S seen in Eq. 7.2. In the

new FRAM scheme, Eq. 7.2 is modified and the index § is smoothed as
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’1 . %0~ 9k :
8 Ohnax - $5un)

5 = |0 if (1205 * 80nax < 90 < 80 + (1-2)05a (7.5)

L
¢o—a¢§.:,—(1—La)¢max; fagk, + (1-a)0h, < 00 < Ohy
a(q)max - q>11'-\!11)

11 otherwise

ol < 00 < (1-2)0khy + adl,,

where a is an arbitrary constant in the range of 0.5 and 0. When a = 0, Eq. 7.5 degenerates
into Eq. 7.2. In the implementation, the default value for a is 0.15. '

8 High—Order Boundary Conditions for Velocities

8.1 Classification of Cell Combinations

Before we discuss the mathematical treatment for boundary conditions with high—order
schemes, we classify all possible cell combinations relating a central cell (index mg) with its
neighbor cells, either physical or dummy (boundary) cells. Here, we consider the cell
combinations in the x-direction. It is sufficient to consider the cell combinations among
cells m;;, m;, mp, mg, and mgg, for the second-order schemes. The total number of
independent cell combinations is up to 9, and each combination is shown below. Negative
or zero cell numbers stand for boundary cells, and positive cell numbers for fluid cells.

Casel mj1>0, m;>0, mo>0, moo>0

miji] mj mo ma msoo

Case 2 m;1>0, m;>0, ma>0, moa<0

mj)] mj mgo mg m22

Case3 mi1>0, m;>0, mo<0

mii mj mo ma

Case4 mi3<0, m;>0, me>0, mye>0

mi1 my mg ma ma2

Case 5 mj1<0, m;>0, mao>0, moa<0

mji mj mo ma ma2
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Case6 mj1<0, mi>0, mg<0O

mi my mo m2

Case 7 m1<0, mg>0, mge>0

mj mo msg m23
Case 8 mj;<0, mo>0, mos<0

mj mo mg ma2
Case 9 mj<0, mo<O

mi jesly] je13)

8.2 Convection Terms Near a Moving Boundary
Here, we consider cases mj1<0, m;>0 of the above nine cases.

We consider the (z - x) term in the z-component of momentum as shown in Fig. 8.1.
We evaluate <w>;, which is the velocity of z—component w on surface 1 (1-P and 1-M) at
x=x*. When the transporting velocities u; and ug; are negative, the boundary has nothing to
do with the calculation of <w>;. When the transporting velocities uj or ue; are positive, we
evaluate <w>; by an interpolation technique with wy (the velocity of moving boundary in the
z—direction), w;, and wg. We have the following interpolation formula with second-order
accuracy:

oo - x)x-xp) o (k- xo)(x - xp) o
e (xo - x1)(x0 - fziz)f( )+ (x1 = xo)(x1 - Xz)f( 1)

(x - xo)(x - X3) £

" Tx2 - xo)xz - x1)

(x2), (8.1)

where the locations of xg, x1, and x2 are shown in Fig. 8.1. From the above interpolation
formula, we obtain, for u; > 0,
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gm-U 61

BOUNDARY

i

=

V |
% /@ Wo
L ) > [ J
myq my 4—1—u1 Mo mpy
Ko X4 X* Xo
z
AXq AXg Axo
X
Fig. 8.1. Boundary cells for (m;; < 0, m; > 0)
ey < (Tt ) et - xo)(xt - Xg)
- (%0 - x1)(x0 ~ X%2) (x1 - Xo)(x1 ~ X2)
* _ * __
+ (x Xo)(x Xl)W2_
(x2 - xo)(x2 - x1)
We have
x* -x1 = Ax1/2,
x* - xg = -Ax0/2,
X* - Xg = AX1,
Xp - X) = -Ax1/2,
x0 - X2 = —(Ax] + Ax0/2),
and :
X1 - X2 = ~(Ax1 + Ax(Q)/2.
Then we get
-M Axp + 28x; P Axg + Ax (Axo + 24x;)(Axp + Ax))

~ From Eq. 8.3 we obtain

(8.2)

wo. (8.3)
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oM Axg .
1-1/2 Axg + 2A%;

B+.M 2Axg

and
iz = (Axq + 2:&;&: ' (8.4)
0 1fAxo + Axp)
In the same manner as the above case, for ug; > 0, we obtain
0‘;:“’11)/2 = “f—’%z’
B;r—’lla/z = f—%z
and
T2 = Tile: (8.5)

For a solid boundary at west, wy, is zero in Eq. 8.3.

8.3 Diffusion Terms {(Shear Forces) on a Moving Boundary
We consider the x-component shear forces when the boundary moves with a velocity up

in the x-direction (see Fig. 8.2). The diffusion term (DF)x in the x-momentum equation
can be expressed in the vector form as

(DF)x = V(I'Vu). (8.6)

Integration of Eq. 8.6 over the x-momentum control volume as shown in Fig. 8.2 yields

6
J(DF)XdV = E(FZVI‘IZ . ﬁ[)A[
£=1
Ju ou ou
= To—1i Ag — IT— A Tha— A
2aX2 2 1ax‘1 1+ 43},4 4
Ju Ju Ju
— Tq—| Aq + Tg—] Ag — Iys— Ag, .7
:say3 3 682’6 6 58215 5 (8.7)

. where suffix ¢ indicates the surface number and A; denotes the surface area of surface ?.
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Fig. 8.2. Shear flow boundary

The shear force associated with the moving boundary uy, is related to the fifth term in
Eq. 8.7. To be consistent with the second-order schemes used for internal cells, we must
evaluate du/dz| e with second—-order accuracy.

Expansion of u(zgp + Az} in a Taylor series with respect to z = zg yields

Ju
Az) = ¢«
u(zg + Az) = u(zg) + =

(82)% + o(az®). (8.8)
Z0 : .

From Eq. 8.8, we get, at zg = 0,

u(—AZ()/z) = Ug = Up + E——

u (_ﬂ) . 1%y
826

(_éz_g)z + 0ofazg) (8.9)

and

Ju Az
u(_AZO - Azg /2) = U = Up + 5;;6(_AZO - ——2-5—)

2 2 |
+ .;.a_‘# (—Azo - %} + 0(az + Azg)>. (8.10)
0z% |g

From Egs. 8.9 and 8.10, we obtain du/dz|g, with second-order accuracy,

d
gu- = Opuy + Bbuo + %Us, (8.11)
Zle



53

where
o = 2(3AZO + AZs)
b = AZ()(ZAZO + AZs),
Bb - 2(2AZO + AZ5)
- AZ()(ZAZO -+ AZ5)’
and
2Az
T = 0

(24zp + Azs)(Azg + Azs)

9 Solution Procedures

COMMIX~1C performs thermal-hydraulic calculations by marching in time with an
implicitness parameter o with respect to time discretizaton. :
For transient problems, the values of the dependent variables at a given time step, say
n, are known and the values of the dependent variables at time step n+1 are calculated. By -
repeating the procedure, we determine thermohydraulic conditions for the desired time
span. For this transient calculation, o = 0.5 (Crank-Niclolson scheme) is preferable because
the numerical accuracy is second-order with respect to time increment At. However, the
Crank-Nicolson scheme shows unconditionally stable solutions, providing that it satisfies
Lax-Richtmyer's stability criterion. In general, it is preferable to use a time increment
comparable with or less than the Courant condition for increasing the numerical accuracy
and avoiding overshoots of the solutions.

For steady-state calculations, the same procedure is followed. We start with an initial
guess and continue the marching-in-time process until the differential values of all the
dependent variables are lower than some specified criteria. Because the time increment
has nothing to do with the final steady solution, it is preferable to use o = 1.0 {fully implicit
scheme). The size of the timestep for the implicit steady-state calculation can be many
times as large as the Courant time-step criterion.

In COMMIX-1C, two options have been provided for the time-step size:
e User-specified time-step size, and
¢ Automatic time-step size.

In the automatic time-step option, the time-step size is evaluated on the basis of the
Courant condition

At = CjAte, (9.1)

'Where C; is a user-prescribed coefficient and At. is the time-step size evaluated from the
Courant condition. The Courant time-step size is defined as the minimum time required
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for fluid to be convected through a cell. In COMMIX, each computational cell is examined
with respect to all three component directions to calculate the Courant time-step size.

COMMIX-1C contains two distinct solution sequences: the fully-implicit and the semi—
implicit. Both are combined into one formulation through an implicit parameter a. The
solution procedure becomes semi-implicit when o = 0 and fully implicit when o = 1.
Therefore, in principle, we can say that the formulation covers a full range from semi-
implicit (¢ = 0) to fully implicit (e = 1).

The solution procedure is outlined as follows:
(a) Substitute the updated velocities given by the finite-volume equations for
momentum into the finite-volume equations for mass continuity to obtain the

finite-volume pressure Eq. 6.10.

(b) Solve the resultant pressure Eq. 6.10 to determine the flow field, Eq. 6.6
{pressure and velocities).

(c) Solve the turbulence transport equations for kinetic energy and its
dissipation, and determine turbulence viscosity and turbulence thermal
diffusivity.

(d) Solve the finite-volume equation for energy, Eq. 5.44, and determine the
thermal field {enthalpy, temperature) and material properties.

(e) Repeat steps -(é) - (d) until all the convengence criteria are met.
The overall flow chart of the program is shown in Fig. 9.1.

10 Test Calculations

In this chapter, we perform some numerical experiments and compare the predictions
with analytical solutions or experimental results. These numerical experiments were
performed in a frame of the currently improved COMMIX-1C, except for the Burgers
equation. The numerical experiment with the Burgers equation was carried out by makmg
use of a small program independent of the COMMIX-1C.

10.1 One-Dimensional Nonlinear Burgers Equation

10.1.1 Computational Conditions

This experiment is concerned with a problem of whether wave front propagation is
obeying the one-dimensional nonlinear Burgers equation:

av av 3°
Tt Ve = vax_;’, (10.1)
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with the initial condition

VO (X < 0).

0 (x> 0. (10.2)

v(x,0)= {

Namely, a wave front is initially (t = 0) located at the origin (x = 0); this wave front is then
transported, obeying Eq. 10.1. The analytical solution is

_ vV, Vot 1 - erf(-x/24vt) -1 ~ .
vt = Vo{l * exP['z_?z(x_ g )] 1 - erf|(x - Vot)/zﬁ]} ’ : (10.3)

where erf represents an error function. Because this solution can describe a steep velocity
gradient field, it is preferable to use Eq. 10.3 to assess whether numerical solutions suffer
from unphysical oscillations. All variables are made nondimensional by using constant At,
mesh increment Ax, and initial velocity Vo. The Courant number, C = VgAt/Ax, is 0.1. The
mesh Reynolds number is defined as Ry = VgAx/v. All calculations are compared with the

analytical solution at time t = 500At. The Crank-Nicolson scheme was used for time
discretization. .

Discretization of Eq. 10.1, based on the Crank-Nicolson scheme, yields

Vn+1 n

——-Z;—" + ofCVIP*! + BCV)® = o(DF)*H! + BDF)™. (10.4)

Here,
o = implicitness parameter (= 0.5},

(CV) = convection term

1 + + +
= [Vi+l/2(ai+1/2 Vi1 + Biiizz Vi + Yivye V1+1)

2A%,
- Vi—l/z(af-l/z vieg + Biye Vil + Yiiye Vi)], (10.5)
(DF) = diffusion term
2 2 2
= b1 — o + Oyt (10.6)
Axi Ak + Axi ) T Axaxg L Ax(AX + AXg L)

The factor 2 in the denominator of Eq. 10.5 is the result of the transformation of the

convection term in Eq. 10.1 from the nonconservative form to the conservative form,
namely,
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19

ov
N RET

(vo). ' (10.7)

10.1.2 Comparison with Analytical Solution

Here we compare the analytical solution with solutions by the current LECUSSO
scheme and the QUICK scheme, which is representative of the conventional high-order
schemes.

At a low mesh Reynolds number (Ry < 2), both solutions by the current LECUSSO
scheme and the QUICK scheme were smooth, without any numerical wiggles, and almost
comparable to one another, as shown in Fig. 10.1. However, at higher mesh Reynolds
number (Ry > 2}, the difference between the two solutions became larger. ‘

Figure 10.2 shows of the analytical solution and the calculations by the currently
extended LECUSSO scheme and the QUCK scheme at Ry, = 10. In this figure, the QUICK
scheme suffers from numerical wiggles. The LECUSSO scheme never suffers from
unphysical oscillations, even in this steep gradient field, and it gives a quite good solution.

Figure 10.3 shows results obtained with the conservative and nonconservative forms of
the extended LECUSSO scheme at Ry = 10. In this nonlinear Burgers equation, the
conservative form shows a solution quite better than the nonconservative form.

10.1.3 Comparisons among solutions with o = 1.0, 0.5, and 0.0

Figure 10.4 shows the results obtained with o = 1.0 (fully implicit), « = 0.5 {Crank-
Nicolson scheme), and o = 0.0 (fully explicit) for the linear Burgers equation with the
constant transporting velocity V, (initial velocity). In this calculation, the Courant number
C = 0.5 was used to clearly see the difference between the above three calculational results.
If we use C = 0.1, we can hardly confirm the difference because truncation errors with
respect to the time increment are negligibly small.

From Fig. 10.4, we can see that Crank-Nicholson scheme (o = 0.5) gives the best
solution.

10.2 Symmetry Check Calculations

To confirm the correctness of programming, it is important and necessary to perform
symmetry check calculations. Below, we show some results from symmetry check
calculations, in which the LECUSSO scheme was used.
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Fig. 10.3. Prediction of wave propagation calculated in
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forms of LECUSSO scheme at Ry, = 10 and
determined (x) from exact solution

10.2.1 Forced Channel Flow
Computation conditions:

Water fluid,

Uniform inlet velocity = 0.01 (m/s),

Uniform pressure at exit,

Channel length = 8 x 0.01 (m),

Channel cross section = 6 x 0.01 (m) x 0.01 (m),
Total number of computational cells = 6 x 8 = 48,

Table 10.1 shows the input data in the x-z coordinate system. Table 10.2 shows the
output for Table 10.1. Table 10.3 shows the input data in the x-y coordinate system. Table
10.4 shows the output for Table 10.3. Table 10.5 shows the input data in the z—x
coordinate system. Table 10.6 shows the output for Table 10.5. Tables 10.2, 10.4, and 10.6
show the perfect symmetry property. The velocities at the cell nearest to the solid wall are
maximum. This may come from an imbalance between the channel geometry and the
imposed boundary conditions. We calculated another case in which the ratio of channel
width to channel length was 15, and obtained a smooth distribution of velocity in both the
channel width and channel length directions.
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Table 10.1. Input data for forced flow in a square pipe
(x-z coordinate)

—— i — A > T . — — ——————————— T — — —— " " S S} b Yt S T Y —— T ——— — T T —— - A T 45 e — e ——— — —

SAMPLE INPUT DATA FOR FORCED FLOW IN A SQUARE PIPE

Uniform Outlet Pressure Boundary Condition
. zwangx.data
&geom
ifres=1,
nll=124, nml=48, nsurf=6,
ify=0,
imax=8, jmax=1, kmax=6,
isolvr=1, nnzero=1065, nspace=5570,
xnorml= 1.0,-1.0, 0.0, 0.0, 0.0, 0.0,
ynorml= 0.0, 0.0, 1.0,-1.0, 0.0, 0.0,
znorml= 0.0, 0.0, 0.0, 0.0, 1.0,-1.0,
dx=8*0.01,
dy=0.01,
dz=6*0.01,
&end
reg -1.
reg -1.
reg -1.
reqg -1,
reg -1.
reg -1.
&data
alpha=1.0, eps3=l.e-6, omegav=1.0,
iskew=0, ifener=0, ifmom=1,
idtime=0, dt=0.5,
ntmax=200, it=1,
kpres (2)=1, pres(2)=1.0e05,
kflow= 1, -5, -3, -3, 0, 0,
ktemp= 1, 400, 1, i, 1, 1,
veloc=1l.e-2, 0.0, 0.0, 0.0, 0.0, 0.0,
temp= 20.0, 20.0, 20.0, 20.0, 20.0, 20.0,
tempO= 20.0, presO=1.0e5,
matype=21, mattab=21, tablot=10.0, tabhit=200.0,
gravx=-9.8,
ntprnt=-9999,
nthpr= 12001, 32001, 17201,

inlet +x
exit -X
front +y
back -y
bottom +z
upper -z

RN
0 ™ W0 ®H
R R e
b
P W S
N AN
AU WN B

&end
ul 0.01 1 8 1 1 1 6
wl 0.00 1 8 1 1 1 6
tl 20.000 1l 8 1 1 1 6
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Table 10.3. Input data for force flow in a square pipe
{x-y coordinate)

SAMPLE INPUT DATA FOR FORCED FLOW IN A SQUARE PIPE

Uniform Outlet Pressure Boundary Condition
zwangy.data

&geom

ifres=1,

nll=124, nml=48, nsurf=6,

ifz=0,

imax=6, Jjmax=8, kmax=1,

isolvr=1, nnzero=1065, nspace=5570,

xnorml= 1.0,-1.0, 0.0, 0.0, 0.0, 0.0,

ynorml= 0.0, 0.0, 1.0,-1.0, 0.0, 0.0,

znorml= 0.0, 0.0, 0.0, 0.0, 1.0,-1.0,

dx=6*0.01,

dy=8*0.01,

dz=0.01,

&end
reg -1.
reg -1.
reg -1.
reg -1.
reg -1.
reg -1.
&data

alpha=1.0, eps3=l.e-6, omegav=1.0,

iskew=0, ifener=0, ifmom=1,

idtime=0, dt=0.5,

ntmax=200, it=1,

kpres(4)=1, pres{4)=1.0e05,

kflow= 0, 0, 1, -5, -3, -3,

ktemp= 1, 1, 1, 400, 1, 1,

veloc= 0.0, 0.0,1.e-2, 0.0, 0.0, 0.0,

temp= 20.0, 20.0, 20.0, 20.0, 20.0, 20.0,

tempO0= 20.0, pres0=1.0e5,

matype=21, mattab=21, tablot=10.0, tabhit=200.0,

gravy=-9.8,

ntprnt=-9999,

nthpr= 13001, 23001, 17301,

left +x
right -x
inlet +y
exit -y
front +z
back -z

N a2 e
Ao
oo R
00 0 0O K o
T
e
AU WN

&end
ul 0.0000 1 & 1 8 1 1
vl 1.0e-2 1 & 1 8 1 1
tl 20.000 1 6 1 8 1 1
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Table 10.5. Input data for forced flow in a square pipe
(z-x coordinate)

SAMPLE INPUT DATA FOR FORCED FLOW IN A SQUARE PIPE

Uniform QOutlet Pressure Boundary Condition
zwangz .data

&geom
ifres=1,
nll=124, nml=48, nsurf=6,
ify=0,
imax=6, jmax=1, kmax=8,
isolvr=1l, nnzero=1065, nspace=5570,
xnorml= 1.0,-1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
ynorml= 0.0, 0.0, 1.0,-1.0, 0.0, 0.0, 0.0,
znorml= 0.0, 0.0, 0.0, 0.0, 1.0,-1.0,-1.0,
dx=6*0.01,
dy=0.01,
dz=8*0.01,
&end

reg -1.

reg -1.

reg -1.

reg -1.

reg -1.

reg -1.
&data
alpha=1.0, eps3=l.e-6, omegav=1.0,
iskew=0, ifener=0, ifmom=1,
idtime=0, dt=0.5,
ntmax=200, it=1,
kpres(6)=1, pres(6)=1.0e05,
kflow= 0, 0, -3, -3, 1, -5, -5,
ktemp= 1, 1, 1, 1, 1, 400, 400,
veloe= 0.0, 0.0, 0.0, 0.0,1.e-2, 0.0, 0.0,
temp= 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0,
templ= 20.0, presO0=1.0e5,
matype=21, mattab=21, tablot=10.0, tabhit=200.0,
gravz=-9.8,
ntprnt=-9999,
nthpr= 120061, 32001, 17201,

left +x
right -x
front +y
back -y
inlet +z
exit -z

S e
o e e e e =]
O e e
Y e
e e
0 k= O ® 00 ®
Oy U W N

send :
ul 0.0000 1 6 1 1 1 8
wl 1.0e-2 1 6 1 1 1 8
tl 20.000 1 ) 1 1 1 8
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10.2.2 Scalar Transport in Two Impinging Streams with Same Velocity and
Different Temperatures

The streams enter a square domain from two adjacent edges and impinge along the
diagonal with velocity = ¥0.02 (m/s) (two velocity components equal to 0.1 m/s). The
temperatures of the inlet flows are 50 and 150°C. In this calculation, only the temperature
analysis is performed in the prescribed flow field, where an artifically large value (1000) for
the thermal conductivity is used, to confirm the symmetry property over the whole
computational domain. If we use usual thermal conductivity, the temperature mixing is
limited to the area near to the diagonal line. In this problem, the temperature of diagonal
cells should be (50 + 150)/2 = 100°C. We confirm this.

Table 10.7 shows the input for the above problem. Table 10.8 shows the cutput for
Table 10.7. Table 10.9 shows the temperature map. Tables 10.8 and 10.9 show that the
temperatures of diagonal cells are 100°C.

10.2.3 Thermally Driven Cavity Flow

This is the natural-convection flow of air fluid in a square cavity with differentially
heated vertical side walls. The driving temperature difference is 10°C and the Rayleigh
number is 1000. We perform laminar analyses.

Table 10.10 shows the input in the x-y coordinate system. Table 10.11 shows the
output for Table 10.10 Table 10.12 shows the input in the x-z coordinate system. Table
10.13 shaws the output for Table 10.12. Comparison of Tables 10.11 and 10.13 shows the

symmetry in both velocity and temperature with respect to exchanging the x-y system with
the x-z system.

10.3 Validation of Implicitness Parameter

Table 10.14 shows the solutions that are obtained for a = 1.0 and o = 0.5 by using
forced-channel-flow data (zwangz.data), Table 10.5.

In this calculation, At = 0.5 was used. The steady-state solutions used in the case of a =
0.5 are identical to those used in the case of @ = 1.0. This means that programming
implementation regarding the treatment of o = 0.5 is correct.

It is remarkable that the iteration numbers used in the case of o = 0.5 are smaller than
a=1.0.

10.4 Two-Dimensional Scalar Transport/Temperature Analysis in a Jet

Input data for this test case is the same as the data used in Sec. 10.2.2, Table 10.7.
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Table 10.7. Input data for scalar transport in two impinging streams

INPUT DATA FOR SCALAR TRANSPORT IN TWO IMPINGING STREAMS

Symmetry check for LECUSSO scheme
15x15x1 u=v, or u different from v (change wveloc)
' k=10**4 (conduction dominated)

<stran.data>

&geom

ifres=1,

nll=510, nml=225, nsurf=6,

ifz=Q,

imax=15, Jjmax=15, kmax=1,

isolvr=1l, nnzero=1065, nspace=5570,
xnorml= 1.0,-1.0, 0.0, 0.0, 0.0, 0.0,
ynorml= 0.0, 0.0, 0.0, 0.6,-1.0, 1.0,
znorml= 0.0, 0.0,-1.0, 1.0, 0.0, 0.0,

dx=15*%0.1,

dy=15*0.1,

dz= 0.1,

&end
reg -1. 1 1 1 15 1 1 1 inlet +x
reg -1. 15 15 1 15 1 1 2 exit -x
reg -1. 1 15 1 15 1 1 3 top -~z
reg -1. 1 15 1 15 1 1 4 bottom +z
reg -1. 1 15 15 15 1 1 5 exit -y
reg -1. 1 15 1 1 1 1 6 inlet +y
&data

alpha=1.0,

iskew=0, ifener=1l, ifmom=0,

idtime=0, dt=0.5,

ntmax=200, it=1,

kpres(2)=1, kpres(5)=1, pres=6*1.01353e05
kflow= 1, -5, -3, -3, -5, 1,
ktemp= 1, 400, 400, 400, 400, 1,
veloe= 0.10, -0.10, 0.0, 0.0, -0.1, 0.1,
temp= 50.0,150.0, 50.0, 50.0, 50.0,150.0,
temp0=100.0, pres0=1.0e5,

matype=1, mattab=1, tablot=50.0, tabhit=150.0,
cO0h=0.0, ¢cl1lh=1000.0,

cOro=1.0e3,

c0k=1.0e+4,

cOmu=1.0e-3,

ntprnt=-9999,

istpr= 13001, 23001, 53001,

nthpr= 13001, 23001, 53001, 83001, 163001,

&end
ul 0.1 1 15 1 15 1 1
vl 0.1 1 15 1 15 1 1

tl 100.0 1 15 1 15 1 1
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Table 10.9. Temperature (°C) map for stran.data presented in Table 10.8
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Table 10.10. Input data for natural convection in x-y coordinate system

INPUT DATA FOR NATURAﬁ CONVECTION IN THE x-y COORDINATE SYSTEM

<boxy.data>
natural convection of air in a square pipe with Rayleigh number of
Ra = 1.00e+3, Th = 30.0, Tc = 20.0, L = 1.0498
&geom
iturke=0,
isolvr=1l, nnzero=1920, nspace=11042,
ifres=1, ifz=0,
nll=880, nml1=400, nsurf=7,
imax=10, Jjmax=10, kmax=1,
dx=9*5.24%e~4, 5.24%e-04, dy=9*5.249e-4, 5.249%e-04, dz=1.0,
xnorml= 1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
ynorml= 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, -1.0,
znorml= 0.0, 0.0, 1.0, -1.0, ¢©6.0, 0.0, 0.0,
&end

reg ~-1.0 1 1 1 10 1 1 1 +x surface
reg -1.0 10 10 1 10 1 1 2 -x surface
reg -1.0 1 10 1 10 1 1 3 +z surface
reg -1.0 1 10 1 10 1 1 4 -z surface
reg -1.0 1 10 1 1 1 1 5 +y surface
reg -1.0 1 9 10 10 1 1 6 -y surface
reg -1.0 10 10 10 10 1 1 7 -y surface
&data

alpha=1.0, eps3=5.0e-5, omega=l.3, omegav=1.0, omegae=1.0,
itibug=1, iskew=0, nthcon=-1, ifener=l,

idtime=0, dt=0.5,

ntmax=300, it=1, trest=7200.0,

gravy=-9.8,

temp0=25.0, pres0=1.0e5,

kflow= G, Q, -3, -3, 6, 0, 0,
kpres= 6*0, 1, pres{7)=1l.0e5,

ktemp= i, 1, 400, 400, 400, 400, 400,
temp= 30.0, 20.0,

veloc= 7*0.0,

matype=1, mattab=1, tablot=20.0, tabhit=40.0,
cOro= 1.273738, clro=-3.588e-3,

cOh= 0.0, <¢lh=1005.7,

cOk= 0.02624,

cOmu= 1.846e-5,

ntprnt=-9999,

istpr=12001,22001,42001,52001,
nthpr=13001,23001,43001,53001,

&end
ul 0.001 1 10 1 10 1 1
vl 0.001 i 10 1 10 1 1

tl 25.00 1 10 1 10 1 1
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Table 10.11. Output for boxy.data presented in Table 10.10

*:* X-Component c¢f Velocity (m/s) ** ul ** k Plane 1 ** Time step 63 ** Time 3.15000E+01 s ==

3 fee> 9 1 2 3 4 s 3 7 g 9

10 { 0.000E+00) 2.440E-04 6.303E-04 9.734E-04 1.195E-03 1.269E-03 1.191E~03 9.704E-04 6.319E-04 2.483E-04
9 { 0.000E+00) 3.854E~04 21.008E-03 1.584E~03 1.969E-03 2.100E-03 1.964E-03 1.578E-03 1.006E-03 3.870E-04
8 { 0.000E+00) 3.462E-04 3.254E-04 1.472E-03 1.843E-03 1.968E-03 1.832E-03 1.456E-03 9.109E-04 3.392E-04
7 { 0.000E+00) 2.314E-04 6.252E-04 9.986E-04 1.251E-03 1.333g-03 1.233E-03 9.686B~-04 5.945E-04 2.141E-04
[ { 0.000E+00) 8.773E-05 2.306E-04 3.608E-04 4.442E-04 4.657E-04 4.226E-04  3.237BE-04 1.913E-04 6.460E-05
S { 0.000E+00) -6.661E-05S -1.957E-04 -3.288E~04 ~4.264E-04 -4.667E-04 -4.423E~04 -3.573E-04 -2.273E-04 -8.626E-05
4 { 0.000E+00) -2.197E-04 -6.064E-04 -9.818E-04 -1.241E-C3 ~1.333E-03 -1.242E-03 <-9.854E-04 -6.136E-04 -2.262E-04
k] { 0.000E+00) -3.486E-04 -9.30SE-04 ~1.477E-03 ~-1.845E-03 -1.966E-03 ~-1.826E-03 -1.44%E-03 -9.048E-04 -3.366E-04
2 { 0.000E+00) -3,998E-04 ~-1.032E-03 -1.60SE-03 -1.979E-03 -2.097E-03 ~1.9478-03 '-1.553E~03 -9.800E-04 <-3.719E-04
1 ( 0.000E+00) -2.596E-04 -6.530E-04 -9.913E-04 =-1.203E-03 -1.265E-03 ~1.178E-03 ~9.481E-04 -6.068E-04 -2.319E-04
3 i--> 10

10 { 0.COQE+00)
9 ( 0.000E+00Q)
8 { 0.000E+00)
7 ( 0.000E+00)
6 { 0.00C0E+00)
5 { 0.000E+00)
4 ( 0.000E+00)
3 { 0.000E+00)
2 { 0.000E+00)
1 { 0.000E+00)

*** y-Component of Velocity (m/s) *r yl ** k Plane 1 ** Time step 63 ** Time 3,15000E+01 s **

o i--> 1 2 3 4 5 6 7 8 9 10

10 { 0.000E+Q0) { 0.000E+00) ( 0.000E+00) { 0.000E+00) { O. OOOE+00)( 0.000E+00) ( 0.000E+00) { 0.000E+00) { 0.000E+00) { 0.000E+00)}
9 2.444E-04 3.876E-04 3.455E-04 2.246E-04 7.745E-05 -7.370E-05 <~2.175E-04 ~3.360E-04 ~3.823E-04 -2.479E-04
8 6.303E-04 1.012E-03 9.252E-04 6.149E-04 - 2.152E-04 ~2.043E-04 -5.978E-04 -9.042E-04 -9.990E-04 -6.343E-04
? 9.770E-04 1.593E~03 1.476E-03 9.900E-04 3.468E-04 =-3.347E-04 -9.688E-04 -1.446E-03 -1,.569E~03 -9.730E-04
3 1.209E~03  1,9888-03 1,851E-03 1.245E-03 4.328E-04 ~4,.309E-04 ~1.2298-03 -1.817E-03 -1.948E~-03 -1.1878-03
5 1.297e-03 2.131E-03 1.982E-03 1.329%E-03 4.555E-04 -4.725E~04 -1.327E-03 ~1.949E-03 =-2.074E-03 ~1,251E-03
4 1.230E-03 2.002E-03 1.848E-03 1.230E-03 4.138E-04 -4.494E-04 -1.243E-03 -1,.819E-03 -1.933E-03 ~1.16SE-03
3 1.010E-03 1.613E-03 1,469E-03 9.674E-04 3.184E-04 -3.624E-04 -9.892E-04 ~-1.449E-03 -1.547E-03 .-9.391E-04
2 6.605E-04 1,029E-03 9.185E-04 5.947E-04 1.3909E-04 -2.279E-04 -6.162E-04 ~9.085E-04 -3.B01E-04 -6.029E-04
1 2.601E~-04  3.949E-04  3.410E-04 2.148E-04 6.659E-05 =-8.430E-05 ~2.264E-04 -3.391E-04 -3.738E-04 -2.316E-04
[¢] ( 0.000E+0C) { 0.000E+00) ( 0.D000E+00) ( 0.000E+00) { C.0002+00) ( 0.000E+00) { 0.CQCE+00) { 0.00CE+00) { 0.0D0E+00) { 0.000E+00)

**+ Temperature (Celsius) *x ] ** k Flane 1 ** Time step 63 ** Time 3.150008E+01 5 **

3 t-=> ' o0 1 2 3 4 5 6 7 8 9

11 { 2.951E+01) { 2.852E+01){ 2.7S5E+01) ( 2.658E+01) ( 2.560E+0Ll) { 2.461E+01) { 2.361E+01){ 2.259E+01) ( 2.156E+01)
10 { 3.000E+01} 2.951E+01 2.852E+01 2.755E+01 2.658E+01 2.560E+01 2.461E+01 2.361E+01 2.259E+01 2.156E+01
9 { 3.000E+01) 2.950E+01 2.852E+01 2.754E+01 2.657E+01 2.559E+01 2.460B+01 2.360E+01 2.259E+01 2.156E+01
8 { 3.000E+01) 2.950E+01 2.850E+01 2.751E+01 2.653E+01 2.555E+01 2.456E+01 2.357E401 2.256E+01 2.154E401
7 {( 3.000E+01) 2.949E+01 2.847E+01 2.747E+01 2.648E+01 2.549E+01 2.450E+01 2.351E+01 2.252E+401 2.151E+01
6 ( 3.000E+01) 2.948E+01 2.844E+01 2.742E+01 2.641E+01 2.541E+01 2.442E+01 2.344E+01 2.246E+01 2.148E+01
5 { 3.000E+01}) 2.947E+01 2.841E+01 2.736E+01 2.633E+01 2.533E+01 2.434E+01 2.337E+01 2.240E+01 2.144E+01
4 { 3.000E+01} 2.945E+01 2.837E+01 2.730E+01 2.626E+01 2.525E+01 2.426E+01 2.330E+01 2.235E+01 2.141E+01
3 { 3.000E+01) 2.944E+01 2.834E+01 2.726E+01 2.621E+01 2.519E+01 2.420E+01 2.325E+01. 2.231E+401 2.139E+01
2 { 3.000E+01) 2.944E+01 2.832E+01 2.723E+01 2.618E+01 2.515E+01 2.417E+01 2.322E+01 2.229E+01 2.137E+01
1 { 3.000E+01) 2.944E+01 2.832E+01 2.723E+01 2.617E+01 2.515e+01 2.416E+01 2.321E+01 2.228E+01 2.137E+01
0 (2. 944E+01) { 2.832E+01) { 2.723E+01) { 2.617E+01) ( 2.515E+01) ( 2.416E+01) { 2.321E+01) ( 2.228E+01) ¢ 2.137E+01)
i oi-—-> 10 11
11 { 2.052E+CL)
10 2.0822+01 ( 2.00CE+01)

9 2.0528+01 ( 2.000E+01)

8 2.0512+01 { 2.000E+01)

7 2.0S50E+01 ({ 2.000E+01)

s 2.049E+31 { 2.000E+01)

5 2.048E+01 { 2.000E+01)

4 2.047E+C1 ( 2.000E+QL)

3 2.046E+C1 ( 2.000E+01)

2 2.046E+01 ( 2.000E+01)

1 2.045E+01 ( 2.000E+01)

o { 2.045E+01)
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Table 10.12. Input data for natural convection in x-z coordinate system

INPUT DATA FOR NATURAL CONVECTION IN THE x-z COORDINATE SYSTEM

<boxz.data>

natureal convection of air in a square pipe with

Ra

1.00e+3,

Th = 30.0, Tc

20.0, L

Rayleigh number
1.0498

&geom
iturke=0,
isolvr=l,

ifres=1, ify=0,

nll=880, nml=400, nsurf=7,

imax=10, jmax=1, kmax=10,

dx=10*5.24%e-4, dy=1.0, dz=10%5,249%e-4,

xnorml= 1.0, -1.0, 0.0, 0.0, 0.0, 0.0,

ynorml= 0.0, 0.0, 1.0, -1.0, 0.0, 0.0,

znorml= 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, -1.

&end )
reg =1.0 1 1 1 1 1 10 1 +x
reg -1.0 10 10 1 1 1 10 2 -X
reg -1.0 1 10 1 1 1 10 3 +y
reg -1.0 1 10 1 1 1 10 4 -y
reg -1.0 1 10 1 1 1 1 5 +z
reg -1.0 1 9 1 1 10 10 6 -2z
reg -1.0 10 10 1 1 10 10 7 -~z

&data

alpha=1.0, eps3=5.0e-~5, omega=1l.3, omegav=1.9,

itibug=1, iskew=0, nthcon=-1, ifener=1,

idtime=0, dt=0.5,

ntmax=500, it=1, trest=7200.0,

gravz=-9.8,

nnzero=1920,

nspace=11042,

temp0=25.0, presO0=1.0e5,

kflow= 0, 0, -3, -3, 0, 0, 0,
kpres= 6*Q0, 1, pres(7)=1.0e5,

ktemp= 1, 1, 400, 400, 400, 400, 400,
temp= 30.0, 20.0,

veloc= 7*%0.90,

matype=1, mattab=1,

cOro= 1.273738,
cOh= 0.0,
cOk= 0.02624,
cOmu= 1.846e-~5,
ntprnt=-9999,

tablot=20.0, tabhit=40.0,
clro=-3,588e~-3,

c1lh=1005.7,

istpr=12001,32001,42001,52001,82001,
nthpr=12001,32001,42001,52001,82001,

&end
ul 0.001
wl 0.001
tl 25.00

1
1
1

10 1 1 i 10
10 1 1 1 10
10 1 1 1 10

surface
surface
surface
surface
surface
surface
surface

omegae=1.0,
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Table 10.13. Output for boxz.data presented in Table 10.12

*** X-Component of Velocity {(m/s) ** gyl ** 4 Plane 1 ** Time step 53 ** Time 3.15000E+01 s *=*
X i-=> a 1 2 3 4 5 6 7 3 3
L0 { 0.000E+Q0) 2.440E-04 6.303E-04 9.734E-04 1.195E-03 1.2692-03 1.191E-03 §.704E-04 6§.319E~04 2.483E-04
9 { 0.000E+00) 3.854E-04 1.008E-03 1.584E-03 1.969E~03 2.100E-03 1.964E-03 1.5782-03 1.006E-03 3.870E-04
8 { 0.000E+00Q) 3.462E-04 9.254E-04 1.472E-03 1.843E-03 1.968E-03 1.832E-03 1.456E-03 9.109E-04 3.392E-04
7 { 0.C00E+00) 2.314E-04 6.252E-04 9.986E-04 1.251E-03 1.333E-03 1.233E-03 9.686E-04 5.945E-04 2.141E-04
6 { 0.0C0E+00) 8.773E-05 2.306E-04 3.608E-04 4.442E-04 4.657E-04 4.226E-04 3.237E-04 1.913e-04 6.460E-05
S { 0.000E+00) -6.661E-05 ~1.957E-04 -3.288E-04 -4.264E-04 ~-4.667E-04 ~4.423E-04 ~-3.573E-04 -2.273E8-04 -8.626E-05
4 ( 0.000E+00) -2.197E-04 -6.064E-~04 =-9.818E-04 <-1.241E-03 ~1.333E-03 ~-1.242E-03 =~-9.854E-04 -6.136E-04 ~2.262E-04
3 ( 0.000E+00) -3.486E-04 -9.305E-04 -1.477E-03 -1.845E-03 ~1.966E-03 -1.826E-03 ~-1.44%E~03 ~9.048E-04 -3.366E-04
2 ( 0.000E+00) -3.998E-04 -1.032E-03 =-1.605E-03 ~1.979E-03 =-2.097E-03 ~-1.947E-03 ~1.553E-03 -9.800E-04 -3,719E-04
1 ( 0.000E+00) ~2.596E-04 ~6.530E-04 -9.913E-04 -1.203E-03 -1.265E-03 -1.178E-03 -9.481E5-04 -6.068E-04 -2.319E-04
Xk i--> 10
10 { 0.000E+00)
9 { 0.000E+00)
8 { 0.000E+00)
7 { 0.000E+00)
6 ( 0.000E+00)
5 ( 0.000E+00)
4 ( 0.000E+00)
3 ( 0.000E+00)
2 { 0.000E+00)
1 { 0.000E+00)
*** Z-Component of Velocity {(m/s) *% yw] *x J Plane 1 ** Time step 63 ** Time 3.15000E+01 s *~*
Xk i--> 1 2 3 4 5 6 7 8 9 10
10 { 0.000E+00) { 0.0Q0E+00) { 0.000E+00}{ 0.000E+00) (- 0.000E+00) { 0.CO00E+00) { 0.000E+00) { 0.000E+00) ( 0.000E+00) { 0.000E+00)
9 2.444E-04 3.876E-04 3.455E~04 2.246E-04 7.745E~05 -7.370E-05 ~2.175E-04 =-3.360E-04 ~3.B23E-04 -2.479E-04
8 6.303E-04 1.012E-03 9.252E-04 6.149E-04 - 2.152E-D4 -2.043E-04 -5.978E-04 -9.042E-04 ~9.990E-04 -6.343E-04
7 9.770E-04 1.593E-03 1.476E-03 9.900E-04 3.468E-04 -3.347E-04 -9.688E-04 ~1.446E~-03 ~-1.569E-03 " ~9.730E-04
6 1,209E-03 1.988E~03 1.851E~-03 1.245B-03 4.328E-04 -4.309E-04 -1.229%E-~03 -1.817B-03 ~-1.948E-03 ~-1.187E-03
5 1.297E-03 2.131E-03 1.982E-03 1.329E-03 4,55SE-04 -4.725B-04 -1.327B-03 ~1.94%E-03 -2.074E~03 ~1.251E-03
q 1.230E-03 2.002E-03 1,848E~03 1.230E-03 4.138E-04 -4.494B-04 -1.243E-03 -1.819E-03 -1.933E~03 ~1.165E-03
3 1.010E-03 1.613E-03 1.469E-03 9,674E-04 3.184E-04 -3.624E-04 ~9,892E-04 ~1.449E-03 -1.547E-03 -9.391E-04
2 6.605E-~04 1.029E-03 = 9.1BS5E-04 5.947E~04 1.909E-04 -2,279E-04 -~-6.162E-04 -9.085E-04 -9.801E-04 ~6.029E-04
1 2.601E-04 3.949E-04 3.410E-04 2.148E-04 6.6598-05 -8.430E-05 -2.264E-04 -3.391E-04 ~3.738E-04 -2.316E~04
o] ( 0.000E+00) { 0.000E+00) ( 0.000E+00) { 0.000E+00) ( 0.000E+00) { 0.000E+00) ( 0.000E+00Q) { 0.000E+00) { 0.000E+00) { 0.000E+00)
*** Temperature {Celsius) *% ] ** 4 Plane 1 ** Time step 63 ** Time 3,.15000E+01 s **
X i--> 0 1 2 3 4 5 6 7 8 9
11 { 2.9S1E+01) { 2.852E+01) { 2.755E+01) { 2.658E+01) ( 2.560E+01) ( 2.461E+01) { 2.361E+01) ( 2.259E+01) { 2.156E+01)
10 ( 3.000E+01) 2.951E+0l1 2.852E+01 2.755E+01 2,658E+01 2.560E+01 2.461E+01 2.361E+01 2.259E+01 2.156E+01
9 { 3.000E+01) 2.950E+01 2.952E+01 2.754E+01 2.657E+01 2.559E+01 2.460E+01 2.360E+01 2.259E+01 2.156E401
8 { 3.000E+01) 2.950E+01 2.850E+01 2.751E+01 2.653E+01 2.555E+01 2.456E+01 2.357E+01 2.256E+401 2.154E+01
7 { 3.000E+01) 2.948E+01 2.847B+01 2.747E401 2.648E+01 2.549E+01 2.450E+01 2.351E401 2.252E+01 2.151E+01
6 { 3.000E+01) 2.948E+01 2.844E+01 2.742E+01 2.641E+01 2.541E+01 2.442E+01 2.344E+01 2.246E+01 2.148E+01
5 { 3.000E+01) 2.947E+01 2.841E4+01 2.736E+01 2.633E+01 2.533E+01 2.434E+01 2.337E+01 2.240E+01 2.144E+01
4 { 3.000E+01) 2.945E+01 2.837E+01 2.730E+01 2.626E+01 2.525E+01 2.426E+401 2.3302+01 2.235E+01 2.141E+01
3 { 3.000E+01) 2.944E+01 2.834E401 2.726E+01 2.621E+01 2.519E+01 2.420E+01 2.325E+01 2.231E+01 2.139E+01
2 { 3.000E+01) 2.%44E+01 2.832E+01 2.723E+01 2.618E+01 2.515E+01 2.417E+01 2.322E+01 2.228E+01 2.137E+01
1 { 3.000E+01) 2.944E+01 2.832E+01 2.723E+01 2.617E+01 2.5152+01 2.416E+01 2.321E+01 2.228E+01 2.137E+01
0 ( 2.944E+01) { 2.832E+C1) { 2.723E+01){ 2.617E+01) { 2.515E401) ( 2.416E+01) ( 2.321E+01) { 2.228E+01) { 2.137E+01)
X i--> 10 11
11 { 2.052E+01)
10 2.0528+401 ( 2.000E+01)
9 2.052E+01 { 2.000E+01)
3 2.0512+01 ( 2.000E+0C1)
7 2.050E+01 { 2.000E+01)
6 2.049E+01 ( 2.000E+01}
5 2.048E+01 ( 2.000E+01)
4 2.047E+01 { 2.000E+01)
3 2.046E+01 { 2.000B+01)
2 2,046E+01 ( 2.000E+01)
1 2.045E+01 ( 2.000E+01)
0 { 2.045E+01)
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*** Z-Component of Velocity

k

O MW s L1 Oy~ ®

Table 10.14. Comparison of a = 1.0 and « = 0.5 for zwangz.data presented in Table 10.5

1 alpha=1.0

i-->

Case 2

*** Z-Component of Velocity (m/s)

k

O MNWk O -1

i-->

~—

o~

W W IW WO WD

1

.925E-03) (
.925E-03
.086E-03
.252E-03
.421E-03
.589E-03
.751E-03
.893E-03
.000E-02) (

alpha=0.5

WO W W W LWL

1

.925E-03) (
.925E-03
.086E-03
.252E-03
.421E-03
.589E-03
.751E-03
.893E-03
.000E-02) (

zwangz.data

1.
1
1
1
1.
1
1
1
1.

1.
1
1
1
1.
1
1
1
1.

(m/s)
2

064E-02) (
.064E-02
.056E-02
.047E-02

038E-02

.028E-02
.018E-02
.008E-02
000E-02) (

1.
1
1
1
1.
1
1
1l
1

zwangz.data

2

064E-02) (
.064E-02
.056E-02
.047E-02

038E-02

.028E-02
.018E-02
.008E-02
000E-02) (

1l
1
1
1
1.
1
1
1
1.
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iter=88

3

043E-02) (
.043E-02
.035E-02
.028E-02"

020E-02

.013E-02
.007E-02
.003E-02
.000E-02) (

iter=70

3

.043E-02) (
.043E-02
.035E-02
.028E-02

020E~02

.013E-02
.007E-02
.003E-02
000E-02) (

1.
1
1
1
1.
1
1
1
1

1
1
1
1
1.
1
1
1
1.

** wl ** 4 Plane

4

043E-02) (
.043E-02
.035E-02
.028E-02

020E-02

.013E-02
.007E-02
.003E-02
.000E-02} (

** wl ** j Plane

4

.043E-02) (
.043E-02
.035E-02
.028E-02

020E-02

.013E-02
.007E-02
.003E-02
000E-02) (

1.
1
1
1
1.
1
1
1
1.

1.
1
1
1
1.
1
1
1
1.

5

064E-02) (
.064E-02
.056E-02
.047E-02

038E-02

.028E-02
.018E-02
.008E-02
000E~-02) (

5

064E-02) (
.064E-02
.056E-02
.047E-02

038E-02

.028E-02
.018E-02
.008E-02
000E-02) (

MW WW WWLWOo

HWWYWWWWWo o

6

.925E-03)
.925E-03
.086E-03
.252E-03
.421E-03
.58%E-03
.751E-03
.893E-03
.000E-02)

6

.925E-03)
.925E-03
.086E~-03
.252E-03
.421E-03
.589E-03
.751E-03
.893E-03
.000E-02)
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Case 1: vx =0.1m/s, vy = 0.1 m/s, and velocity skewness vy/vx = 1. Figure 10.5 shows
the velocity field for Case 1. Figures 10.6-10.8 show the isotherms for Case 1, obtained by
using the first-order upwind scheme, optimized FMSUD scheme, and QUICK scheme,
respectively. :

Case 2: vx = 0.126 m/s, vy = 0.0632 m/s, and velocity skewness vy/vy = 0.5. Figure
10.9 shows the velocity field for Case 2. Figures 10.10-10.12 show the isotherms for Case
2, obtained by using the original FMSUD scheme, optimized FMSUD scheme, and QUICK
scheme, respectively.

In Case 1, original and optimized FMSUD gave exact solutions.

In Case 2, QUICK scheme shows the best solutions among the above schemes.

Optimized FMSUD scheme shows better solutions than the original FMSUD scheme.

10.5 Von Karmann Vortex Shedding

We performed a Von Karmann vortex shedding analysis by using the LECUSSO scheme
and compared the results with experimental data of Davis et al.32 This is a test problem of
momentum transport. Figure 10.13 shows the configuration of the experiment by Davis et
al.32 and the computational modeling. Table 10.15 shows the input data for the Von
Karmann vortex shedding analysis.

Case 1

Computational conditions

Fluid: Air,
Square obstacle: length D = 0.2 m,
Flow channel: confined channel

channel width H=4x D = 0.8 m,
Inlet velocity distribution: measurement with maximum velocity Ug = 0.0422 m/s,
and Re = Up x D/v = 0.0422 x 0.2/1.536E-5 = 550 (at 20°C).

Computational results

Fig. 10.14:  Velocity vector plot.

Fig. 10.15: Experimentally determined and predicted flow fields.

Fig. 10.16  Experimentally determined and predicted streak lines.

Fig. 10.17: Enlarged view of computed streakline.

Fig. 10.18: Time variation of fluctuating axial velocity in the wake region.
Fig. 10.19: Predicted and experimentally determined Strouhal numbers.
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Table 10.15. Input data for Von Karmann vortex shedding analysis

Sample Input Data for Von Karmann Vortex Shedding Analysis
square channel with a sguare obstacle, H=0.8m, D=0.2m, H/D=4
76x40 meshes, air, Re=500, erf inlet velocity, u0=3.7931lcm/s

<vortxzd4.data>

sgeom

isolvr=1,nnzero=14428, nspace=110938,

ifres=1, ify=0,

nll=6152, nml=2940, .

imax=76, Jjmax=1, kmax=40, nsurf=11,

dx= 5*%0.2, 4*0.1, 6*0.05, 0.03, 18*0.02,
0.03, 6*0.05, 25*0.1, 9*0.2, 0.2,

dy=0.1,

dz= 3%*0.02, 0.02,

xnorml=1.0,-1.0, 0.0, 0.0, 0.0, 0.0,-2.0, 1.0, 0.0, 0.0,-1.0,
ynorml=0.0, 0.0, 0.0, 0.0, 1.0,-x.0, 0.0, 0.0, 0.0, 0.0, C.0,
znorml=0.0, 0.0, 1.0,-1.0, 0.0, 0.0, 0.0, 0.0,-1.0, 1.0, 0.0,
&end

reg -1.0 1 1 1 1 1 40 1 +x surface inlet

reg -1.0 76 76 1 1 1 3¢9 2 -x surface exit

reg -1.0 1 76 1 1 1 1 3 +z surface

reg -1.0 1 76 1 1 40 40 4 -z surface

reg -1.0 1 20 1 1 1 40 5 +y surface

reg -1.0 21 30 1 1 1 15 5

reg -1.0 21 30 1 1 26 40 5

reg -1.0 31 76 1 1 1 40 5

reg -1.0 1 20 1 1 1 40 6 -y surface

reg -1.0 21 30 1 1 1 15 6

reqg -1.0 21 30 1 1 26 40 6

reg -1.0 31 76 1 1 1 40 6

reg -1.0 20 20 1 1 16 25 7 -x obstacle

reg -1.0 31 31 1 1 16 25 8 +x

reg -1.0 21 30 1 1 15 15 9 -z

reg -1.0 21 30 1 1 26 26 10 +z

reg -1.0 76 76 1 1 40 40 11 -x exit press.
&data .

alpha=1.0, itibug=0, iskew=0,

idtime=0, dt=0.00001, it=1,

nthcon=-1, ifener=0, eps3=1.0e-6, omegav=1.0,
ntmax=1, ntprnt=-9999, trest=720000.0,
temp0=20.0, pres0=1.0e5,

kflow= i, -5, 2*0¢, -3, -3, 4*0, -5,
ktemp= 1, 9*400, 400,
kpres(11l)=1, pres(11)=1.0e5,

temp= 20.0, 9%20.0, 20.0,
veloc= 0.037931, 6%0.0, 0.0,

matype=1,

cOk = 0.0241, clk = 7.6e-5,

clh = 2.74e+5, c¢lh = 1003.5,

cOro= 0.0, clro= 0.0, ¢c2ro=0.0034843,
cOmu= 1.71le-5, clmu= 4.7e-8,

wtmol = 28.97,

&end
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Table 10.15. Input data for Von Karmann vortex shedding analysis (Contd.)

velb 0.003747 1 1 1 1 1 1 1
velb 0.011015 1 1 1 1 2 2 1
velb 0.017645 1 1 1 1 3 3 1
velb 0.023333 1 1 1 1 4 4 1
velb 0.027921 1 1 1 1 5 5 1
velb 0.031403 1 1 1 1 6 6 1
velb 0.033889 1 1 1 1 7 7 1
velb 0.035556 1 1 1 1 8 8 1
velb 0.036610 1 1 1 1 9 9 1
velb 0.037235 1 1 1 1 10 10 1
velb 0.037584 1 1 1 1 11 11 1
velb 0.037764 1 1 1 1 12 12 1
velb 0.037857 1 1 1 1 13 13 1
velb 0.037898 1 1 1 1 14 14 1
velb 0.037917 1 1 1 1 15 15 1
velb 0.037926 1 1 1 1 16 16 1
velb 0.037929 1 1 1 i 17 17 1
velb 0.037931 1 1 1 1 18 23 1
velb 0.037929 1 1 1 1 24 24 1
velb 0.037926 1 1 1 1 25 25 1
velb 0.037917 1 1 1 1 26 26 1
velb 0.037898 1 1 1 1 27 27 1
velb 0.037857 1 1 1 1 28 28 1
velb 0.037764 1 1 1 1 29 29 1
velb 0.037584 1 1 1 1 30 30 1
velb 0.037235 1 1 1 1 31 31 1
velb 0.036610 1 1 1 1 32 32 1
velb 0.035556 1 1 1 1 33 33 1
velb 0.033889 1 1 1 1 34 34 1
velb 0.031403 1 1 1 1 35 35 i
velb 0.027921 1 1 1 1 36 36 1
velb 0.023333 1 1 1 i 37 37 1
velb 0.017645 1 1 1 1 38 38 1
velb 0.011015 1 1 1 1 39 39 1
velb 0.003747 1 1 1 1 40 40 1
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Time: 125.00 s

LECUSSO Scheme
Re =550 (Air Fluid)

{(b) Prediction

Fig. 10.16. Experimentally determined and predicted streaklines from
Von Karmann vortex shedding analysis
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Fig. 10.18. Time variation of fluctuating axial velocity in the wake region at Re = 550 during
Von Karmann vortex shedding analysis
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Prediction of Strouhal number S:

S =fxD/Up = 0.04032 x 0.2/0.0422 = 0.191

f = frequency = 1/T = 1/24.8 = 0.04032.

T = period = (151.3 — 126.5) sec = 24.8 sec {from Fig. 10.18).
Measurement of Strouhal number S = 0.182 (from Fig. 10.19).

Case 2

Computational conditions

Fluid: Air,
Square obstacle: length D = 0.02 m,
Flow channel: open channel

channel width H=6xD = 0.12 m,
Inlet velocity distribution: measurement with maximum velocity Ug = 0.0127 m/s,
and Re = Ug x D/v = 0.0127 x 0.2/1.011E-6 = 251 (at 20°C)}.

Computational results

Fig. 10.19; Predicted and experimentally determined Strouhal numbers.
Fig. 10.20: Time variation of fluctuating axial velocity in the wake region.

Prediction of Strouhal number S:

S=1fxD/Ug=0.0980 x 0.2/0.0127 = 0.154

f = frequency = 1/T = 1/10.2 = 0.0980.

T = period = (114.5 — 104.3) sec = 10.2 sec (from Fig. 10.20).
Measurement of Strouhal number S = 0.159 (from Fig. 10.19).

10.6 Shear-Driven Cavity Flow

Numerical calculations were performed for the two-dimensional shear-driven cavity
flow by using the QUICK and LECUSSO schemes.

Two-dimensional shear-driven cavity flow represents an excellent test for evaluating
convective differencing schemes because of the large streamline-to-grid skewness present
over most of the flow region and the existence of several relatively large recirculation
regions. The calculational results were compared with those of Ghia et al.,33 who used
grids that were quite fine, such as 257 x 257 mesh, and whose results can be considered
almost exact solutions.

Figure 10.21 shows the computational region for a shear-driven cavity flow. Table
10.16 shows the input data for the above shear-driven cavity flow with 40 x 40 meshes.
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Table 10.16. Cavity flow analysis data under shear flow boundary conditions

CAVITY FLOW ANALYSIS DATA WITH SHEAR FLOW RBROUNDARY CONDiTION
at Re = 5000

<cavity.data>

&geom

ifres=1,

nl1=4800, nml=1600, nsurf=7,

ify=0,

imax=40, jmax=1l, kmax=40,

isolvr=1, nnzero=7840, nspace=57428,
xnorml= 1.0,-1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
ynormi= 0.0, 0.0, 1.0,-1.0, 0.0, 0.0, 0.0,
znorml= 0.0, 0.0, 0.0, 0.0, 1.0,-1.0,-1.0,
dx=40%*12.5e-3,

dy=12.5e-3,
dz=40*%12.5e-3,
&end
reg -1. 1 1 1 1 1l 40 1 left +X
reg -1. 40 40 1 1 1 40 2 right -x
reg -1. 1 40 1 1 1 40 3 front +y
reg -1. 1 490 1 1 1 40 4 back -y
reg -1. 1 490 1 1 1 1 5 bottom +z
reg -1. 1 39 1 1 40 40 6 upper -z (shear flow)
reg -1. . 40 40 1 1 40 40 7 upper -z (shear flow)
&data
alpha=1.0, eps3=l.e-6, omegav=1.0,
iskew=0, ifener=0, ifmom=1,
idtime=0, dt=0.1,
ntmax=50000, it=1l, trest=9999999.0,
kpres(7)=1, pres(7)=1.0e05,
kflow= 0, 0, -3, -3, 0, 0, o,
ktemp= i, 1, 1, 1, 1, 400, 400,

veloe= 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
temp= 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0,
tempO= 20.0, presO=1.0e5,

matype=1l, mattab=1, tablot=20.0, tabhit=40.0,
cOre= 1000.,

cOh= 0.0, ¢1lh=1005.7,

c0k= 0.624,

cOmu= 1.000e-3,

ntprnt=-9999,

nthpr= 12001, 32001, 17201,

&end
ul’ 0.0000 1 40 1 1 1 40
wl 0.0000 1 40 1 1 1 49
tl 20.000 1 40 1 1 1 40
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10.6.1 Calculational Results with 20 x 20 Meshes

Figures 10.22, 10.23, and 10.24 show the velocity vectors obtained at Re = 400, 1000.
and 5000, respectively, with 20 x 20 computational cells.

Figures 10.25, 10.26, and 10.27 show the lateral component of velocity obtained from
the present calculations and Ghia et al.'s calculations at Re = 400, 1000, and 5000,

respectively.

In these calculations, €3 = 10-6 was used for the convergence criterion of the velocities.

10.6.2 Calculational Results with 40 x 40 Meshes

Figures 10.28, 10.29, and 10.30 show the velocity vector obtained at Re = 400, 1000,
and 5000, respectively, with 40 x 40 computational cells.

Figures 10.31, 10.32, and 10.33 show the results of Ghia et al.'s calculations and the
present calculations with 40 x 40 meshes.
10.6.3 50 x 50 Meshes at Re = 10000

Figure 10.34 shows the velocity vector at Re = 10000. At this high Reynolds number,
one may observe whether the schemes show.

a stable and converged steady-state solution and
a tertial vortex at the corner of the lower right-hand side.

In Fig. 10.34, a stable and converged solution was obtained with the LECUSSO scheme.
Moreover, we can clearly see a tertial vortex at the lower right-hand side corner.

It is remarkable that the LECUSSO scheme gives quite a stale solution at Re = 10000.
Figure 10.35 shows the streamline pattern calculated by Ghia et al.33

By using the QUICK scheme, we could not obtain stable solutions at this high Reynolds
number flow.

10.6.4 50 x 50 Meshes at Re = 30,000

Figures 10.36 and 10.37 show the velocity vectors at 6 x 104 and 6.17 x 104 s after the
beginning of the calculations, respectively, for Re = 30000.

In this calculation, a convergence rate of velocity (e3) was =3 x 10-5.
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Fig. 10.22. Velocity vector at Re = 400 (20x20 meshes) for shear-driven cavity flow
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Fig. 10.24. Velocity vector at Re = 5000 (20x20 meshes) for shear-driven cavity flow
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Fig. 10.25. Lateral component of velocity from the present calculations and from the
calculations of Ghia et al.33 at Re = 400 (20x20 meshes) for shear-driven

cavity flows




z/L

104

1.0 1 1 — &
0.8 1 _
0.6 "
Re = 1000
0.4+ =
¢ Ghiaetal.
—+— QUICK
0.2 —— ECUSSO B
o
0.0 . —
©-0.5 0.0 0.5 1.0

U/Up

Fig. 10.26. Lateral component of velocity from the present calculations and from the

calculations of Ghia et al.33 at Re = 1000 (20x20 meshes) for shear-driven
cavity flows
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Fig. 10.27. Lateral component of velocity from the present calculations and from the
calculations of Ghia et al.33 at Re = 5000 (20x20 meshes ) for shear-driven
cavity flows
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Fig. 10.30. Velocity vector at Re = 5000 (40x40 meshes) for shear-driven cavity flow
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Fig. 10.31. Lateral velocity component from the present calculations and from the
calculations of Ghia et al.33 at Re = 400 (40x40 meshes) for shear-driven
cavity flows
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Fig. 10.32. Lateral velocity component from the present calculations and from the

calculations of Ghia et al.33 at Re = 1000 (40x40 meshes) for shear-driven
cavity flows
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Ghia et al.33 did not perform laminar analysis for this high Re flow, but Huser and
Biringen34 tried. They obtained fluctuating solutions, in which the velocity field never
converged, a finding that may be attributed to flow fluctuations due to turbulence.

In Figs. 10.36 and 10.37, the center of a large primary vortex is also fluctuating.
Considering the results of Huser and Biringen,34 our results are reasonable. In these
fluctuating, turbulent flows, it is difficult to compare our calculations with their calculations.
It is necessary to compare statistical quantities such as Reynolds stress (u'v'), turbulence
kinetic energy (ui?, v%), two—point velocity correlation of functions, etc. by using finer

mesh sizes to realize small-scale turbulent motions.

10.7 Couette and Circular-Pipe Flow

In this section, the Couette flow and circular-pipe flow in an entrance region are
calculated with the QUICK scheme. The results are compared with the theoretical and
experimental results.

10.7.1 Couette Flow

In the analysis of Couette flow, the fluid is confined in the two-dimensional x-z plane.
The flow is in the x—direction bounded by parallel plates at a distance H, with the upper
plate moving at a constant velocity. To simulate infinite length in the x-direction, the
velocity distribution at the inlet is assigned to be equal to the exit condition. Table 10.17
shows the input data for the Couette flow analysis. There are 20 partitions in the transverse
direction and 20 partitions in the flow direction.

The steady-state solution of velocity with the QUICK scheme is shown in Fig. 10.38. A
comparison of this result with the theoretical solution of linear velocity distribution is
plotted in Fig. 10.39. It is seen that the agreement is good. The maximum difference
between the theoretical and the computational results is <0.1%. The first-order upwind
scheme gives the same result as the QUICK scheme.

10.7.2 Circular-Pipe Flow in an Entrance Region

The pipe flow is modeled in a two-dimensional (axisymmetric) cylindrical pipe of
radius R = 0.5 m. The flow is in the z-direction. The input data for the pipe flow is listed in
Table 10.18. The Reynolds number Re (= 2RpV/u), based on the pipe diameter (2R} and
the mean flow velocity (V), is 1000 so that the flow is laminar. There are 20 uniform
partitions in the radius direction and 50 nonuniform partitions in the flow direction.

2 Figure 10.40 shows the calculated velocity distributions at various locations z* (=
m} with the QUICK scheme and the first-order upwind scheme and the theoretical
results of Langhaar.35 Langhaar’s theory, and all other theories to be cited later, were based
on the assumption that pressure is uniform over the cross section of the pipe. Although
this is true for fully developed flow, the numerical solution showed that the pressure is not
uniform near the inlet of the pipe. The nonuniformity of the pressure at the inlet is due to
the development of the boundary layer near the pipe wall, resulting in an inward flow of the
fluid toward the centerline. Near the inlet, e.g, at z* = 0.00205, the location of maximum
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Table 10.17. Input data for Couette flow analysis

INPUT DATA FOR CQUETTE FLOW ANALYSIS
upper wall velocity is set to 0.0lm/s in specic.f

<couette.data>

(surface No.

6)

&geom
ifres=1,
nll=840, nml=400, nsurf=6,
ify=0,
imax=20, jmax=1, kmax=20,
isolvr=1, nnzero=1960, nspace=12224,
xnorml= 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
ynorml= 1.0,-1.0, 0.0, 0.0, 0.0, 0.0,
znorml= 0.0, 0.0, 1.0, 1.0, 1.0,-1.0,
dx=20*2.5e-3,
dy=2.5e-3,
dz=20*1.25e-3,
&end
reg -1. 1 20 1 1 1 20 1 front +y
reg -1. 1 20 1 1 1 20 2 back -y
reg -1. 1 7 1 1 1 1 3 bottom +z
reg -1. 8 14 1 1 1 1 4 bottom +z
reg -1. 15 20 1 1 1 1 5 bottom +z
reg -1. 1 20 1 1 20 20 6 upper -2z (shear flow)
&data
alpha=1.0, eps3=1l.e-6,
iskew=0, ifener=0, ifmom=1, ilink=1,
idtime=0, dt=1.0,
ntmax=20000, it=1,
trest=9999899.0,
kflow= -3, -3, 0, 0,
ktemp= 1, 1, 1, 1,
veloc= .0, 0.0, 0.0, 0.0,
temp= 20.0, 20.0, 20.0, 20.0,
tempO= 20.0, pres{0=1.0e5,
matype=21, mattab=21, tablot=10.0, tabhit=40.0,
ntprnt=-9999,
nthpr= 12001, 32001,

&end
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Table 10.18. Input data for analysis of entrance flow in a circular pipe

INPUT DATA FOR ANALYSIS OF ENTRANCE FLOW IN A CIRCULAR PIPE
Re = 1000

<tube.data>

ifres=1, igeom=-1, ify=0,

nll=140, nml=1000, nsurf=5,

imax=20, Jjmax=1, kmax=50,

isolvr=1, nnzero=4860, nspace=30886, '

xnorml=1.0, -1.0, 3*0.0, ynorml=5*0.0, znorml=2+*0.0, 1.0,-1.0,-1.0,

dx=20*0.025, dy=6.28318531,

dz= 0.0002, 0.0004, 0.0008, 0.0016, 0.0032, 0.0076, 0.0124, 0.0236,
0.0324, 0.0356, 0.0504, 0.0836, 0.1364, 0.2236, 0.2364, 0.3036,

0.5564, 0.7836, 1.4164, 2.1836, 2.4164, 2.9836, 12*2.5, 8*5.0,
4*10.0, 4*20.0,

&end :
reg -1. 1 1 1 1 1 50 1 left +X
reg -1. 20 20 1 1 1 50 2 right -x
reg -1. 1 20 1 1 1 1 3 front +z (inlet)
reg =-1. 2 20 1 1 50 50 4 back -z (outlet)
reg -1. 1 1 1 1 50 50 5 back -z (outlet)
&data
alpha=1.0, eps3=l.e~7, omegav=1l.0,
iskew=0, ifener=0, ifmom=1,
idtime=0, dt=100.0,
ntmax=4000, it=1,
trest=8999999.0,
kpres(5)=1, pres(5)=1.0e05,
kflow= -3, 0, 1, -5, =5,
ktemp= 5*%400, _
veloc= 0.0, 0.0, 0.001, 2*0.0,
temp= 5*20.0,
tempO= 20.0, pres0=1.0e5,
matype=1,
cOro= 1000.,
cOh= 0.0, <¢1lh=1005.7,
cO0k= 0.624,
cOmu= 1.000e-3,
ntprnt=-9939,
nthpr= 12001, 32001, 172001,
&end
ul 0.00600 1 20 1 1 1 50

wl 0.0010 1 20 1 1 1 50
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velocity is close to the wall, as shown in Fig. 10.40. At large z*, e.g., z* = 0.18, the velocity
distribution approaches parabolic distribution. In general, however, the calculational results
and the Langhaar’s results agree well.

The centerline velocity and the pressure increase with z*, plotted in Figs. 10.41 and
10.42, respectively, are compared with the results of Campbell and Slattery36 and others. It
is seen that both the QUICK scheme and the first-order upwind scheme give good results.
Close examination of Fig. 10.41 reveals that the results with the QUICK scheme agrees
better with the experimental results of Pfenninger and of Reshotko.36

10.8 Analysis of Two-Dimensional Flow for Scalar Transport with FRAM

This analysis uses the same condition as Case 1 in Sec. 10.4. The velocity distribution
and the inlet temperature condition are shown in Fig. 10.5.

With the QUICK scheme, the temperature contour of the steady-state solution is shown
in Fig. 10.43. It is seen that the calculated temperature of <50°C or >150°C exists in some
regions. This is not physically realistic because the inlet temperature is in the 50-150°
range. The reason for this finding is that the QUICK scheme results in oscillatory solutions
at regions of large gradient, as described in Sec. 7. To remove the spurious oscillations, the
FRAM scheme is used together with the QUICK scheme. The resulting temperature contour
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Fig. 10.45. Temperature profiles calculated with various numerical schemes

is shown in Fig. 10.44. The oscillation is eliminated. It is also noticeable that the
QUICK+FRAM scheme used fewer iteration time steps (37.1 s) to reach steady state than
the QUICK scheme (52.5 s). To further examine the accuracy of the various solutions, the
temperature distribution across the temperature gradient is plotted in Fig. 10.45 for
solutions with the first-order upwind, QUICK, and QUICK+FRAM schemes. It is clear that
the QUICK+FRAM scheme gives the best result.

11 Description of Programming

11.1 Main Features

¢ QUICK and LECUSSO schemes for convection terms in all governing
equations (mass, momentum, energy, kinetic energy of turbulence and
dissipation of turbulence kinetic energy).

e Three-dimensional.

*  Nonuniform-mesh-size grids.

¢  All values between 0 and 1 for implicitness parameter «.
*  Shear flow (or tangential velocity) boundary conditions.
s  Second-order boundary conditions for velocity.
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11.2 Subroutines Changed or Newly Added

11.2.1 Changed Subroutines

alladd
amain
timstp
moloop
tkloop
tdloop
enloop
xmomi
ymomi
zmomi
xmom 1
ymoml
zmom1
Zmomx
Zmomz

peqn

only dynamical arguments are changed
only dynamical arguments are changed

11.2.2 Added subroutines

specic

specle
coefqe

coefmx
coefmy
coefmz
cofmox
riquik

enconl
encofm

specification of newly added options regarding QUICK and LECUSSO
specification of newly added options regarding LECUSSO scheme
QUICK coefficients for main control volume

QUICK coefficients for x-x term in momentum

QUICK coefficients for y-y term in momentum

QUICK coefficients for z-z term in momentum

QUICK coefficients for cross terms in momentum

density calculation with QUICK scheme

copy of original enconO

optimized FMSUD

11.3 Newly Added Options

The following options are specified in specic.

ithighm =1
thighe =1
=0

high-order (QUICK) mass continuity for momentum equation
1st-order upwind mass continuity for momentum equation

high-order (QUICK) mass continuity for energy equation
1st-st order upwind mass continuity for energy equation
This option is available only for ag(2) form.
For ag(1l) form, this option does not work.



ifa012
iea012
ifunix
ifuniy
ifuniz

iunifo

ishear

ishord
ifupw

icheck

ifram
iofmsu

mybest

H

DY e
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ag(l) form for momentum calculation
ap(2) form for momentum calculation

ap(l) form for energy calculation
ap(2) form for energy calculation

uniform mesh grid in x-axis
nonuniform mesh grid in x-axis

uniform mesh grid in y-axis
nonuniform mesh grid in y-axis

uniform mesh grid in z-axis
nonuniform mesh grid in z-axis

uniform mesh grid in all axes

nonuniform mesh grid in any axis

This option, used for energy calculation, is automatically
determined by ifunix, ifuniy, and ifuniz in subroutine specic.

shear flow boundary condition
no shear
Shear flow boundary is available for x—z domain. For ishear = 1, next
data should be given in subroutine specic by using initial data
statements.
Iflow(nsurf) = 1: surface number=nsurf is shear flow boundary

= 0: surface number=nsurf is no shear flow boundary
velbt(nsurf) = tangential velocity on the surface nsurf (m/s)

first—order for shear flow boundary condition
second-order for shear flow boundary condition

first-~order upwind with second-order boundary condition using the
same process as that in QUICK scheme. Then iskew=0 should be used.

first-order upwind with first-order upwind boundary condition.
Namely, this corresponds to original COMMIX~1C. But this is only for
momentum equation with x-z domain. This option is installed to check
whether new program realizes the original COMMIX~1C by going
through the same process as that in QUICK scheme. Then iskew=0
should be used.

with FRAM technique
without FRAM technique

not necessary to specify. When iskew = 4, iofmsu = 1 is automatically
specified in specic

most-recommended combinations among options
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istabl =1 stability analysis option (usually = 0)

11.4 Input Data

QUICK scheme

first-order upwind

original FMSUD

cos 6 FMSUD

optimized FMSUD for energy equation with prescribed uniform flow
field. '
Further options are specified in encofm:

ilstup = O optimized FMSUD

1 1st-order upwind

2 original FMSUD

iskew =

I
W N~ O

alpha = 1.0 fully implicit with respect to time
= 0.5 Crank-Nicolson scheme
= 0.0 fully explicit with respect to time

11.5 Program File

11.5.1 Source Program

/strld/sakai/clcsud/srcsud/*

11.5.2 Input Data

strld/sakai/clcsud /*

zwangx.data 2-D momentum calculation for forced channel flow (x - z)
zwangy.data 2-D momentum calculation for forced channel flow (y - 2)
zwangz.data 2-D momentum calculation for forced channel flow (z — x)
caseb.data 2-D energy calculation with prescribed flow field

case6.data 2-D energy calculation with prescribed flow field (skewness of
. flow field — 45 degrees)

boxz.datas - 2-D momentum and energy calculation - natural circulation
boxy.datas 2-D momentum and energy calculation — natural circulation

karmanxz.data 2-D Von Karmann vortex calculation
cavity.data 2-D shear driven cavity flow (ishear = 1)
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11.6 KfK Version of COMMIX ~ COMMIX-2(V)

11.6.1 Source Program

/strld/sakai/c2v/src/mb.v21

11.6.2 Options

1 LECUSSO scheme
2 1st-order upwind
=3 QUICK scheme

ischem

12 Discussion and Conclusions

Based on the numerical results of the various test problems, the following conclusions
are drawn.

To predict complex flow and temperature field, such as vortex shedding, it is
necessary to have a high-order scheme such as QUICK and LECUSSO.

Based on the numerical results of various test problems, the high-order schemes, both
QUICK and LECUSSO with oscillation dumping techniques such as FRAM, agree well with
experimental data. However, the agreement becomes poor without the oscillation dumping
technique FRAM.

From a stability point of view for a problem with uniform mesh, high-order schemes
LECUSSO and QUICK are stable. However, it appears that LECUSSO is more stable than
QUICK. It can be shown that the truncation error of QUICK is smaller than that of
LECUSSO. For a nonuniform mesh system, the situation is very different. Both LECUSSO
and QUICK are unable to demonstrate stability. With respect to computer running time and
storage requirements, the QUICK scheme has a slight advantage over LECUSSO, because
the formula for computing extrapolation coefficients in the LECUSSO scheme is more
complicated than in QUICK, and thus requires more CPU time, and because the
extrapolation coefficients used in the QUICK scheme are a function of mesh sizes only, they
can be computed once and need no updating for subsequent use. This is not the case for
LECUSSO because the extrapolation coefficients are a function of mesh sizes and mesh
Reynolds numbers. Mesh Reynolds numbers must be updated at every iteration. Thus, the
QUICK scheme has an inherent advantage over the LECUSSO from a CPU point of view,
providing that sufficient large storage space is available.
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