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Objectives

The basis of this research is to apply novel techniques from Artificial
Intelligence and Expert Systems in capturing, integrating and articulating key
knowledge from geology, geostatistics, and petroleum engineering to develop
accurate descriptions of petroleum reservoirs. The ultimate goal is to design and
implement a single powerful expert system for use by small producers and
independents to efficiently exploit reservoirs.

The main challenge of the proposed research is to automate the generation of
detailed reservoir descriptions honoring all the available “soft” and “hard” data that
ranges from qualitative and semi-quantitative geological interpretations to numeric
data obtained from cores, well tests, well logs and production statistics. In this
sense, the proposed research project is truly multi-disciplinary. It involves a
significant amount of information exchange between researchers in geology,
geostatistics, and petroleum engineering. Computer science (and artificial
intelligence) provides the means to effectively acquire, integrate and automate the
key expertise in the various disciplines in a reservoir characterization expert system.
Additional challenges are the verification and validation of the expert system, since
much of the interpretation of the experts is based on extended experience in
reservoir characterization.

The overall project plan to design the system to create integrated reservoir
descriptions begins by initially developing an Al-based methodology for producing
large-scale reservoir descriptions generated interactively from geology and well test

“data. Parallel to this task is a second task that develops an Al-based methodology
that uses facies-biased information to generate small-scale descriptions of reservoir
properties such as permeability and porosity. The third task involves consolidation
and integration of the large-scale and small-scale methodologies to produce
reservoir descriptions honoring all the available data. The final task will be
technology transfer. With this plan, we have carefully allocated and sequenced the
activities involved in each of the tasks to promote concurrent progress towards the
research objectives. Moreover, the project duties are divided among the faculty
member participants. Graduate students will work in teams with faculty members.




The results of the integration are note merely limited to obtaining better
characterization of individual reservoirs. They have the potential to significantly
impact and advance the disciplines of reservoir characterization itself.




Summary of Technical Progress

1. Decomposition of System

We have decomposed the overall system development into smaller component
parts to allow us to focus on the expert knowledge required for that component. In
addition, the decomposition will facilitate the implementation of the system and its
validation and verification. The three component systems will be representative of how
each of the experts in geology, geostatistics, and engineering characterizes the reservoir.
Figure 1.1 describes a model for this breakdown. The concurrent development of these
component systems fits into the development of the large and small scale aspects of the
system as originally stated in the proposal. In Figure 1.1, each component system in the
model is depicted as interfacing (through the bi-directional links) with a central repository
of reservoir descriptions. Though, portions of these description will essentially be passed
from component to component as more information is gathered (as shown by the bi-
directional links), the model of a central repository is an accurate account of how the
components are integrated, i.e., the final descriptions in the repository are consistent will
all of the information given by the components systems. This system model allows us to
develop the system using an Artificial Intelligence technique called a blackboard system,
in which information is centrally located, i.e., on a blackboard, and experts take their turn
to update, change, and correct the information on the blackboard.

geostatistical well test
system system

reservoir
description
repository

geological
system

Figure 1.1: Expert System Decomposition

All implemented code has been portedinto C/C++ for integration. This includes
both Fortran and Kappa-PC implementations of the various component systems that have
been developed to this point.




2. statistical em: In rating Dvnamic Constraints in a Reservoir

Description Process'

2.1 Introduction

The primary objective of this work is to develop a procedure for implementing
dynamic constraints, such as well test and production data, in a reservoir description
process. This should improve the description because:

1. It is a generally-accepted principle that the addition of constraints
reduces uncertainty and thus a closer approximation of the
reservoir is obtained.

il Reservoir parameter estimation from point measurements is an ill-
posed problem; stabilization is thus required in order to obtain a
meaningful estimate. The addition of prior information as a
constraint will enhance our ability to stabilize the ill-posedness of
our problem.1

jfii. - Dynamic constraints, e.g. production and pressure data, provide the
only observable response which is representative of reservoir-scale
behavior. They also provide "in-situ" information. Other available
data, including log and core data, represent reservoir data which is
limited to the near-wellbore region.

iv. In the proposed approach, geological constraints can be
subsequently included to create a truly integrated reservoir
description.

2.2 Approach

Conditional simulation, because of its ability to honor the sample data and create
multiple equiprobable reservoir descriptions if required, has been selected as the
stochastic method which will be used for this study. Specifically, ZtEIC conditional
simulation algorithm to be employed is the Simulated Annealing Method. " This method
was selected because of its robustness and the facility and flexibility in incorporating
conditioning data and additional constraints.

Simulated annealing is an example of adaptive heuristics for multivariate or
combinatorial optimization.3 Its implementation requires the definition of an objective
function, the magnitude of which defines how well our estimated model "fits" the input
model. A parameter which can characterize the model is used in the objective function
(variogram models are normally used). The goal of the algorithm is to optimize




(minimize) the objective function. Note that more than one model parameter may be
used, in which case we attempt to minimize the combined effect of these parameters.

Our approach involves the coupling of a. numerical flow simulator to the
simulated annealing algorithm. The flow simulator will constitute a dynamic constraint
as part of the simulated annealing objective function. The objective function will then
consist of a variogram constraint and a flow simulation constraint.

The Laplace Transform Finite Difference (LTFD) method* will be used for the
flow simulation. This method is based on solving the single-phase flow equations in
Laplace space. It has the advantage of using only one timestep between the initial time
and the time of interest. As a result this method is computationally far less expensive
than other numerical methods.

2.3 Areas of Research Focus

2.3.1 Input Data

Analysis of the behavior of the composite objective function led to the conclusion
that the rate of convergence was too slow. Additionally, the terminal objective function
value of about 0.1 was too high for one to conclude that convergence to a globally-
optimal solution had occurred.

For the flow simulation part of the objective function, we compare observed
pressures to pressures calculated by the flow simulator as a means of judging how closely
the performance of the estimated model approximates the “true” reservoir description.
This comparison is done in Laplace space, and so a routine to convert the real time and
space data to Laplace space is used.

We determined that the precision of the Laplace transform of the input data could
be improved by the inclusion of more data values for better interpolation and by choosing
the appropriate data extrapolation procedures (which depends on the flow regime
characteristics at the time from which we have to ex‘crapolate).5 This improvement in
precision produced better results in that convergence was faster and the terminal objective
function value reached about one order of magnitude lower at approximately 0.01. Also
the maximum absolute percentage error between the ‘observed’ and calculated Laplace
space pressure values was reduced to about 0.8%. It is thus necessary to undertake some
pre-analysis of the input data to ensure that the data quality and quantity are adequate and
also that the appropriate algorithms are used.

2.3.2 Training Images

In recognition of the direct relationship between the time required for running the
simulated annealing algorithm (especially when the flow simulation is included) and the
the level of grid discretization, it was decided to undertake runs with smaller grids
(upscaled grids). The algorithm would then run faster, enabling speedier analysis of the
optimization schemes. The use of various approaches was considered for generating the




“training images” used in testing our algorithm. The turning bands method,® sequential
Gaussian simulation (sGs)7 and simulated annealing (SA)2 were some of these.

The turning bands method has two major drawbacks, which will be mentioned but
not discussed here:

) artifact banding in the realizations,
(i)  difficulty in handling anisotropy directions other than the
coordinate axes.
sGs, for the grid sizes with which we worked, also did not perform to our satisfaction, by
requiring more conditioning data than we wanted to use.

Because of the shortcomings of the first two, we developed an approach using SA.
Code was developed to create a cumulative distribution function (cdf) for log-normal
data. This was then used as input to a variogram-only objective function SA run to obtain
the synthetic image used as a training set. In this approach we can control the variance
and mean of the model we use, as well as the variography.

2.3.3 Algorithmic Considerations

By far, the major effort was expended in developing and improving the algorithm.
The three main packages analyzed were the flow simulation code, the matrix solver and
the SA code. Changes to the SA algorithm were considered only in terms of
modifications made to implement the flow simulation constraint. The basic, variogram
constraint-handling SA code was considered sufficiently optimized. Changes to the
matrix solver were made, not by modifying the code, but by considering alternate solvers.
The flow simulation code, however, was closely scrutinized. From the above comments,
it can be seen that all these efforts were directed at improving and optimizing the flow
simulation performance, since this was recognized as the critical area needing attention.

2.3.3.1 Flow Simulation Code

(a) Coefficient Matrix Code

The heart of the flow simulation code is the development and solution of the
matrix of coefficients for the gridblock pressures. We did a detailed study of the structure
of that matrix and determined that, for the given boundary conditions, the matrix is a 7-
band, sparse, symmetric system. There is little scope for improving the matrix
formulation code, but we were able to optimize the code which updates that matrix
(which is required when we perturb the description). We determined that on update only
19 matrix elements are affected (13 for a 2-D grid), thus we need to change only those
clements. Initial testing has shown that the changes have resulted in some gain in
efficiency, but not of the magnitude hoped for.

(b) Variable Rates or Constant Rates
When variable rates are used - i.e. rates which are step functions of time -- it has
been observed that the LTFD method results in pressure changes, coincident with the rate




change, which are “smoother” than they should be. This smoothing problem is confirmed
when we compare the results from the LTFD simulator with the results from the
ECLIPSE-100 (ECL)8 simulator. In fact, in general the use of variable rates with Laplace
transforms is problematic. One solution’ has been to use a constant rate solution in
Laplace space and use superposition in real space to correct for the variable rates. This is
not a viable approach for our case, since we solve our problem entirely in Laplace space.
- Recently a procedurem was presented for correcting this anomaly. This has led to our
consideration of two approaches:

(i) the use of the Chen et al approach'® to correct the variable rate
problem,
(i)  the use of constant rates to avoid the Laplace transform problems
and the problem of the introduction of new transients at each rate
change.
The equation given in reference 10 for the “corrected” bottomhole pressure in
Laplace space is:
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G(s) is defined by the equation: p, G0) p(s).
~ Firstly, it seems that this equation may be incorrect, so we will have to verify its

accuracy before any further consideration of its usage. Secondly, the structure of the
equation suggests that, in order to determine the variable rate, Laplace space, bottomhole
pressure for a particular value of s, we have to determine the constant rate, Laplace space
solutions for a number of s values equal to the number of times the rates are changed.
This would mean introducing a significant extra computing “load” which would add to

the algorithm’s inefficiency. For this reason, we have suspended further consideration of
this approach and for the moment we are concentrating on the constant rate approach.

2.3.3.2 Matrix Solver

We considered matrix solvers from the SLAP,'' ITPACK' and Templates13
packages. Some solvers promise faster execution times; however, because of the
specialized nature of those approaches, they have not yet been tested. For example, red-
black ordering implies parallelization of the code -- something which we are not




considering at present. We did not test the Templates codes because of time constraints
and there seemed to be minimal advantage in exploring this alternative. Table 2.1
summarizes the results obtained with the packages tested. A 224-block dataset was used
for the testing.

Package Method Run Time (CPU Sec)
ITPACK | Jacobi Conjugate Gradient (JCG) 14096
| Symmetric Successive Overrelaxation
Semi-Iteration (SSORSI) 44084
SLAP | Conjugate Gradient (CG) 13824
Generalized Minimum Residual (GMRES) 22045
Bi-Conjugate Gradient Squared (BCGS) 14283

Table 2.1: Comparison of Run Times for Various Matrix Solvers

Based on the above results, we have selected the SLAP CG code for use. Consultation
with the Mathematical and Computer Sciences Department at the University of Tulsa
has suggested that our choice was the appropriate one. -

2.3.3.3 Simulated Annealing Code

(a) NVAL Parameter

NVAL is the parameter used for the number of pressure values per well used for
comparison in the flow simulation part of the objective function of the simulated
annealing algorithm. This is defined in the following equation:

NDIFF L[Ap(z):[

Flow Simulation Part for Iteration, k = wgf2* — @)
B\ 2 | 0]
where
wgt2 =weighting applied to the flow simulation part
NDIFF| [, i
E} = Z [Ap( )I = Initial Flow Simulation Energy €))
proe

NVAL - = Number of summation terms per well
NWELL = Number of wells
NDIFF = NWELL*NVAL=number of terms used in the summation

L[Ap = the Laplace transform of the change in the flowing bottomhole pressure

Ten was the NVAL value being used. The run time of one iteration in the
algorithm is proportional to NVAL, so we analyzed the effect of the value of NVAL on the




performance of the code. Values of NVAL ranging from five to twenty were used. The
observations so far are:

() - The lower the value of NVAL the shorter the cycle time, but, in
some cases, more cycles are needed for convergence. This suggests
that there is/are optimum values for NVAL. It seems that this value
is about six or seven. However, these results are for just one dataset
so far.

(i)  The relative “goodness of fit” of the distributions obtained using
the different NVAL values is difficult to determine by visual
inspection (i.e. whether one description is better than another) and,
since we are still researching an appropriate objective measure of
goodness of fit, has not yet been determined.

(b) Variogram Pre-Selection Approach

It was suggested15 that we could significantly improve the execution time of the
SA algorithm if we could determine before running the flow simulation whether a
perturbation would be “beneficial”. We subsequently determined that using the
variogram-based objective function change as a criterion for deciding whether a
perturbation would be accepted, was a good approach since the acceptance of the
variogram-only change was highly correlated with that of the two-part objective function
change (conservatively over 60%). '

(¢) Two-Scale Approach

If we could use an upscaled grid for the flow simulation part of the algorithm,
then we would be able to reduce the execution time of the algorithm considerably. In
addition, this approach would allow the consideration of grid sizes (at the fine scale)
which were previously prohibitively large for flow simulation. Note that we would still
perform the variogram analysis at the finer scale. The upscaling methodology is the major
problem to be solved for this approach to be viable. While the upscaled distribution
“resembles” the true distribution, matching the flowing bottomhole pressures obtained
from flow simulation at the different scales is a problem.

(d) Two-Scale, Variogram Pre-Check Approach

This is a combination of the ideas in (b) and (c) above. It is the approach on which
we are currently focusing. In this approach the objective function consists of two parts: a
variogram component and a flow simulation component. The perturbation strategy is
single-point. The algorithm proceeds as follows:

1. An initial distribution is generated which honors the spatial
statistics and the conditioning data.

ii. The initial temperature level is determined by the procedure
suggested by Aarts and Korst."®

iii. A coarse scale gridblock location is randomly selected. Based on

the upscaling factor, the corresponding fine scale grid locations are




determined, and one of these is perturbed. We evaluate the
variogram part of the objective function on the fine scale grid
system and test the energy change via the Metropolis condition.
This is the pre-selection stage.

iv. If the perturbation is accepted then the average of the
permeabilities of the fine scale blocks -- which make up the
upscaled block selected in part iii above -- is determined. In this
way the upscaled grid system is perturbed and this modified
system is flow simulated. The flow simulation-derived change in
the objective function (energy) value is thus determined on the
upscaled grid system. The approach is thus a 2-scale one.

v. The composite (combined variogram and flow simulation) change
in the objective function is determined. Again the Metropolis
condition test is used and if #his test is passed then the distribution
is modified by updating with the new permeability value at the
perturbed fine scale location. The energy (objective function) value
is also updated.

Vi. The convergence tests are conducted. If not satisfied, another
location is selected and we loop again.

This approach was used on a 8100-block (90x90) grid system. The results are
shown in Figure 2, comparing the true distribution with those obtained with a variogram-
only objective function and the composite objective function.

4500
4000 _J
3500 7
3000

2500

y-loc

2000
1500

1000 _|

T T
1800 2700

x-loc

10



Both Constraints; 5 wells Variogram Only

4500

4000

3500

3000

2500

y-loc

2000

1500

1000

500

1e]oo 2700 1800 2700

x~loc x~loc

Figure 2.1: Comparison of the “Training Image” with Images Obtained Using a
Two-Part Objective Function and a Variogram-Only Objective Function

The image generated using both constraints (variogram and flow simulation)
seems to better capture the major features of the true distribution. As noted at (c) above
however, the flowing bottomhole pressures from the upscaled model do not match the
true scale (fine scale) values very well, especially at early times, thus we expect that our
match would be better if we could formulate a methodology which enabled the flowing
bottomhole pressures obtained at the different scales to match.

The SA run for the composite objective function took about 18 hours of CPU time
on an HP RISC workstation with an objective function tolerance of 0.05. It should be
noted that this does not represent the limits of the algorithm’s efficiency since better or
more sophisticated matrix solvers (for example the ECLIPSE-100 solver: conjugate
gradient accelerated by orthomin) can improve the execution time required. Should we
attempt to use a 1-scale, no pre-select approach for a grid of this size, it would take a
prohibitively long time -- on the order of several days. '

(e) Time Scale Used for Flow Simulation Pressure Comparisons in SA

In a strict sense, upscaling results are valid only after the onset of pseudo-steady
state flow. In the SA algorithm not much attention was paid to this constraint, and the
comparison of pressure values was made at times over the entire range of the flow period.
However, as alluded to at (c) and (d) above and shown in Figure 2.2 below, when we
compare the pressure response obtained from flow simulating a fine scale description and
that of its equivalent coarse scale model (obtained, e.g. by geometric averaging
upscaling), there are significant errors in the pressure values, especially at the early times.
These results are for a 33x33-block reservoir (the upscaled grid is 11x11) with three wells
flowing at constant (but different) rates.
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Relative Errors for Geometric Averaging Upscaling

(33x33 blocks upscaled to 11x11 blocks)
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Figure 2.2: Example of Relative Errors in Upscaled Flowing Bottomhole Pressure as
a Function of Time

These results. prompted further investigation into upscaling, includingv an analysis of
alternative approaches used for permeability upscaling. '

2.3.4 Upscaling

2.3.4.1 Comparison of Upscaling Methods

(a) Methods and Dataset Used

The three upscaling methods used were: renormalization, geometric averaging and
tensor upscaling as displayed in Figure . A fine scale, 8,100 (90x90) blocks permeability
distribution was upscaled using two factors: 9-to-1 and 25-to-1, resulting in 900 (30x30)
and 324 (18x18) blocks coarse scale distributions respectively. The fine scale and all the
upscaled distributions were flow simulated for approximately 300 days with 5 wells
producing at constant (but different) rates. The resulting profiles of flowing bottomhole
pressures (pwif) over time for all the upscaled grids were compared to the results for the
fine scale grid, which we consider as the “truth case”. Thus plots of relative error in pwf

12
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error in pwf (actually the error in the change in pwf) versus time were developed for all
the upscaled distributions. .

(b) Error Profiles from Different Upscaling Methods
The behavior of the relative errors for the distributions obtained from the three

upscaling methods were quite similar for both the 9-to-1 and 25-to-1 cases. Thus one
upscaling method does not seem to have any clear advantage over the others when the
flowing bottomhole pressures are compared.
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Figure 2.3B: Relative Errors in Upscaled Flowing Bottomhole Pressure as a
Function of Time for Three Upscaling Methods & Two Scaling Factors
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(c) Coarse Scale Wellblock Permeability Values From Different Upscaling Methods

The upscaled wellblock permeability values obtained from the three methods were
found to be quite close. Table 2.2 and Table 2.3 summarize these results. This agrees with
the observation in (b) above, and supports the conclusion that, in terms of this analysis,
one upscaling method has no apparent advantage over the others.

well #] 8100-blks 900-blks
tensor-x | tensor-y | renorm-x | renorm-y | geometric
1 69.005 68.681 68.652 68.656 68.636 68.665
2 83.943 78.152 79.077 78.860 78.143 78.623
3 33.898 32.148 32.924 32.400 31.813 32.535
4 66.844 59.330: 60.741 60.650 59.271}  60.045
5 82.171 65.291 64.947 65.032 64.618 65.121
Table 2.2: Coarse Scale Values for 9-to-1 Upscaling Factor
well #| 8100-blks 324-blks
| tensor-x | tensor-y | renorm-x | renorm-y | geometric
1 69.005 67.511 67.885 67.327 67.325 67.682
2 83.943 73.867 74.509 74.610  72.985 74.222
3 33.898 31.055 32.512 32.081 30.536 31.736
4 66.844 43.803 56.304 56.205 43.251 50.629
5 82.171 55.495 57.768 57.638 55.154 56.783

Table 2.3: Coarse Scale Values for 25-to-1 Upscaling Factor

2.3.4.2 Analysis of Relative Errors in Flowing Bottomhole Pressures

(a) Error Definition

where

The error in pwf is defined as:

E(%)=10

0.y, — 8Py,
A,

Ap., = fine scale Ap,,
Ap,, =upscaled Ap,,

]
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Referring to Figure , it can be seen that all the graphs show similar trends: increasing to a
“hump”, decreasing to a “minimum” value, then converging asymptotically to zero. The
early-time errors in the flowing bottomhole pressures are defined as the errors up to the
hump in the plots. Because of the times at which these occur, it seems that these humps
correspond to the times at which the upscaled wellblock boundaries are reached by the
pressure transient. An analysis of the plots shows that the early-time error is a function of
the magnitude of the difference between the wellblock permeabilities at the fine and
upscaled grids. Darcy’s Law defines an inverse relationship between pressure change and
permeability, thus when the fine scale wellblock permeability is higher than the upscaled
wellblock permeability (which means that the pressure change at the upscaled wellblock
should initially be higher than that at the fine scale wellblock) we observe that the error
tends to lie on the negative side of the error (vertical) axis. This behavior is shown in the
graphs and further to this, we see that the larger the difference in the permeabilities at the
different scales, the larger is the early-time error. In addition, we had found that the wells’
proximity did not seem to have any significant effect on the errors.

These results suggested two approaches for dealing with the early-time errors:

@) find a better upscaling algorithm
(i)  use an alternative approach -- other than upscaling -- for handling
the near-well permeabilities.

2.3.4.3 Modified Upscaling Approach

(a) Single Phase Flow

Results from the first approach are shown in Figure 2.4. A 9-to-1 upscaling factor
is used with a 33x33 (1089) blocks grid at the fine scale and 11x11 (121) blocks at the
coarse scale. Figure 2.4 shows the errors in the pressures when the conventional
geometric averaging upscaling technique is used and when a modified technique is used. In
the modified approach, we set the upscale wellblock permeabilities as a weighted average
of the arithmetic average of the 8 fine scale blocks surrounding the wellblock and the fine
wellblock permeability value. The weights applied are 0.1 and 0.9 respectively.
Conventional geometric averaging is used elsewhere. It can be seen that there is
substantial improvement in the results, since for the modified upscaling approach, the
errors lie within +7% and converge to 0% faster than the conventional results. Similar
results were obtained for a 45x45 (2025) grid upscaled to a 15x15 (225) coarse scale grid.
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Relative Errors for Conventional & Modified
Geometric Averaging Upscaling Approaches
(33x33 blocks upscaled to 11x11 blocks)
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Figure 2.4: Comparison of Results Between the Conventional & Modified
Geometric Averaging Upscaling Methods

(b) Two Phase Flow

.A model for two phase flow system is developed after upscaling the fine scale grid
by a factor of 5 in each direction. The fine scale grid consists of 90 x 90 (8100) grid
blocks and the coarse scale consists of 18 x 18 (324) grid blocks. In applying the modified
upscaling technique for the wellblock, three weight values are required; one for the fine
wellblock permeability, one for the arithmetic average of the first layer (8 fine scale blocks
surrounding the wellblock), and one for the arithmetic average of the second layer (16 fine
scale blocks surrounding the first layer blocks). The weights applied are 0.9, 0.08, and
0.02. Figure and Figure show the relative errors for the geometric average and modified
upscaling technique respectively. As in the single phase flow case, significant improvement
is obtained after applying this modified technique. The errors are reduced and converged
to zero much faster.

This technique suggests that the fine scale wellblock permeabilities should be much
more heavily weighted in the upscaling process. The results also show some promise that
this may lead to effective upscaling technique.
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Figure 2.6: Relative Errors for Two Phase Flow Model using Modified Upscaling
Technique

2.3.4.4 Radius of Investigation Concepts and Approach

The second approach of dealing with the early-time errors involved consideration
of the radius of investigation concept. Since the transient behavior of the pressures
seemed most problematic, we considered using an analytical approach to obtain the
upscaled average permeability for the near-wellbore region by estimating the time at which

18




the pressure transient reaches the upscaled wellblock boundaries and iteratively solving for
the average permeability.

(a) Definition of Radius of Investigation
Various authors have discussed this concept. In all cases the radius is defined as:

1y = Aty ©)
T,

where g = -;’— (6

r, = radius of investigation, (ft.)
r,, = wellbore radius, (ft.)

kt
t, = —— (7)
° gucr)
k = average permeability, (md.)
t = time, (days)

¢ = porosity (assumed constant in our case)
M = viscosity, (cp.)

¢, = system compressibility, (psi™')

A = a numeric constant

The A4 value has been defined as 0.03248 by Lee” for a homogeneous reservoir,
0.038 by Oliver™ for a heterogeneous reservoir in which the permeability variations are
small about a reference permeability and 0.01 by Alabert'® as an ‘optimum’ value for a
heterogeneous reservoir. Using the different A values and geometric averages for the
upscaled block permeabilities, we attempted to verify which 4 value gave the best match
to the geometric-averaged case. The results were inconclusive, since in some cases one 4
value showed better agreement, while in other cases the others performed better.

(b) Approximations Used for Cartesian Grid System
For convenience in using a Cartesian gridding system, we used the following
approximation in this radius of investigation analysis:

r ,/M ®
w

where r,, dx, dy are defined in the figure below.
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dx

For the case where dx=dy, there is an approximate 9% error in this assumption, in that the
area lying outside of the grid is about 9% of the square grid area.

(c) Oliver’s Weighting Function

In trying to determine the ‘best’ A value, we assumed that the ‘effective’
permeability is averaged over an approximately circular area (in 2-D) defined by the
radius of investigation. However, as Oliver'® has shown, the permeability affecting the
change in the flowing bottomhole pressure is centered in an annular region. The location
of this region relative to the wellbore is a function of time. In fact, the ‘kernel’ or
‘weighting’ function he derived, determines the relative contributions of the reservoir
permeabilities at a given time on the ‘effective’ permeability at that time. It should be
noted that, because of the shape of the weighting function, the permeabilities within the
annular band do not all contribute equally to the effective permeability. Of interest to our
problem are the definitions for the radii at which 1% and 99% respectively of the annular
area are located:

/ o, = 0002,/7, | (93)
o, = 00381, (9b)

where £, is as defined before.
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Note that the maximum (99%) radius is equivalent to the radius of investigation of
other authors. This means that for our approach, the error in using a circular region as
opposed to the more correct annular region is about 0.3% -- the ratio of the smaller area
to the larger area. We thus conclude that the circular approximation, which is simpler to
determine, is adequate for our purposes.

(d) Average Permeability Determination
The procedure for using this approach is as follows:

i ‘Using equation (8), calculate the equivalent radius to the block

boundary.

i. Initialize the estimate for the wellblock permeability (the fine scale
wellblock value can be used). Call this k1.

iii. Using equation (5) with the estimated permeability value, calculate
the time at which the transient would reach the block boundary.

v. Assuming transient flow, calculate the semi-log slope by using a

regression fit of the pressure values up to the time calculated above.

Calculate the effective permeability from this slope. Call this k2.

V1. If the absolute value of the difference between k1 and k2 is greater
than the tolerance, replace k1 by k2 and go back to step iii. If not,
stop. This is the value to use for the uspaceld wellblock
permeability.

<

(e) Results and Comments

The results using this approach were mixed. In some cases, there was a reduction
in the error, while in others where was not. Part of the reason seems to be that the
permeability calculation is very sensitive to that of the semi-log slope, and we have found
that within the time estimated to reach the boundary of the wellblock, there can be
significant variations in the magnitude of that slope. For example, assuming that there are
10 pressure-time values within that time range, we would get different slopes if we were
to use e.g. 5, 7, 10 of these values. In all cases also, the regression statistics would
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indicate that the fits were good. So while there may be some promise to this approach,
more work needs to be done to stabilize the results.

2.3.5 Wavelet Approach

The main purpose of applying the wavelet approach in this study is in the aim of
reducing the flow simulation computing costs. Before we can actually implement this
approach in solving the computation time problem, an investigation about the feature of
the wavelet- base flow simulation is required. The subsequent paragraphs discuss this
feature.

Wavelets are a family of basis function similar to Fourier transforms that have
orthogonal basis functions called the scaling functions and the wavelets. The potential
eficacy of the wavelet transform lies in two of its properties :

(a) the scaling functions and the wavelets have quite compact support,
i.e, it is only locally-defined thus making it suitable for segregating
information in data into local intervals, and

(b)  the wavelet transform provides the flexibility to choose a particular
basis (wavelet) function that is customized to the specific
application.

Using the wavelet transform we can convert the original permeability distribution
into frequency domain space which results into coefficients. These coefficients are related
to the variation of the original distribution. The small coefficient values may contribute
very little to the overall characteristic of the original distribution so we can discard them.
It is the purpose of this study in finding out the level where we can still discard these
coefficients while maintaining the overall flow performance of the reservoir. The process
of discarding certain percentage of the small coefficients will be referred to the
compression process in the subsequent paragraphs. For example, a process with 75%
compression factor means after transforming the original distribution via wavelet
transform, 75 % of the small coefficients are discarded and only the remaining 25 % is
used in transformating back into the original space.

Figure presents the original permeability distribution and the permeability
distribution after being compressed with 50%, 75%, and 95% compression factor. We can
observe that the overall feature is retained in all cases. But, whether or not this is really the
case, flow simulation is required to investigate the overall flow performance. The relative

error of the bottom hole pressure as used in the previous section is also used in this
analysis.
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Original Distribution Compression Factor : 50%

Compression Factor : 75% Compression Factor : 95%
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Figure 2.7: Permeability Distribution for Several Compression Factors

Figure show the results of the relative errors for the two phase flow model. From
Figure A-C we can see that the absolute value of the relative errors are less than 8 % and
are converged to zero at a certain time for the cases with compression factor of 25%,
50%, and 75% whereas from Figure D which is the case of 95% compression factor the
relative errors become bigger and do not really converge to zero after long time. Thus,
these results suggest that we can perform the compression process up to a factor of 75%
and still maintaing the overall flow performance. Similar results are also observed from the
single phase flow model.
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2.3.6 Analysis of Single-Point Perturbations

This study was undertaken to get better insights into the behavior of the ﬂowmg
bottomhole pressures of wells when a perturbation of the permeability field is made. We
measured the changes in the pwfs of the wells (actually the Laplace transform of the
change in the pwf) as a function of time for a perturbation at a specified location in the
field. Some of these results are presented Figure and Table 2.4.

1.063 — 8a8100 run 8.0E4 — sa8100 run
perturbation 1 in TINIT perturbation 3 in TINIT
nearest to well 3 ’ - nearest to well 1
] magnitude: .5 magnitude: -2
8.064 — old k: 24.6
g 0.0E+0 — g ’
= 1B & =
-E‘ Y \;: . _:,\— FERL
- * ©
-4 B -] N ~ 2 4
z RN - £
o . ~ o
2 -] ' - ~2 2064 ~
s . I B J =
§ e \u\ \ s ]
-A-2 R o
-8 : . 00E0 — Bl —"9"'1"—'!_" =
1 - \\6‘\,,/" i ~$--.--A-‘:9-3
—+- s - 4
- \:: S
«20E3 T 1 T T T T T T 1 1 -2.05-4 T T T T T T T T T ]
[ 2 U s 10 0 2 6 10
Time Level Time Level
sa8100 run
perturbation 4 in TINIT $a8100 run
4052 1 nearestto well 4 3064 — perturbation 6 in TINIT
magnitude: 3.3 nearest to weil 2
4 oid k: 30.6 ] magnitude: -7.5
.G =8 -8~—p. . 1 9.
g———ﬂ'-a"’s'.:::-g--a--zs---a--'g old k: 9.9
0.08+0 — [ e -
C e >~ ) T e e e ::
§ J T he—p -y BT g
-]
S a2 ™ H
£ - 1 &
5 | 5
g 1= :
= 4 ®
§ -2.0E-2 —t— , é
& 4 s &
261 — /
\ o i
.\o- - o — -~
AN 77— T ] MW7 717 T
' [ 2 4 [ ] 10 [} 2 4 8 3 10
Time Level Time Level

26




$a8100 run
1.08-2 —

perturbation 8 in TINIT
nearest towell 4
magnitude; .7 a--a-
71 oldk 9.0 -8 ~ e
0.08+0 —| : -
. a - ez
g S . .e §
o ¢ -1 o Dyg’ )f—‘-
£ B . 6. —a e T oe— -be ™
°
% 1,082 — 2
5 et s g
.g § -1 g
-A. 2 P
: AN 8 o8
2082 — -0 4 ’,
\ e i ] /
Y - s
e -~ A
. —— -
3082 T T T T
] 2 4 6 3 10
Time Level

401 —

.0 —qg.
P .
3.06-1 —| .a’ ﬂ\n
o .
$a8100 run ..
wor # perturbation 10 in TINIT i
0814 o nearest to well 3 AN
-A-2 magnitude: -1.8 ‘o
S =T oldk 15.6
—— s
1061 ~ | _
—- s
T - e e T —e
S —._o_——b--b—b~-§
0.0E+0 — . - —_— e — — o —t
S o~a.
a. L JREE
4 t e a- ar
-1.081 :

! 1
10

'Figure 2.9: Time Behavior of Well Pressure Changes with Single-Point

Perturbations
perturb| distance | distance | distance | distance | distance | distance
# |towell 1[to well 2|to well 3{to well 4]to well 5{to well 6
1 3132 1820 7! 1601 2915 2358
3162 2000 2121 3400 2915
59| 1677 3500, 4191
4 1346 1458 1250]
5 3010 2693
6 3579 3758
7 ©1581 2750
8 1250 1275
3132 4257
1601 1768

Table 2.4: Locations of Perturbations Relative to Wells

The relative change is defined in a manner analogous to equation (4). From this
analysis, we have empirically determined the sign of the change at the well nearest to the
perturbation -- for the perturbations we studied - is always correct as expected from
Darcy’s Law. That is, if the permeability at the wellblock is increased, then the pressure
change at the well is negative and vice versa. This seems to suggest a possible strategy for
manipulating the magnitude and direction of the perturbations. The idea is that by
determining the location of the well nearest to a proposed perturbation, we can decide
beforehand in which direction to perturb the permeability value at that point. This idea is
yet to be tested.
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2.4 Conclusions

1. Input data quality control is important to determine whether the
appropriate quality and quantity of data is being used.

2. A procedure was developed to generate synthetic images which are

7 used in testing the methodology.

3. The coefficient matrix code of the flow simulation program has
been optimized.

4, A constant rate (as opposed to a variable rate) approach is the more
appropriate option at this time.

5. The pre-conditioned conjugate gradient matrix solver is the method

' of choice for our application.

6. All of the upscaling approaches tested produced similar results on
flow simulation of the upscaled grids.

7. Visual inspection suggests that the addition of the dynamic

constraint to the objective function of the simulated annealing
algorithm does improve the match between the training image and
the generated image over that obtained when only a variogram
objective function is used. However, an objective measure of this
relative “goodness of fit”, the linear correlation coefficient,
performed inconsistently, giving a higher correlation for the model
from the variogram-only objective function in some cases and for
that from the composite objective function in others. This raises
questions about the utility or suitability of that coefficient.

8. The simulated distributions were flow-simulated using the

' ECLIPSE simulator. Comparison of the pressure-time behavior
showed a consistently better agreement with the training image by
the distribution generated with a 2-part objective function over the
distribution obtained from a variogram objective function.

9. The variogram pre-selection, 2-scale approach is a viable
methodology which would produce satisfactory results if the
problem of pressure matching between scales is resolved.

10.  There is promise in some of the methodologies being studied for
improving the upscaling approach to address the problem
mentioned at 3 above.

11. A strategy using the well nearest to the perturbation to determine
the magnitude and sign to use for the perturbation has been
proposed. «

3. Geological System: Sand Body Identification

In order to analyze well log data, we solve the following two problems
sequentially:

o Well log segmentation problem
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e Log facies identification problem

Well log segmentation. Given a well log data file the system determines the endpoints of
every sand body present in the log file. This is needed to divide the well log (gamma ray)
into discrete stratigraphic units. Such segmentation is for log facies identification and well-
to-well correlation. A rule based system is applied to the original data file to determine the
cuts or segments. The resulting file is then fed to the system in charge of solving the log
facies identification problem.

Log facies identification. Given a well log data file and the predetermined cuts, the
- system determines which kind of facie or sand body is between any two cuts. A neural
network is used to solve this problem. The input to the network is an intermediate file
generated by the rule-based system.

Our neural network was previously trained with expert-classified well logs to
recognize the following set of fundamental shapes:

bell, funnel, blocky, symmetrical, linear

The log files used for training must undergo a scaling and normalization process to
compensate for well-to-well variations in gamma ray values as well as variations in
thickness. Also, the same shape may have different sizes which, again, requires some kind
of normalization.

3.1  Advantages of Neural Networks

Neural networks are particularly well suited to solve the sand body recognition
problem for several reasons. Among its most important features are:

¢ Human -brain-like processing

e Abilily to recognize patterns for systems such as:
1. pattern recognition systems
2. handwriting recognition systems
3. classification systems

Models for neurons and neural networks are available extensively in related
literature as well as several techniques to train them which have been thoroughly tested.

3.2 Neural Network Architecture

Despite all the knowledge available on neural networks, no standard procedure
exists to determine an optimal network configuration to solve a given problem. Such
procedures exist only for the most simple kind of problems which are known as linearly-
separable problems requiring very simple structures (single layer configurations).

29




However some guidelines exist to solve more complex problems (non linear-
separable problems) and they require multiple layer structures. Tests must be made to
ensure that a network structure will be capable to solve the problem up to some level of
confidence.

In order to solve the log facies identification problem the following three-layer
structure showed to give acceptable results:

e Input Layer (16 neurons): every shape is discretized so it will consist of 16 points.

 Each one of these points is fed to a neuron in this layer. In consequence, the network
is looking at a whole shape at any given time.

e Hidden Layer (100 neurons): this layer is used by the network to store what is known
as the internal representation.

e Output Layer (5 neurons); this layer is the output of the network which is designed
and trained to recognized five fundamental shapes. Each neuron in this layer
correspond to a different shape (bell, funnel, blocky, symmetrical and linear)

The neural network is fully connected, that is every neuron in a layer is connected
to every neuron in the following layer.

3.2.1 Supervised learning algorithm

A supervised training algorithm is applied to train the neural network. The
algorithm is known as error-back propagation algorithm. The output of the network is
compared against that of an expert and errors at the output layer are computed. Errors are
then propagated from the output layer to the input layer and weights are updated. It is an
iterative process. The network is considered to be trained when the maximum number of
iterations is exceeded or when the error is below some value. The algorithm is based on
the well known gradient-descent technique and it tries to minimize a quadratic error
measure.

3.3  Well Log Segmentation

Well logs have to be scaled and normalized in order to set a common ground on
which the problem can be solved. In consequence every log file is scaled in such a way
that:

e maximum gamma ray value maps to 1
® minimum gamma ray value maps to 0

As a result of this process all the gamma ray values will be within this range (0-1).
This is done before attempting to solve either the log segmentation or the facies
identification problems.

To segment the well log, we use a rule based sysiem that is structured as a two-
step system: :
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1. Identify local maxima
2. Apply rules to obtain breaks

The following rules are used by the system:

e Rule 1: a local maximum is a candidate break. This rule requires local maxima to be
previously identified and is the reason for step 1 in our system.

¢ Rule 2: the local maximum following a candidate must not be seen from the previous
identified break. By not seen we mean that the candidate is below the straight line
joining the previous identified break and the local maximum following the candidate.

3.3.1 Applying Well Log Segmentation Rules
This figure shows how this rules are applied to a section of a log:

Determining Cuts: Only maxima are
candidates

0.7
0.6 N Current Cut

05 4 \ N\ e Next Cut
04 ¢
03 +

02+
0.4 | Candidates

1 4 7 10 13 16 19 22 25

3.3.2 Segmentation Results

Figures comparing the neural network performance against expert classification for
one testing log (gamma ray) is presented here. Squares are cuts.
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The output of this system is then applied to the neural network.

3.4  Log Facies Identification

A neural network is also used to identify the fundamental shapes of sand bodies.

The log facies must be normalized and discretized scaled so they can be fed to the
network.

e Scale/normalize individual segments: a facie occurs between two consecutive breaks.
All points between two consecutive breaks are scaled so:
1. maximum value maps to 1
2. minimum value maps to 0
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e Scale/discretize depth values for each facie: the original data is linearly interpolated at
16 equally-spaced depth values and discretized accordingly. Points 1 and 16 are
breaks.

3.4.1 Identification Results

Table 3.1 illustrates the interpretations obtained from the neural network as
compared with the human expert for identifying the well log segments or cuts.

welll | 34 | 40 150 | 20 i 75

well6u 31 29 6.9 22 75.9

well7l 32 39 179 24 61.5

well7u 27 23 17.4 17 73.9

well8l 39 43 93 29 67.4

well8u 32 30 6.7 22 73.3

Total 195 204 4.4 143 70.1
Table 3.1

3.5 Neural Network Training and Testing

To identify the sand bodies, the neural network was trained using 11 different well
logs with a 97.2% recall rate or correct classification when compared to that of the expert.
The performance is described in Table 3.2 below.

Bell 49 49 100.0
Funnel 54 54 100.0
Blocky 81 79 97.5

Symmetrical | 80 80 100.0
Linear 25 19 76.0
Total 289 281 97.2

Table 3.2




4. Ge i tem: nti ion

In order to identify log facies and correlate stratigraphic units within wells across
a reservoir, a reference point must be available that identifies the interval of observation
for such analysis to take place. Marker bed identification provides the beginning and
ending interval depths for this analysis.

4.1 Introduction

Identification of marker beds is critical to the accurate correlation of reservoir
architectural elements. In meandering fluvial and fluvial-dominated deltaic depositional
systems, the stratigraphic elevation to (relative to a marker bed) the top of a facies is a
key rule in the correlation of architectural elements. :

‘Marker beds have two general characteristics: (1) Marker beds are comprised of
distinctive lithologies. Such lithologies, in turn, have distinctive wireline log
characteristics. A part of being distinctive is that such beds are usually thin (<5 ft.).
Marker beds commonly are associated with other lithologies in the overlying and
underlying strata. This tends to result in wireline log characteristics that vary in a subtle
manner from well to well. (2) Marker beds are correlative at least over the geographic
scale of most oil fields, and very commonly across entire sedimentary basins. Geologists
can readily adapt to or allow for the subtle variations in marker bed characteristics when
attempting to correlate from well to well.

Although the general characteristics of marker beds are simple and straight
forward, the automated identification is not so simple. Over the course of this reporting
term, we have tried several techniques which have had varying degrees of success.

The use of heuristic rules covering the magnitude of combined log values was
very successful in the identification of a known marker bed, but it also identified several
other candidates for marker beds; thus, it was not very discriminating. The cross
correlation approach was fairly successful in the identification of a known marker bed,
but in many cases it selected other intervals as being better candidates than the known
marker bed. Cross correlation is very sensitive to mutual changes in the slope of the data
strings being compared. The approaches to this point attempted to identify the marker bed
starting with any well and continuing on through well to well comparisons. The project
team came to the understanding that such an approach was unrealistic. The present
approach uses a type log, a common practice particularly in areas of mature development.

In areas of complex stratigraphy or covering large geographic areas, subsidiary
type logs can also be established. A type log is a wireline log from a strategically selected
well. In a type log, the depth ranges of major stratigraphic units are identified. This would
include any marker beds that are used in that geographic area. Other information that
might affect wireline log characteristics could also accompany the type log information.
The type log information, as well as other information/data shared across modules, is to
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be stored in the database module, which has yet to be developed. The user will be
responsible for inputting the necessary information. '

Given a type log, the characteristics of a particular marker bed can be evaluated.
In many cases, marker beds are characterized by large excursions in gamma ray or other
log values. For example, the carbonaceous shale Inola marker bed used in Glenn Pool
Field of eastern Oklahoma is noted for its extreme high gamma ray emission (about five
times the natural gamma ray emissions of other mudstones, calcareous mudstones and
finely crystalline limestones at a similar stratigraphic level). In other cases, the log shape
may be more distinctive, or some combination of the shape recorded on more than one
log. The major contribution of a type log is that it provides a starting point or known case
from which characteristics can be extracted and used to evaluate unknown cases.

4.2 Sum Difference Equation

The sum difference algorithm has proved, thus far, to be quite successful in the
identification of marker beds characterized by strong wireline log excursions. The
example tested is the Inola marker bed from Glenn Pool field of eastern Oklahoma.

Because the sum difference equation is sensitive to the magnitude of variation in
the data strings being compared, log data must be scaled and type logs for open- and
cased-holes should be considered separately. It is common for logs to vary from well to
well, and even within a well for different log runs. In cased-holes, the presence of casing
and annulus cement can alter the log characteristics from that found in open holes.
Therefore, if cased-hole logs are to be used, then a type log, or at least a known marker
bed segment, must be provided by the user. Thus, each log needs to be first scaled in a
similar fashion (Figure 4.1). Here, the gamma ray log data range (maximum value -
minimum value) is arbitrarily scaled from 0 to 100 for each well.
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Figure 4.1: Determination of Marker Beds
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The sum difference equation is next applied to gamma ray and resistivity logs
separately (Figure 4.1). The sum difference equation evaluates the squared difference in
log values between the type log interval of a known marker bed and the same log in offset
wells. The difference is summed across the depth range of the marker bed interval, and
scaled to the sum of the values in the marker bed interval (Figure 4.2). If the match is
perfect, then the sum difference ratio is equal to zero. The stronger the mismatch, the
greater the absolute value of the sum difference ratio.

n
(L -TLy
=0
n
Z (TL)
=0
where

L= gamma log for well under study
TL = type log for field under study
n=  number of feet of marker bed in

type log

Figure 4.2: Sum-Difference Equation

The marker bed interval is progressively moved along the log string under
evaluation with the sum difference ratio calculated at each comparison position or match
position. Thus, producing sum difference ratio values over an interval of match positions
(Figure 4.3). '

Open Hole Well: Self81

Sum-Difference Ratio

Match Position

Figure 4.3

Ideally, the sum difference ratio is at or near zero at only one match pdsition, thus,
providing an unambiguous identification of a marker bed. This is, however, not always
the case. The next step is to rank the sum difference ratio values falling close to zero that
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meet some user-defined tolerance limit (Figure 4.1). With the tolerance the module can
rank those sum difference ratio and their match positions. ‘

An artifact of the sum difference algorithm is the shifting of the position of peaks.
Thus, the module must return to the original log to identify the local maximum value
corresponding to those match positions falling within the tolerance limit. If the selected
depth does not correspond to a local maximum on gamma ray log, that selection is
rejected as a marker bed. If the selected depth does correspond to a local maximum then it
is considered a potential marker bed (Figure 4.1). Potential marker beds will be further
evaluated within the marker bed module using techniques to be developed in the next
reporting period.

Results of the sum difference algorithm are summarized in Table 4.1. Of the 13
well logs evaluated, the sum difference equation clearly ranked the known marker bed
(Inola marker) as number 1, a success rate of 62%. With the use of the local maxima
routine, the success rate is 69%. We would like the success rate to be better than 90%. In
two of the cases (BG 11-86 and Self 78) a marker bed well above and well below the
Glenn Sand were ranked ahead of the known marker bed (Table 4.1). These two failures
should be picked up if additional heuristic rules are used to establish the depth
relationship of marker beds to known reservoir intervals. With the application of such
heuristic rules, the performance should improve to 92%.

Well Log Type Used Identified Rank Comments
Marker Bed?
Self 56 open-hole yes 1
TRB48  open-hole yes 1
BG 11-87 cased-hole yes 2 Rank 1 within 2ft Inola marker
BG 11-86 cased-hole yes 2 Rank 1 below Glenn Sand
BG 18-32 open-hole yes 1
BG 18-33 open-hole yes 1
BG 11-85 cased-hole yes 1
P10 cased-hole yes 1
BG 11-88 open-hole yes 1
Self 78 open-hole yes 2 Rank 1 above Inola marker
Self 69 pen-hole yes 1
BG 11-89 open-hole no 5 Rank 1-4 below Glenn Sand
P12 cased no Not in top 5 ranking

Table 4.1: Results of sum-difference equation
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In Figure 4.4, we present the type log used to detect marker beds, along with a
well log in which the marker bed was found and a well log in which the marker bed was
not ranked high enough in the list of potentials to be chosen. The reasons why the marker
bed in well BG 11-89 was not successfully detected are twofold.

@ There are very high gamma-ray peaks below the Glenn Sand which
are being picked up as potential marker beds, thus causing a
ranking higher than the Inola marker bed.

(i)  The Inola marker does not show a characteristic high gamma ray in
this well. :

Examples of Marker Bed Module Success and Failure

Type Log Good Match Bad Match
SelfNo. 81 BG 1833 BG 1189
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Figure 4.4: Example well logs for marker bed module
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4.3 Future Work

The approach of the sum difference algorithm has provided a great deal of
improvement in the recognition of a marker bed having wireline log characteristic of
extreme log values. We are confident that with some additional heuristic rules, we could
achieve identification of greater than 90%. Any logs in which a marker bed can not be
resolved will have to either be sent to the user for identification, or not be used in the
development of an architectural model.

In recognizing that not all marker beds are characterized by strong excursions in
log values, a pattern recognition algorithm is to be considered for inclusion in the marker
bed module. This algorithm will be developed from the same approach used in the
automated recognition of a personal signature. We manually tested a simple set of
attributes over the last reporting quarter, but with this set we were not satisfied that the set
could sufficiently discriminate a known marker bed from other potential marker beds.
Knowing that marker bed log patterns can have subtle variants, this algorithm will not
likely work on its own, but must work in conjunction with the other algorithms contained
in the module.

To satisfy the lateral continuity (correlation) of and with allowing for subtle
variation in characteristic of marker beds a case-based reasoning approach will be
employed. Case based reasoning suggests a model of reasoning that incorporates problem
solving, understanding and learning. Case based reasoning can mean adapting old
situations to meet new demands, using old cases to explain new situations or reasoning
from precedents and interpret a new situation or create an equitable solution to a new
problem.

logical Syst mponents: lation Pr

The approach is to develop a set of rules for correlation of two log curves. The
rules are based on similarities in well log trace shapes, thickness and vertical position of
the zones. The segmentation of the well logs and log-facies identification by the neural
network and depths of identified marker beds will be given as input. This approach is
modified after Starzman and Kuo®’.

For correlating two zones from two different wells the following four criteria have
been chosen:

1. position of the zones with respect to the length of the logs;
2. distance of the zones from the marker beds;

3. thickness of the zones;

4. log-facies of the zones;
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5.1 Position of the zones

The position of a zone indicates where this zone appears in the log. A zone can be
in the upper, middle or lower section of a log trace. Determination of position is based on
the ratio of two parameters: (1) length from top of the log trace to the middle of the zone
and (2) total length of the log trace. If the ratio of the former to the latter is less than 1/3,
then the position is given as upper section. If this ratio is greater than 2/3, then the
position is given as lower section. Otherwise the position is middle section.

The rules for correlating two zones based on their position similarity can be
specified as follows: .

1. If the two zones being correlated have the same position (e.g.
upper zone with upper zone, middle zone with middle zone, etc.) in
respective logs, the position similarity is same. :

2. If a zone is correlated with another zone that belongs to either one
position higher or lower ( €.g. upper zone with middle zone , lower
zone with middle zone etc.) , in respective logs, then the position
similarity is close.

3. Otherwise the position similarity is apart.

5.2 Distance from marker bed

The rules for correlating two zones based on their distance from marker bed can
be specified as follows: :

1. If |d1-d2| <= x tan® , the zones are same,

2. Ifx tan® <|dI-d2] <=x tan6 + 10% of (d1+d2)/2, then the zones
are close,

3. ©  Otherwise, the zones are apart, where, d1 and d2 = distances of the

mid points of the zones being correlated, x = horizontal distance
between the two wells to which the zones belong, and 8 =
stratigraphic dip angle.
The user can be queried about the average stratigraphic dip angle or it can be set to a
default value of 15 degrees.

5.3 Thickness of zones

The rules for correlating two zones based on their thickness can be specified as
follows:

1. If [t1-t2| <= x tan@ , then there is no difference,
If x tan® < |t1-t2| <= x.tan® + 10% of tl(where t1 < t2), then
there is small difference, .

3. Otherwise, there is large difference, where, t1 and t2 = thicknesses
of the zones being correlated, x = horizontal distance between the

41




two wells to which the zones belong, and 8 = stratigraphic dipk
angle.

5.4 Log-facies of zones

The rules for correlating two zones based on their log-facies can be specified as
follows:

1. If the log facies of the two zones are same, then the two zones are
same.
2. Otherwise, they are different.

5.5 Comprehensive Rule Set

With these basic rules in hand, we need to formulate a comprehensive set of rules
for different combinations of above different situations. A tentative comprehensive rule
set based on the above four criteria is given as Figure 4.5. This rule set is to be referred
by the system every time two zones are compared and a correlation rank is established.
Two zones are finally correlated with highest correlation rank.

Comprehensive Rules Criteria Rank
Rule no. log facies mbed_dist rel_pos thick_diff
1 same same same no_diff 54
2 same same same small_diff 53
3 same same same large_diff 52
4 same same close no_diff 51
5 same same close - small_diff 50
6 same same close large_diff 49
7 same close same no_diff 43
8 diff same same ~ no_diff 47
9 diff same same small_diff 46
10 diff same same large_diff 45
11 same close same small_diff 44
12 same close same large_diff 43
13 same close close no_diff 42
14 same close close small_diff 41
15 same close close large_diff 40
16 diff same close no_diff 39
17 diff same close small_diff 38
18 diff same close large_diff 37
19 same same apart no_diff 36
20 same same apart small_diff 35
21 same same apart large_diff 34
22 same close apart no_diff 33
23 same close apart small_diff 32
24 same close apart large_diff 31
25 same far same no_diff 30
26 same far same small_diff 29
27 same far same large_diff 28
28 same far close no_diff 27
29 same far close small_diff 26
30 same far close large_diff 25
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31 same far apart no_diff 24

32 same far apart small_diff 23
33 same far apart large_diff 22
34 diff - close same no_diff 21
35 diff close same small_diff 20
36 diff close same large_diff 19
37 diff close close no_diff 18
38 diff close close small_diff ) 17
39 diff close close large_diff 16
40 diff same apart no_diff 15
41 diff same apart small_diff 14
42 diff. same apart large_diff 13
43 diff close . apart no_diff 12
44 diff close apart small_diff 11
45 diff close apart large_diff 10
46 diff far same no_diff 9
47 diff far same small_diff 8
48 diff far same large_diff 7
49 diff far close no_diff 6
50 diff far close small_diff 5
51 diff far close large_diff 4
52 diff far apart no_diff 3
53 diff far apart small_diff 2
54 diff . far apart large_diff 1

Figure 4.5: Rule Set for Correlation Ranking

5.6 Future Work

We need to test this approach first and we shall also need to consider additional.
Presently we are only considering information regarding the two individual zones that are
being correlated with each other without any data regarding the zones above and zones
below them. In the future, we shall include some parameters about the neighboring zones
also while correlating two individual zones in order to reinforce the correlation system.

6.1 Introduction

Analysis and design for the project's visualization module has begun. The
functions of this module is to display and possibly manipulate architectural elements
(e.g., channel-fill facies) in a 3D data volume. Geologists have highly developed
visualization capabilities. They much prefer to investigate a problem through the use of
graphic illustrations, either in’'map view, cross section, or 3D perspective images. The
purpose of the visualization module is to assist the geologist in this type of investigation.

Project members have visited exhibits at the Mid-Continent Section Meeting of
the American Association of Petroleum Geologists (AAPG). We have also been in
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contact with geologists working at Amoco's Tulsa Research Center. They have been very
helpful, and they have suggested that we study a World Wide Web site that contains
information about state-of-the-art geological visualization techniques. The web address
is http://sepwww.stanford.edu/seg/research/3Dmodel /SALTHOME/segsalt.html. We
have also consulted Yarus and Chambers®'. It contains several papers, with color images,
that have been helpful in selecting the appropriate graphics techniques for this project.
The information that has been gathered is being evaluated.

6.2 Module Concept

At the present time, the initial capabilities of the module will include the
visualization and manipulation of architectural elements in three dimensions. Wells will
be represented as thin cylinders, or perhaps more simply as'a line. After correlation is
performed on the sand bodies, the module will display facies as simple primitive shapes
based on a list of rules for the expected geometry of facies. For example, channel-fill
facies are represented by sinuous, hemicylinders, and splay facies low-profile hemicones.
The resolution of architectural elements will varying depending on the magnification of
the graphic image. For example, individual lateral accretion bar deposits within a
channel-fill could be represented at a sufficient magnification, or at higher magnification
the lateral accretion surface drapes within a lateral accretion bar between wells.

As more information is processed, the expert system will refine the description of
the geometry of an architectural element and the location of a given well within that
element. For example, well test data can constrain the location of a well with respect to
changes in permeability-thickness that could be regarded as a facies contact or some other
architectural element boundary.

6.3 Graphics Techniques and Tools-

Currently, we are favoring the use of polygonal models. That is, each three
dimensional object will be represented as a polygonal mesh. A polygonal mesh is a set of
polygons that form a closed surface in three dimensional space. The field of computer
graphics has many techniques for rendering images from these type of models. These
techniques generally fall under the title of scanline graphics. Scanline graphics
techniques perform some type of operation at each pixel in the image to determine the
appropriate color value for that pixel. One of the most popular of these operations is the
z-buffer hidden surface removal algorithm. The z-buffer algorithm considers each
polygon in the scene. It projects the polygon onto a two dimensional viewport, the pixel
values in this viewport become the pixel values of the image. The z-buffer keeps track of
the depth of the polygon that created the current color value at every pixel. If the polygon
that is being considered is closer to the viewpoint than the one that created the current
color value, then the color value of the current polygon replaces the previous color value.
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The advantage of polygonal models and scanline graphics is that rendering, the process of
- creating an image from a geometric description or model, can be done quickly.

We are also evaluated a graphics library called OpenGL. This is a platform and
operating system independent graphics library. It is designed to interface with C and
C++. Therefore, it should integrate with the rest of the software from the project.
OpenGL is provided as a part of Microsoft Window NT. The next version of Windows
95 is supposed to include support for OpenGL. A third party vendor, Template Graphics,
will be releasing a Win32s version of OpenGL that will run under Windows NT and
Windows 95 at the beginning of next year. This version is also going to have the
capability to generate an executable module that will run under Windows 3.1. At the
present time we are considering using Windows NT and a beta version of OpenGL for
Windows 95.

6.4 Near Term Objectives

The next task that must be completed is a thorough specification of the interface
between the expert system and the visualization module. A solid specification will
accomplish two goals. It will enable us to finalize the selection of graphics techniques
and tools. It will also allow work to be performed in parallel with the develop of the
expert system.

In the near term we want to accomplish two things. First, we want to obtain a
version of the OpenGL library and begin generating test images. Secondly, we want to
develop the specification of the interface between the visualization tool and the expert
system. At that point it will be time to assess the impact that the features of OpenGL and
the specification have upon one another.
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6. Well-Test Interpretation

Transient testing is a major source of vital information about reservoir parameters
like permeability, reservoir pressure, wellbore conditions, reservoir discontinuities and
other information that is essential for reservoir studies. The accuracy of these properties
estimated from well tests depends on prior identification of a model that describes the
reservoir accurately. This model is known as the ‘well test interpretation model’.

The procedure for finding an appropriate model can be quite complex. It usually
resides deep in the expert's mind. The failure of mathematical models to solve the
problem can be attributed to the nature of the problem itself since the procedure is not
completely quantitative and relies on experience. Computerized well testing involves
interpreting the various forms of the time vs. pressure data and other well data and to
determine the well model and calculate the various parameters. Basically this can be
grouped into two parts: the qualitative analysis, and the quantitative analysis. Qualitative
analysis deals with selecting the appropriate well model from the input data. Quantitative
analysis involves calculating various well parameters like permeability, skin factor (if
applicable) etc. Estimation of well properties depends upon the selection of the right
model and hence qualitative analysis is a crucial part of the problem.

The expert system component developed for the well test interpretation consists of
rules and facts for buildup test analysis gathered from an expert in this field. These
carefully extracted rules simulate the reasoning process used by an expert to identify the
appropriate interpretation model for a well test. In this approach, the system is designed
to use a description of the shapes of the derivative plot. When needed, the system seeks
information in addition to test data from relevant sources such as known reservoir and
fluid properties, production statistics, well logs and geological data.

This section is divided into two parts. The first part discusses the procedures used
for quantative identification of reservoir paramenters using non-linear regression
methods. The second part presents the well test interpretation package.

6.1 Non-linear Regression Analysis

6.1.1 Introduction

One of the key requirements in creating an integrated reservoir description is to-
use well test data to constrain geological information. As part of the process, it is critical
that we are able to analyze the well test pressure data to determine various reservoir
paramenters. The automatic determination of the reservoir parameters will allow us to
compare these paramaters with the geological model in terms of resrvoir boundaries. By
integrating two pieces of information, we will be able to define the reservoir parameters
in a consistent manner.
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This part of the report presents a new method for imaging the objective function
across all boundaries imposed to satisfy physical constraints on the parameters. The
algorithm is extremely simple and reliable. The method uses an equivalent unconstrained
objective function to impose the physical constraints required in the original problem.
Thus, it can be used with standard unconstrained least squares software without
reprogramming and provides a viable alternative to penalty functions for imposing
constraints when estimating well and reservoir parameters from pressure transient data.

In addition, two new methods are presented for implementing the penalty function
approach for imposing parameter constraints in a general unconstrained least squares
algorithm. Comparing the methods, the new imaging method always converges to a
feasible solution in less time than the penalty function methods. '

6.1.2 Background

In recent years, well test parameter estimation using nonlinear regression
techniqueszz'28 has become a popular and widely used tool for analyzing pressure
transient data. Assuming that a reservoir/wellbore model has been selected, the basic idea
behind nonlinear regression analysis is the determination of the set of model parameters,
o, such that measured and model pressure transient data (e.g., pressure, pressure
derivative or pressure/pressure derivative ratio) match each other as closely as possible.
Commonly used approaches to ensuring a close match between measured and model data
include minimization of the sum of the squares of the residuals (i.e., the difference
between corresponding measured and model data points) and minimization of the sum of
the absolute values of the residuals. The former approach is referred to as LS regression,
while the latter is denoted LAV regression. Carvalho, et al*®, describes in detail practical
methods of applying widely available unconstrained least-squares algorithms such as
LMDER? to LS or LAV regression analysis for determination of well test parameters.

A major difficulty in applying unconstrained regression algorithms to analyze
practical well test data is the possibility of the selection of physically unreasonable
parameter estimates (e.g., negative permeabilities) during the course of searching for the
optimum set of model parameters. To overcome this problem, three new algorithms are
presented: two implementations of the widely-used penalty function approach suitable
for easy use in unconstrained algorithms, and a new robust imaging extension procedure.
The latter approach offers the advantage of always yielding physically reasonable
parameter estimates, regardless of the initial guesses for the parameters.

6.1.3 Handling of Parameter Constraints

Penalty Function:

In an unconstrained optimization algorithm, it is possible that non-physical values
of the parameters may be selected in the process of minimizing the objective function. In
order to keep the parameters ghysically meaningful, some type of constraint should be
used. Abbaszadeh and Kamal”® and Rosa and Horne™ employ penalty functions which
transform the constrained problem into an unconstrained problem by adding terms
(penalty functions) to the objective function. The penalty functions (one for each
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constraint) are defined in such a way that the new objective function remains almost
unchanged in the interior of the feasible region of the parameters, but increases rapidly as
a parameter approaches the boundary. Thus, if we constrain each parameter o, i = 1,
2,...p, to lie between some minimum value and maximum value, i.€., Oy ;<O <Ctn ;, then
the new unconstrained objective function, £7a), can be written as'

E*(a" qa")+F f:

mm, i 8max, i
k
amm, i amax, i 0

, Q)

where o is the current value of parameter o, i.e., the estimate of a; at the kth iteration,
and Hc#) is the original unconstrained objective function. F, 8pyn; and S,y ; are positive
values that govern the amount of contribution from the penalty functions. The superscript
k refers to the current iteration. One choice for a set of values F,, Oy, and Oy, ; 1S,
respectivelyl,

JORET 2 (k) TR —— )
where € is a small number, e.g., € = 10'4,

Smin,i =0g;— amin,,- U P P PN (3)
and

Binax, i = Cimax, i = Qg 3 weseersensesssscisimssssssnssssnsntsinassians )

where o, is the initial estimate of parameter c;. Note that, in this formulation, 8y, ; and
8max,; are computed only at the beginning of the regression, but F, changes at each
iteration.

Rosa and Horne” shows that the use of penalty functions improves the

convergence of the iterative procedure; however, they also report that the penalty function
method may not avoid non-physical parameter values when the initial estimates are far
from the solution.

To overcome the non-physical values problem, two methods are offered for
implementing the penalty function method. In the first method, (Method 1), we apply Eq.
(1) with the following modification to the definition of F, in Eq. (2):

F.=¢ E(a") D rereereeeae st er s s b s st s aasansnaes &)

that is, we write F, in terms of the objective function at the current parameter estimates
rather than at the previous estimate. This change is important because now the modified
objective function of Eq. (1) can be written as ‘

EY (ak) = (B((z"))2 E(a”) yeerreetsestesaerers e s s banas (6)

5. .-
1+ 'min, i + 'max, i
B( ) \/ s,ZlL, Gt Ol s = OF

Suppose we were perforrmng a least squares regression on pressure, so that our original
objective function E(a ) was given by

Ho¥)= | )y ( B ~Brode, ,(a")) = ‘:2, .............. (8)

where,

R Q)
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where r; denotes the ith residual; then our modified objective function incorporating the
penalty functions is given by:

where

that is, the penalty function approach can be incorporated by a simple modification of the
definition of each residual. Note that when € = 0, p(e*) = 1, and the modified objective
function of Eq. (9) reverts to the original objective function given in Eq. (8). Also, the
partial derivative of the modified ith residual (Eq. (10)) with respect to any model
parameter o, is given by the following simple relationship:

op; _ or; aﬁ(a") .

20" B(a")g.@+r,. a3 —— (1
where, from Eq. (7),

aB(ak) _ g 6max,j 5min,i eresaens (12)

T ][ e
Again, note that when € = 0, the modified objective function and its partial
derivatives revert to the original unconstrained objective function. Also, using the
approach outlined above, penalty functions can just as easily be applied to LAV
regression; in Carvalho, et al.zs, we showed that LAV regression can be closely
approximated by a least squares optimization problem by a simple redefinition of the
residuals. Thus, for an LAV regression on pressure, the ith residual in Eq. (8) assumes the
form

1
r,-=((g— gm,,,.)zu;) /4. ..................................... 13)
where { is a small positive number. The procedure for constraining the LAV parameter
estimates using penalty functions becomes a special case of penalty-function-constrained
LS regression.

In the second penalty function method, (Method 2), we incorporate Eq. 1 directly into the
LS objective function as follows. Define a new penalty function I1(a) as

5. . 5. .
nfa)= £ §| B, o

=1 af"_amin,i G'max,i_ i
where 7 is the number of measured data points. Using Egs. 8 and 14, we can write Eq. 1
as

Efa)= ,Z::; (r,z + H(a)) = 'ﬁ‘ B2 s eeeoreeeeeesreenereon 15
where

Y £ T v O (16)

The partial derivative of the modified residual defined in Eq. 16 with respect to a model
parameter o, is given by
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where

F;; 8max,i 8mi i aFc
'rT( 2 . ) }' aa,n(“),

(amax,i - 0.,-) ((l,' - amin 1)

Equations 14 - 18 are general; F, may be any suitable user-specified function. In
the case where F, is independent of the model parameters, the last term in Eq. 18
disappears. As with the first method, the second method is completely general: it can be
applied to any LS problem.

In the application of Method 2, we define F, as follows. Imtlally, weset F, toa
large number; i.e., F, = 10'° &. Thereafter, we set F, = min(F,, E' (a ))s (This ensures
that F, decreases as we approach convergence.) For both penalty function methods, we
sete =107

b) Imaging Extension Procedure

As an alternative approach for keeping the parameters physically meaningful, a
new constraining algorithm which is referred to as the imaging extension procedure is
devised. The idea behind the method is to extend the constrained objective function in
such a way that the new objective function is defined everywhere (except at the
boundaries) and where the solution of this new unconstrained problem is equivalent to the
solution of the original constrained problem.

Let us illustrate the proposed method with a model of the form, F(ct,f), where a. is
the single parameter of the model (say permeability, k) and ¢ is the independent variable
(say time, f). Since permeability can only assume positive values, the original problem
should be constrained through the inequality k > 0. If we reflect the objective function
through the ordinate axis, the new objective function is now defined for positive values of
k as well as for negative values of k (see Figure 6.1). Clearly, if k* minimizes the new
objective function, then | k* | will also minimize the original problem. Thus, we choose
to minimize the modified unconstrained problem. Sometimes, we also refer to the
modified problem as an equivalent problem. We also use E'to denote the objective
function for this equivalent problem.

An algorithm to handle a single constraint of the form, o > Oy, Can be written as

1)Is the current parameter value of the equivalent problem, o, , greater than oy, ? If YES,
compute the objective function and the parameter gradient in the usual way. If NO, GO
TO step 2. '

2)Is «g, equal to 0uy,? If YES, STOP. If NO, compute the corresponding parameter value
of the original problem as

0 =} 0y = Cpin| + Ol evvensesarerseesoranenennees (19)
3)Compute the current value of the unconstrained objective function, £*, as
o (TATEo ) PUNORTORR R 20)
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4) Compute the value of the gradient of the unconstrained objective function at oz, as

dE(a) _-9 Ho)
oo oo

C C
lleq o

Once a minimizer, o, of the equivalent unconstrained problem is found, the
corresponding minimizer of the original problem is computed by using Eq. 19. The above
algorithm can be easily extended for problems with more than one parameter subject to
the same type of constraint o; > o, As shown in detail in Carvalho®, many
applications of the proposed method for different functional models (e.g., horizontal well
and double-porosity models) indicate that the algorithm works effectively for well test
applications.

The imaging procedure can be generalized to handle constraints of the type
Omin i <Oy <0t ;. In this case, the objective function is periodically repeated by a sequence
of images that extend to +eo (see Figure 6.1, top). The continuous curve in Figure 6.1
(bottom) is the original objective function, which is defined only in the interval (a,b), and
the dashed curves represent the images. The minimizer of the original problem, a+, can be
computed once the minimizer «;, of the extended objective function is found. Thus, first
we apply the iterative minimization procedure to the modified (unconstrained) objective
function, and then we find the corresponding solution to the original problem which is
geometrically related to the solution of the modified (unconstrained) problem. Note that,
by construction, at the boundaries of each image, the new (unconstrained) objective
function, E*, is continuous; however, its partial derivative with respect to the parameter
that is at the boundary may not exist. In fact, its partial derivative exists (and is zero) at a
“boundary” only when the corresponding derivative of the original objective function is
zero, i.e., when

0 F(a)
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Figures 6.1 (top) Illustration of the imaging of an objective function and (bottom)
IMustration of the objective function for a constraint of a <b.

at the corresponding boundary, is zero. In the event a boundary is hit during the iterative
process, we assume, for that iteration, that the partial derivative with respect to the
parameter at the boundary is zero.

An algorithm to handle constraints of the form,
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c(min,i <a<a,

can be written as ’

1)Set the parameter index, i = 1.

2)For the current value of the ith parameter of the equivalent problem, «,,, compute of
via, ,

agq,,- - amin,i + amin,i .......................... (22)

3)Is «,; greater than oy, ;? If YES, set siGy,=1. IfNO, set SIGN,=-1.

eq, i

4)Compute

af =

alq—amin, i

0f = 0~ 2 (@, Ot INT[2 E——

where INT(x) is the largest integer less than or equal to x.
5)Is o (given by Eq. 23) greater than a,,,? If NO, GO TO step 6. If YES, set
SIGN,=- SIGN,, and compute
Of = Olpay ;= (ocf—amax, i) ............................. (24)
6)Is of equal to Oy ; OF Qg ;? I YES, set SIGN=0.
7)Repeat steps 2 to 6 for all parameters, i.e., fori=1, 2,... p.
8)Compute the current value of the unconstrained objective function, E*, as

o A (% DO 5)

9)Compute the value of the gradients of the unconstrained objective function at «, as

dE'(a, S E ‘
a(feq’iq) 6((1:1)‘ fori=1,.,p. (26)

= SIGN;,

C
(leq

“_c

In step 2, the current parameter estimate o, ; is reflected through the left boundary
of the original objective function (i.e., the boundary o; = oy, ;) when @, < oty ;- Note
that every time a reflection occurs the variable SIGN (which controls the sign of the
derivative) changes sign. In step 4, the estimate is transformed to lie in the first repetitive
element of the new objective function (which consists of the original objective function
and its right reflection), without changing either the value of the objective function or the
value of its partial derivative. In step 5, if the estimate corresponds to the reflection of the
original objective function, it is transformed (i.e., reflected through the boundary at o,y ;)
to obtain an of value within the feasible interval. At the end, SIGN = 1 means that, in
terms of the unconstrained problem, we are in a replica of the original objective function,
and SIGN = —1 means that we are in a replica of the reflection. When a minimizer, «;,, of
the equivalent unconstrained problem is found, the corresponding minimizer of the
original problem is given by the coordinates of a° (Egs. 23 or 24) at the last iteration.

The proposed method is illustrated with a dual-porosity example where the
parameter ©, storativity ratio is regressed. By definition, the feasible interval for the
storativity ratio is 0 < ® < 1. The minimization procedure (with our constraining
algorithm) was applied to synthetic pressure data which was generated with ® = 0.10.
Figure 6.3 presents the changes in the parameter © during the iterative process, for five
different initial estimates, ® = 0.9, 0.70, 0.50, 0.25 and 0.05, respectively. In these
figures, the abscissa represents ® and the ordinate axis represents the square root of the
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objective function, so one can see how the objective function decreases from iterate to
iterate.

The solid continuous lines in Figure 6.3 refer to the path of iterates for the
equivalent (unconstrained) problem, and the dashed lines refer to the equivalent path for
the original problem. All five regressions converged to the right solution, i.e., @ = 0.1.
For example, Figure 6.3 (top left) shows that for the initial estimate ® = 0.95, the
regression applied to the equivalent problem converged to ®,, = —1.90 (i.e., the algorithm
converged to a minimum in the second image to the left), which corresponds to ® = 0.1.
Note that for the two cases where the initial estimates were closer to the solution, i.e., ©® =
0.25 and 0.05 (Figure 6.3, top right and Figure 6.4, top left, respectively), the
constraining algorithm was not necessary since @ always remained in the feasible region.
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Figure 6.3: Change in the estimate of omega during the iterative process. Initial
estimates are as follows - (top left) omega = 0.95, (top right) omega = 0.70, (bottom
left) omega = 0.50, and (bottom right) omega = 0.25.

6.1.4 Comparison of Constraining Algorithms
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In order to compare the performance of the presented constraining algorithms, we
applied them to the set of synthetic dual porosity drawdown pressure data shown in
- Figure 6.4 (top right). The input model data used to generate Figure 6.4 are presented in
Table 6.1, while Table 6.2 presents the initial estimates of the parameters we were trying
to optimize using LS regression, along with the applied constraints.

‘All of the methods successfully converged to the correct answer. However, the
penalty function methods required the extra constraint of returning large residual values
when parameter estimates (A and C for this problem) became negative during the first few
iterations. The remaining parameters always remained physically meaningful. The
imaging extension procedure is of course immune to the problem of non-physical
parameter values, and, in fact, converged to an unconstrained estimate of A that was the
negative of the actual value.

Figure 6.4 shows how each modified objective function behaved at each step of
the optimization process. This reflects our experience with working with the imaging
extension procedure versus the penalty function methods. The imaging extension
procedure converges more rapidly than penalty function methods. Figure 6.4 shows the
* penalty function behavior (B(ct) — 1) (Eq. 7) and I1(c), (Eq. 14).
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Figure 6.4: (top left) Change in the estimate of omega during the iterative process
with initial estimate omega = 0.05, (top right) Synthetic draw down data, (bottom

left) Behavior of the objective function during the optimization procedure, and
(bottom right) Behavior of the penalty.
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6.1.5 Conclusions

In this work, we have presented three alternative procedures for constraining
parameter estimates obtained during the course of nonlinear regression to remain within
physically meaningful limits. Two methods are based on the classical penalty function
approach. The third method is a new procedure for extending the constrained-parameter
objective function so that it is defined for unconstrained parameter estimates by an
imaging extension procedure. All of the methods are easily applied in public domain
unconstrained LS algorithms (such as LMDER) without any modification to the
algorithm code.

We showed that whereas it is possible for the penalty function methods to
provide non-physical parameter values depending on the initial guesses, (and we
discussed how this problem may be circumvented), the new imaging extension procedure
will always provide feasible model parameters regardless of initial guess.

Finally, we demonstrated via a synthetic example, that the new imaging extension
procedure . obtains optimized parameter values faster than the penalty function
approaches.

6.1.6 Nomenclature

C Wellbore Storage Coefficient, bbl/psi

c Fluid compressibility, psi'l

E Objective Function that is minimized by
nonlinear regression.

E* Modified Objective Function that
incorporates penalty functions or imaging
extension

F, Part of the penalty function (see Eq. 1)

h formation thickness, ft

k permeability, md

Ky fracture permeability, md

n number of measured data points (e.g.,
pressures).

Apg, unit rate skin pressure drop, psi/bbl/day

r number of model parameters

Pi ith measured pressure, psi

Din initial pressure, psi

Pmodet;  ith model pressure, psi

q Producing rate, bbl/day

r, reservoir radius, ft

¥; ith residual.

r, wellbore radius, ft

t time'

Greek Symbols

o the set of model parameters

Oy; initial parameter estimate

a; ith model parameter

Cnax maximum parameter value

®inin minimum parameter. value

B coefficient of the residuals that

incorporates penalty functions; see Eq.
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Omini» Omax;  Scaling constants for ith penalty
function; see Eqs. 3 and 4

€ small number

¢ small positive number

A Dual Porosity parameter

I1 penalty function; see Eq. 14

P ith LS residual, modified to incorporate

penalty functions

¢ porosity

® storativity ratio

Initial Pressure, p;, psi , 5000.0

Well Radius, », ft 0.364

Reservoir Radius, », ft ©

Formation Thickness, 2z ft 20.0

Wellbore Storage Coefficient, C bbl/psi 0.025

Unit Rate Skin pressure Drop, -0.0706

Ap,, psi/bbl/day

Fluid Viscosity, p  ¢cp 1.

Fluid Compressibility, ¢ psi” 9.4x10°®

Fracture Permeability, &, md 200.0

Fracture Porosity, ¢, 0.20
1x10°

® 0.01

Producing Rate, g bbl/day 1500.

Table 6.1: Naturally Fractured Reservoir Data (Pseudosteady State Interporosity
Flow) for Synthetic Drawdown Example

Parameter Initial Lower  Upper
Estimate Limit Limit
k; 150. 0. 1000.
A 1. x107 0. 100.
® 0.001 0. L.
C 0.05 0. 1.
Apg, -0.1 -05 50

Table 6.2: Parameter Initial Estimates
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6.2  Expert System Overview
The well test interpretation system can be divided into two main modules. The
model identification model deals with analyzing the input data to characterize the well.

The other module is the parameter estimation model that used the model information to
calculate the parameters required. Figure 6.5 shows the components in the system.

lderivative data |

A
well model and
shape information model identification geological data

model information

A

y
(parameters to be Parameter estimation ‘parameter range ]

estimated information

\
@stimated parametersj

Figure 6.5 : System modules

The input to the system is the time and pressure derivative. This information is
provided to the system in an input file. The model identification module analyses this
input and creates a description of the shape of the plot in terms of primitives. This shape
is then compared with the available model and shape information to select a model. In
case of multiple choices, the selection is narrowed down using geological information
provided by the user. Once the module is able to classify the input, the model
information is then used to estimate the parameters. The parameters that are to be
estimated is specified by the user. The user may also specify the range of values that
each parameter can have. This helps in making the estimation process more efficient.
The output from the parameter estimation module is the final output required from the
system. The following section describes each module in greater detail.

The following are the main modules used in the system.
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6.2.1 Model identification

The model identification process is made up of two distinct steps. These are:
creation of the internal representation of the plot using symbols, and matching this
representation with the shape information stored in the system. Each of these steps are
discussed below.

The input data is analyzed and converted into an internal representation for further
analysis. This provides a simple and efficient method of matching shapes. This
representation is done in terms of the following symbols:

up, down, flat, maximum, minimum, plateau, valley

A flat segment is a segment with slope smaller than 0.1 in absolute value. An up
segment is one which has slope greater than 0.1. Plateau, valley, maximum and minimum
are determined from the primitives up, down and flat. This convention is similar to that
of Startzman and Kuo* who first observed the usefulness of the symbolic representation
of log data.

The algorithm begins by calculating the slopes between the data points. This data
is stored in a list. Then the algorithm proceeds by scanning this list and replacing each
slope with a symbolic representation. Heuristic rules are applied to create the correct
representation. The algorithm does a second scan through the list to come up with a final
representation of the whole plot. Here the algorithm uses rules which have been
developed to eliminate redundant symbols, or identify new ones based on the primitive
symbols (up, down, flaf). Small disturbances due to noise which slightly distort the plot
is also eliminated here. Typical rules are as follows:

up followed by an up is up

down followed by down is down

up followed by flat followed by dowr is a maximum if the number of flats in between
is sufficiently small, otherwise it is a plateau.

Using such rules, the algorithm produces a final list of representative symbols
which describe the whole plot. Though it depends upon the particular data used, usually
four to five symbols describe one complete graph. Consecutive identical symbols (e.g.
up, up) are compressed into a single symbol representing several segments.

An interpretation model is usually obtained by combining several components
which produce the observed shapes on different parts of the derivative. The expert system
is provided with the models and a representation of their derivative.

The initial implementation includes the description of two models which are:

1. Finite wellbore radius well; Infinite isotropic reservoir; Single porosity system.
2. Fully penetrating vertically fractured well; Anisotropic Single porosity system.
3. Finite wellbore radius well; Infinite isotropic reservoir; Dual porosity system.
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4. Fully penetrating vertically fractured well; Anisotropic Dual porosity system.
5. Fully penetrating line source well; Anisotropic Dual porosity system

The characteristic derivative shapes associated with these models were determined and
are as follows:

1. modell: [up, maximum, down, flat]
2. model2: [up, flaf]
3. model3: [up]

Model3 is an alternate representation of model2. All the above models are a
representation of the plots that show the time vs. derivative curve.

The matching algorithm is designed along the lines of the work done by Allain
and Horne’. The aim is to find the model that qualitatively matches the data. The
algorithm starts with selecting all the models that match with the input data at the first
symbol. It then proceeds to the next symbol and eliminates all the models which do not
match with the input symbols at any stage. Finally at the end of the process, the algorithm
ends up with the correct model, or no model in case there is no match. In certain cases,
the system cannot narrow down the search to a single model. This may be due to the
nature of the input where it matches more than one model. The geological information
may be used to proceed further.

Our matching algorithm has been modified to work correctly with the symbolic
representation of models in our system. A particular input data matches a model if its
sequence of symbols completely match with those of a particular model. Since the model
information is complete and has not been broken down to different regimes, a complete
match of all the symbols of the input data with those of a model is considered. This
approach is simpler than considering the different regimes (as done by Allain and
Horne3), and works well when complete model information has been coded in the system.

The fact that one can hardly select an appropriate interpretation model from the
pressure transient data alone emphasizes the need for incorporation of external data into
well test analysis. This information can help in narrowing down the choice of models.
The system presently uses 5 parameters to make its decisions. The parameters and their
possible values are shown in Table 6.3.
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Parameter Possible values

Geometry Vertically Radial Well (VRW)
Horizontal Well (HW)

Vertically Fractured Well (VFW)
Radially Heterogeneous Well (RHW)

Layered System (L.S)
Penetration Fully Penetrating

Partially Penetrating
Porosity Single porosity

: Dual porosity

Conductivity v Finite Conductivity

Infinite Conductivity
Group This parameter can be any of the possible

values in the above groups or any of their
possible combinations.
Eg: Vertically Radial Well-Fully Penetrating

Table 6.3

The parameter Group is used by the system to select the set of interpretation
models. All the other parameters are taken as input from the user. Information about
Geometry and Penetration is usually available. Porosity and Conductivity on the other
hand may not always be known. k

6.2.2 Parameter estimation

Parameter estimation is carried out after a model has been selected by the system.
Though they are not intended to be the final result of the interpretation, these estimates
constitute the starting point for an automated type curve matching analysis. The system
was thus extended to include a very powerful parameter estimation algorithm. Figure 6.6
shows the parameter estimation module in relation to the other modules in the system:
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Figure. 6.6: Parameter estimation module

Presently, the system carries out the estimation process only after a single model
is-identified. In case multiple models are selected, the user needs to narrow down the
choice to only one model. The user then selects the parameters that are to be estimated.
The user is provided with an interface for this purpose. Based on the model identified
and the parameters specified, the system builds up an input to the estimation program.
The estimation module is then executed. The output from this module is obtained in an
output file which gives the values of the required parameters.

The parameter estimation module also produces the calculated pressure and
derivative values based on the model and the parameter values. This data is displayed to
the user and helps in judging the correctness and the accuracy of the estimated values.
The user may decide to accept these values, or run the estimation procedure again.
Refining the estimated values may require changing certain parameters used by the
_estimation program.

64




6.2.3 Using the system

The system provides the user with an interface that makes it easy to provide input
and analyze the results. Using the well test interpretation system is described using the
following example. The interpretation process is started by the user by clicking on the
‘Interpret’ button. The user is then prompted for the input file name. This file is loaded
by the system and the plot is displayed to the user. The system then matches the plot to
the stored model information and prints out the model identified.

A single model needs to be selected before the parameter estimation algorithm can
be executed. The user can provide the model to the system using the interface’s Enter
model button. External information can also be to possibly narrow down the search. This
information is entered into the system using the External Data button in the interface. In
this case, the knowledge that this is a fractured well was is entered by choosing the
corresponding entry in the Geometry field in external data entry screen.

The parameter estimation module is executed using the Estimate Parameters
button in the interface. The options that need to be specified, like the parameters to be
estimated, and their range, is entered by clicking on the Set Parameters button. This
invokes a screen to enter these values.

6.2.4 Further extensions

The program as shown in the previous section was coded in KAPPA. For greater
efficiency and scalability, this is being converted to C++ code. Though the internal
representation and some of the interfaces have been enhanced for better performance, the
basic functionality provided by the system remains the same. The following extensions
are required in the system:

Extending the model information in the system: The system needs to be
extended to handle all possible well models. This process does not require any major
change to the system. Only the shape information for new models need to be provided.
Entering the shape information into the system is all that is required to extend the system.
This can be done by the following steps:

Eliminating noise: The system needs to be extended to handle noisy data. This
can be achieved by simply adding a smoothing routine to smooth the plot before
analyzing it. »

6.2.5 Conclusion

The well test interpretation system is an efficient tool to analyze well data. The
system starts with the minimum information available (derivative data), and tries to
classify the well. Other information is used if required. Once the well is classified, the
system can then be used to estimate the parameters for that well. This system has been
developed as a stand-alone tool to be used by an expert. It frees the user of the routine
and tedious task of classifying the wells and estimation of parameters. The information
obtained from the system is also useful, and can be used by other groups in the project.
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