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Energy Consumption

Source:  BP Statistical Review of World Energy, 67th Edition, June 2018
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Shale Oil and Gas Resources

Source:  U.S. Energy Information Administration, Independent Statistics and Analysis, June 2013
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Projected Shale gas production 

Source: U.S. Energy Information Administration, International Energy Outlook 2016 and Annual Energy Outlook 2016
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Shale Characterization

• Shale formations have oil and gas trapped within the pore spaces and are 
considered largest natural gas deposits

• Elemental composition can provide clues to rock properties (porosity, 
permeability, minerals) that could effect oil and gas accumulation

• Higher amount of  carbon and hydrogen (organic material) means high gas 
potential

• Knowledge of  minerology helps in 
selection of  drilling location, 
resolving drilling problems, and 
making engineering and production 
decisions.

• Environmental issues associated with 
shale retorting require substantial 
monitoring and control of  waste 
product 
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Unconventional Shale

• Fine grained sedimentary rocks

• < 2 microns

• High clay content

• Generally > 50%

• Low permeability

• Nano-Darcy

• High organic content

• Hydrocarbon generation

• Susceptible to hydraulically induced 
fractures

• E.g. generally behaves in a brittle manner

10 µm
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Shale Core Logging

• XRF is a widely used technique for shale 
logging/mapping

• SEM-EDS for spectral mapping of  shale

• Low atomic mass elements (i.e.,  C, H)  are not 
measurable by XRF

• More than one technique is needed to obtain 
complete elemental information

• LIBS is capable of  measuring these elements 
simultaneously.
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Laser Induced Breakdown Spectroscopy

• Laser is fired upon a given sample and laser   energy focused to a small 
spot

• A hot luminous plasma vaporizes the material, and leads to atomization 
and excitation of  elements

• As plasma cools, emission occurs and the emitted light  can be collected

• Every element in the Periodic Table gives 
off  light

at a distinct wavelength

• LIBS is capable of  analyzing solid, liquid, 
and gaseous samples with minimum or no 
sample preparation 

• Matrix and/or major elements

• Non-metals such as C, H, N, O and halogens (F)

• LIBS can perform both surface and depth analysis in both ambient and 
extreme conditions
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• Experimental Conditions

• 266 nm Nd:YAG nanosecond laser

• 50 um laser spot size

• 81 x 81 grid pattern map

• 8 X 8 mm (64 mm2)

• 5 shots per location – Accumulated

• 6561 data points per map

• ~ 390 minutes per map

• ASI’s Axiom operation software

LIBS Instrument & Method Parameters

LIBS Instrument
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Shale Samples Analyzed
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Shale Sample Mapped Area
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Calibration Standards

• Availability of  matrix matched calibration standards is limited

• Shale samples characterized in our previous study (Spectrochimica
Acta B, 122, 2016, 9-14) by ICP-OES and LIBS were used to calibrate 
the instrument

• C and H analysis was performed at the Western Kentucky University 
using Leco CHN TrueSpec analyzer

• Calibration standards were mapped along with samples to create 
calibration curves
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Calibration Curves
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Sample M7531 Sample M7551Sample M7504Sample M7498 Sample M9655

0.7 %

0 %

H (wt. %)

13.0 %

0 %

C (wt.%)

2

0

H/C

Concentration Maps



21

C 193 %RSD H 656 %RSD

M7498 7.13 % 8.4 0.46 % 8.1

M7504 9.26 % 5.1 0.53 % 9.2

M7531 7.93 % 8.1 0.47 % 9.4

M7551 5.89 % 21.0 0.48 % 7.3

B9655 2.39 % 54.0 0.45 % 9.3

Total concentration of 8 mm x 8 mm area analyzed (n = 6,561)

C H N Analyzer LIBS

Reference Value LIBS % BIAS

M7504 9.33 wt. % C 9.26 % C -0.8

M7504 0.51 wt. % H 0.53 % H 3.9

H/C

7498’ 0.85

7504’ 0.76

7531’ 0.84

7551’ 1.05

9655’ 1.70

H/C < 1 – aromatic
H/C > 1 – aliphatic

C & H Concentrations

Sample TC TOC TOC/TC

M7498 7.13 4.78 0.67

M7504 9.26 5.92 0.64
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Concentration Average Value (Wt.% ± 1 SD)

Depth (') Al 394 Ca 393 Fe 275 Mg 280 Si 288

M7498 7498 0.71 ± 0.52 1.22 ± 0.20 1.74 ± 0.11 0.65 ± 0.4 21.7 ± 0.99

M7504 7504 1.63 ± 0.75 1.53 ± 0.19 1.82 ± 0.11 0.68 ± 0.03 22.6 ± 1.06

M7531 7531 0.8 ± 0.29 2.12 ± 0.50 1.99 ± 0.19 0.58 ± 0.04 17.26 ± 1.05

M7551 7551 1.67 ± 0.62 3.32 ± 0.48 2.06 ± 0.09 0.70 ± 0.03 23.60 ± 1.05

B9655 9655 0.73 ± 0.59 7.67 ± 0.66 1.72 ± 0.14 1.06 ± 0.07 20.09 ± 0.90

Elements Calibration Curves

Al y = 3.698 x + 26528

Ca y = 61.8 x + 86709

Fe y = 41.28 x - 16559

Mg y = 440.4 x - 86648

Na y = 514.6 x + 49061

Si y = 11.778 x - 52464

Sr y = 579.7 x - 1871

Ti y = 231.3 x - 46293

Elemental Concentrations

Sample Al Ca Fe Si

M7498 XRF 5.18 ± 0.13 1.60 ± 0.01 3.85 ± 0.03 21.27 ± 0.12

LIBS 0.71 ± 0.52 1.22 ± 0.20 1.74 ± 0.11 21.7 ± 0.99

M7504 XRF 3.39 ± 0.97 1.48 ± 0.01 2.75 ± 0.02 22.1 ± 0.11

LIBS 1.63 ± 0.75 1.53 ± 0.19 1.82 ± 0.11 22.6 ± 1.06

M7531 XRF 2.16 ± 0.11 0.84 ± 0.01 3.21 ± 0.03 15.44 ± 0.11

LIBS 0.8 ± 0.29 2.12 ± 0.50 1.99 ± 0.19 17.3 ± 1.05

M7551 XRF 2.13 ± 0.09 3.21 ± 0.02 3.55 ± 0.03 21.72 ± 0.12

LIBS 1.67 ± 0.62 3.32 ± 0.48 2.06 ± 0.90 23.6 ± 1.05

Comparison of XRF and LIBS values (Wt.% ± 1 SD)
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Downhole Deployment



24

LIBS Prototype Schematic
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LIBS prototype Sensor head
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Performance – Alkali / Alkaline Metals

• CaCl2 in DI water

• 25.1 ppm Ca

• 450 shots

• Gate:
• Delay = 250 ns

• Width = 3 μs

• SrCl2 in DI water

• 24.1 ppm Sr

• 450 shots

• Gate:
• Delay = 300 ns

• Width = 3 μs

• KCl in DI water

• 5.2 ppm K

• 450 shots

• Gate:
• Delay = 300 ns

• Width = 3 μs

Element Line

(nm)

LOD

(ppm)

LOD (literature)

(ppm)

Calcium 422.7 0.10A 0.94B 0.047C 0.13E

Strontium 460.7 0.04A 2.89B

Potassium 766.6 0.009A 0.03B 0.006D 1.2F

769.9 0.069A

A – Hartzler et. al. 2019, Scientific Reports, Vol. 9, 4430

B – Goueguel et. al. 2015, Applied Optics, Vol. 54, 6071-6079

C – Pearman et. al. 2003, Applied Optics, Vol. 42, 6085-6093

D – Golik et. al. 2012, Journal of Applied Spectroscopy, Vol. 79, 471-476

E – Knopp et. al. 1996, Fresenius' journal of analytical chemistry, Vol. 355, 16-20

F – Cremers et. al. 1984, Applied spectroscopy, Vol. 38, 721-729
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Conclusions

• Laser induced Breakdown Spectroscopy (LIBS) can provide mineral 
composition and distribution in shale

• The technique provides accurate data with reasonable detection limits 
for most of  the elements

• It can analyze light elements  including C and H. 

• LIBS can determine H/C ratio to predict the presence and type of  
gaseous hydrocarbons and impurities in scanned area

• Minimum to no sample preparation makes this technique an attractive 
option to avoid lengthy sample preparation procedures

• LIBS can be a  robust device for in-situ shale core mapping and 
exploration purposes
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