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Abstract

We develop a generalizable Al-driven workflow that leverages heterogeneous HPC resources to explore the time-
dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the
SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike
dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which
contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD. We present several novel scientific
discoveries, including the elucidation of the spike’s full glycan shield, the role of spike glycans in modulating the infectivity
of the virus, and the characterization of the flexible interactions between the spike and the human ACE2 receptor. We
also demonstrate how Al can accelerate conformational sampling across different systems and pave the way for the future
application of such methods to additional studies in SARS-CoV-2 and other molecular systems.
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Figure |. Multiscale modeling of SARS-CoV-2. A) All-atom model of the SARS-CoV-2 viral envelope (305 M atoms), including 24 spike
proteins (colored in gray) in both the open (16) and closed states (8). The RBDs in the “up” state are highlighted in cyan) N-/O-Glycans
are shown in blue. Water molecules and ions have been omitted for clarity. B) Full-length model of the glycosylated SARS-CoV-2 spike
protein (gray surface) embedded into an ERGIC-like lipid bilayer (1.7 M atoms). RBD in the “up” state is highlighted in cyan. C) The
glycan shield is shown by overlaying multiple conformations for each glycan collected at subsequent timesteps along the dynamics (blue
bushlike representation). Highlighted in pink and red are two N-glycans (linked to N 165 and N234, respectively) responsible for the
modulation of the RBD dynamics, thus priming the virus for infection. The RBD “up” is depicted with a cyan surface. D) Two-parallel-
membrane system of the spike-ACE2 complex (8.5 M atoms). The spike protein, embedded into an ERGIC-like membrane, is depicted
with a gray transparent surface, whereas ACE2 is shown with a yellow transparent surface and it is embedded into a lipid bilayer
mimicking the composition of mammalian cell membranes. Glycans are shown in blue, whereas water has been omitted for clarity.
Visualizations were created in VMD using its custom GPU-accelerated ray tracing engine (Humphrey et al., 1996; Stone et al., 201 3a,

2013b, 20164, 2016b).

the subject of intense scientific investigations. Researchers
are interested in understanding the structure and function of
the proteins that constitute the virus, as this knowledge aids
in the understanding of transmission, infectivity, and poten-
tial therapeutics.

A number of experimental methods, including x-ray
crystallography, cryoelectron (cryo-EM) microscopy, and
cryo-EM tomography are able to inform on the structure of
viral proteins and the other (e.g., host cell) proteins with
which the virus interacts. Such structural information is
vital to our understanding of these molecular machines,
however, there are limits to what experiments can tell us.
For example, achieving high resolution structures typically
comes at the expense of dynamics: flexible parts of the
proteins (e.g., loops) are often not resolved, or frequently
not even included in the experimental construct. Glycans,
the sugar-like structures that decorate viral surface pro-
teins, are particularly flexible and thus experimental tech-
niques are currently unable to provide detailed views into
their structure and function beyond a few basic units. Addi-
tionally, these experiments can resolve static snapshots,
perhaps catching different states of the protein, but they
are unable to elucidate the thermodynamic and kinetic rela-
tionships between such states.

In addition to the rich structural datasets, researchers
have used a variety of proteomic, glycomic, and other
methods to determine detailed information about particular
aspects of the virus. In one example, deep sequencing
methods have informed on the functional implications of
mutations in a key part of the viral spike protein (Starr
et al., 2020). In others, mass spectrometry approaches have
provided information about the particular composition of
the glycans at particular sites on the viral protein (Shajahan
et al., 2020; Watanabe et al., 2020). These data are each
valuable in their own right but exist as disparate islands of
knowledge. Thus there is a need to integrate these datasets
into cohesive models, such that the fluctuations of the viral
particle and its components that cause its infectivity can be
understood.

In this work, we used all-atom molecular dynamics
(MD) simulations to combine, augment, and extend avail-
able experimental datasets in order to interrogate the struc-
ture, dynamics, and function of the SARS-CoV-2 spike
protein (Figure 1). The spike protein is considered the main
infection machinery of the virus because it is the only gly-
coprotein on the surface of the virus and it is the molecular
machine that interacts with the human host cell receptor,
ACE?2, at the initial step of infection. We have developed
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MD simulations of the spike protein at three distinct scales,
where each system (and scale) is informative, extensive,
and scientifically valuable in its own right (as will be dis-
cussed). This includes the construction and simulation of
the SARS-CoV-2 viral envelope that contains 305 million
atoms, and is thus among one of the largest and most com-
plex biological systems ever simulated (Figure 1A). We
employ both conventional MD as well as the weighted
ensemble enhanced sampling approach (which again
breaks new ground in terms of applicable system size).
We then collectively couple these breakthrough simula-
tions with artificial intelligence (AI) based methods as part
of an integrated workflow that transfers knowledge gained
at one scale to “drive” (enhance) sampling at another.

An additional significant challenge faced in bringing
this work to fruition is that it pushes the boundaries of
several fields simultaneously, including biology, physics,
chemistry, mathematics, and computer science. It is inter-
sectional in nature, and requires the collective work of and
effective communication among experts in each of these
fields to construct, simulate, and analyze such systems—all
while optimizing code performance to accelerate scientific
discovery against SARS-CoV-2.

Our work has brought HPC to bear to provide unprece-
dented detail and atomic-level understanding of virus par-
ticles and how they infect human cells. Our efforts shed
light on many aspects of the spike dynamics and function
that are currently inaccessible with experiment, and have
provided a number of experimentally testable hypoth-
eses—some of which have already been experimentally
validated. By doing so, we provide new understandings for
vaccine and therapeutic development, inform on basic
mechanisms of viral infection, push technological and
methodological limits for molecular simulation, and bring
supercomputing to the forefront in the fight against
COVID19.

2.1. Methods

2.1.1. Full-length, fully-glycosylated spike protein. In this
work, we built two full-length glycosylated all-atom mod-
els of the SARS-CoV-2 S protein in both closed and open
states, fully detailed in Casalino et al (Casalino et al.,
2020b). The two all-atom models were built starting from
the cryo-EM structures of the spike in the open state (PDB
ID: 6VSB (Wrapp et al., 2020a)), where one receptor bind-
ing domain (RBD) is in the “up” conformation, and in the
closed state, bearing instead three RBDs in the “down”
conformation (PDB ID: 6VXX (Walls et al., 2020)). Given
that the experimental cryo-EM structures were incomplete,
the remaining parts, namely (i) the missing loops within the
head (residues 16-1141), (ii) the stalk (residues 1141-
1234) and (iii) the cytosolic tail (residues 1235-1273),
were modelled using MODELLER (Sali and Blundell,
1993) and I-TASSER (Zhang, 2008). The resulting full-
length all-atom constructs were subsequently N-/O-
glycosylated using the Glycan Reader & Modeler tool (Jo

et al., 2008) integrated into Glycan Reader (Jo et al., 2011)
in CHARMM-GUI (Park et al., 2019). Importantly, an
asymmetric glycoprofile was generated (e.g., not specular
across monomers) taking into account the N-/O-glycans
heterogeneity as described in the available glycoanalytic
data (Shajahan et al., 2020; Watanabe et al., 2020). The
two glycosylated systems were embedded into their phy-
siological environment composed of an ERGIC-like lipid
bilayer (Casares et al., 2019; Van Meer et al., 2008) built
using CHARMM-GUI (Jo et al., 2008; Wu et al., 2014),
explicit TIP3P water molecules (Jorgensen et al., 1983a),
and neutralizing chloride and sodium ions at 150 mM con-
centration, generating two final systems each tallying ~ 1.7
million atoms. Using CHARMM36 all-atom additive force
fields (Guvench et al., 2009; Huang and Mackerell, 2013)
and NAMD 2.14 (Phillips et al., 2020), the systems were
initially relaxed through a series of minimization, melting
(for the membrane), and equilibration cycles. The equili-
brated systems were then subjected to multiple replicas of
all-atom MD simulation production runs of the open (6x)
and closed (3x) systems on the NSF Frontera computing
system at the Texas Advanced Computing Center (TACC).
A cumulative extensive sampling of ~4.2 and ~1.7 us
was attained for the open and closed systems, respectively.
Additionally, a third, mutant system bearing N165A and
N234A mutations was built from the open system in order
to delete the N-linked glycans and delineate their structural
role in the RBD dynamics. This system was also simulated
for ~4.2 ps in 6 replicas (Casalino et al., 2020b).

2.1.2. ACE2-RBD complex MD simulations. The model of the
ACE2-RBD complex was based on cryo-EM structure trap-
ping ACE2 as a homo-dimer co-complexed with two RBDs
and BOAT1 transporter (PDB ID 6M17 (Yan et al., 2020)).
Upon removal of BOAT1, ACE2 missing residues at the C
terminal end were modeled using I-TASSER (Zhang,
2008), whereas those missing at the N terminal end were
taken from 6MO0J and properly positioned upon alignment
of the N terminal helix. Zinc sites including the ions and the
coordinating residues were copied from 1R42. The con-
struct was fully N-/O-glycosylated using CHARMM-GUI
tools (Jo et al., 2008, 2011; Park et al., 2019) for glycan
modeling, reproducing the glycan heterogeneity for ACE2
and RBD reported in the available glycoanalytic data (Sha-
jahan et al., 2020; Sun et al., 2020; Zhao et al., 2020).
Similarly, the apo ACE2 homo-dimer was also built upon
removal of the RBDs from the holo construct. The glyco-
sylated models were embedded into separate lipid patches
with a composition mimicking that of mammalian cellular
membranes (Casares et al., 2019; Van Meer et al., 2008)
and simulated in explicit water molecules at 150 mM ion
concentration, affording two final systems of ~ 800,000
atoms each. MD simulations were performed using
CHARMM36 all-atom additive force fields (Guvench
et al., 2009; Huang and Mackerell, 2013) along with
NAMD 2.14 (Phillips et al., 2020). The MD protocol was
identical to that adopted for the simulation of the full-
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length spike and it is fully described in Casalino et al (Casa-
lino et al., 2020b). This work is fully detailed in Barros et al
(Barros et al., 2020).

2.1.3. Weighted ensemble simulations of spike opening. The
spike must undergo a large conformational change for acti-
vation and binding to ACE2 receptors, where the receptor
binding domain transitions from the “down,” or closed state
to the “up,” or open state (Wrapp et al., 2020b). Such con-
formational changes occur on biological timescales gener-
ally not accessible by classical molecular dynamics
simulations (Onuchic et al., 1997). To simulate the full
unbiased path at atomic resolution, we used the weighted
ensemble (WE) enhanced sampling method (Huber and
Kim, 1996; Zuckerman and Chong, 2017). Instead of run-
ning one single long simulation, the WE method runs many
short simulations in parallel along the chosen reaction coor-
dinates. The trajectories that rarely sample high energy
regions are replicated, while the trajectories that frequently
sample low energy regions are merged, which makes sam-
pling rare events computationally tractable and gives
enhanced sampling. The trajectories also carry probabilities
or weights, which are continuously updated, and there is no
statistical bias added to the system. Hence, we are able to
directly obtain both thermodynamic and kinetic properties
from the WE simulations (Zhang et al., 2010).

For this study, the closed model of the glycosylated
spike from Casalino et al. (2020b), was used as the initial
structure by only keeping the head domain. The WE simu-
lations were run using the highly scalable WESTPA soft-
ware (Zwier et al., 2015), with the Amber GPU accelerated
molecular dynamics engine (G6tz et al., 2012; Salomon-
Ferrer et al., 2013), version 18. Chamber (Crowley et al.,
2009) was used to convert CHARMM36 (Guvench et al.,
2009; Huang and Mackerell, 2013) force fields and para-
meters from the system developed by Casalino et al.
(2020b) into an Amber readable format. A TIP3P (Jorgen-
sen et al., 1983b) water box with at least 10 A between
protein and box edges was used with 150 mM NacCl, lead-
ing the total number of atoms to 490,621. Amber minimi-
zation was carried out in two stages. First the solvent was
minimized for 10,000 cycles with sugars and proteins
restrained with a weight of 100 kcal/mol A2, followed by
unrestrained minimization for 100,000 cycles. Next the
system was incrementally heated to 300 K over 300 ps.
Equilibration and production were carried out in 2 fs time-
steps with SHAKE (Ryckaert et al., 1977) constraints on
non-polar hydrogens and NPT ensemble. Pressure and tem-
perature were controlled with Monte Carlo barostat and
Langevin thermostat with 1 ps™ collision frequency. The
particle-mesh Ewald (PME) method was used with 10 A
cutoff for non-bonded interactions. The system was first
equilibrated for 21 ns of conventional MD. The RMSD of
the alpha carbons began to level off around 16 ns, and 24
structures were taken at regular intervals between 16 and 21
ns to use as equally weighted basis states for the WE
simulation.

Figure 2. Opening of the spike protein. VMD visualization of
weighted ensemble simulations shows the transition of the spike’s
RBD from the closed state to the open state. Many conformations
of the RBD along its opening pathway are represented at the same
time using cyan cartoons and a transparency gradient. Glycans
appear as dark blue.

For each WE simulation, the fixed time interval for
resampling was set to 100 ps followed by progress coordi-
nate evaluation, splitting/merging of trajectories and
updating trajectory weights, with a target of 8 trajectories
per bin. A two dimensional progress coordinate was
defined by (i): the distance between the center of mass
(COM) of the alpha carbons in the structured region of the
spike helical core, and the alpha carbons in the four main
beta sheets of the RBD (refers to RBD from chain A unless
otherwise specified) and (i7): the RMSD of the alpha car-
bons in the four main beta sheets of the RBD to the initial
structure (obtained from 1 ns equilibration). This simula-
tion was run for 8.77 days on 80 P100 GPUs on Comet at
SDSC collecting a comprehensive sampling of ~7.5 ps,
with bin spacing continuously monitored and adjusted to
maximize sampling.

After extensive sampling of the RBD closed state, the
second progress coordinate was changed to the RMSD of
the alpha carbons in the four main beta sheets of the RBD
compared to the final open structure, obtained from system
1, after 1 ns of equilibration carried out with identical
methods as the closed structure described above, which was
initially calculated as 11.5 A. This allowed more efficient
sampling of the transition to the open state by focusing
sampling on states which are closer in rotational or transla-
tional space to the final state, rather than sampling all con-
formations that are distinctly different from the closed
state. Bin spacing was continuously monitored and adjusted
to maximize traversing the RMSD coordinate. The full
transition was confirmed when the RMSD coordinate
reached below 6 A and the RBD COM coordinate reached
above 8.5 A (Figure 2). The simulation was stopped for
analysis after 1099 iterations, upon running for 26.74 days
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on 100 V100 GPUs on Longhorn at TACC and harvesting
~70.0 us.

A second, independent WE simulation was conducted to
determine if the findings of the initial simulation were
reproducible, and to use the information on the free energy
landscape of the successful transition in the first WE to
inform bin spacing and target state definition to run an
unsupervised simulation. After 19.64 days on 100 V100
GPUs on TACC Longhorn and ~51.5 ps of comprehensive
sampling, successful transitions to the open state were
observed, as well as further open states, in which the RBD
was observed to be peeling off of the spike core.

2.1.4. Two-parallel-membrane system of the spike-ACE2
complex. The SARS-CoV-2 virus gains entry into the host
cell through a membrane fusion process taking place upon
the recognition of the ACE2 receptors exposed on the host
cell. This binding event triggers several, dramatic confor-
mational changes within the spike protein, which becomes
primed to pull the two membranes together for fusion,
allowing the virus to pour the viral RNA into the host cell.
In order to disentangle the mechanistic intricacies underly-
ing this key process, we exploited the wealth of information
obtained from the individual simulations described above
to assemble an all-atom complex between the full-length
spike and the ACE2 dimer. As a first step, equilibrated
structures of the spike in the open state and of the ACE2-
RBD complex were extracted from their respective indi-
vidual simulations (Barros et al., 2020; Casalino et al.,
2020a). Subsequently, the spike protein was superimposed
onto the ACE2-RBD complex by aligning the spikes’s
RBD “up” with the RBD of the ACE2-RBD complex,
allowing for a fairly vertical arrangement of the new con-
struct. In order to preserve the best possible binding inter-
face, the RBD of the spike was discarded, whereas the RBD
from the ACE2-RBD complex was retained and linked to
the rest of the spike. The spike-ACE2 complex was
embedded into a double membrane system: the spike’s
transmembrane domain was inserted into a 330 A x 330
A ERGIC-like lipid bilayer, whereas for ACE2 a mamma-
lian cellular membrane of the same dimension was used
(Casares et al., 2019; Van Meer et al., 2008). The two
membranes were kept parallel to each other, allowing the
use of an orthorhombic box. In order to facilitate the water
and ion exchange between the internal and external com-
partment, an outer-membrane-protein-G (OmpG) porin
folded into a beta barrel was embedded into each membrane.
The OmpG equilibrated model was obtained from Chen et al
(Chen et al., 2008). The generated two-membrane construct
was solvated with explicit TIP3P water molecules, with the
total height of the external water compartment matching the
internal one exhibiting a value of 380 A. Sodium and chlor-
ide ions were added at a concentration of 150 mM to neu-
tralize the charge and reshuffled to balance the charge
between the two compartments.

The composite system, counting 8,562,698 atoms with an
orthorhombic box 0f 330 A x 330 A x 850 A, was subjected

to all-atom MD simulation on the Summit computing system
at ORNL using NAMD 2.14 (Phillips et al., 2020) and
CHARMM36 all-atom additive force fields (Guvench
et al., 2009; Huang and Mackerell, 2013). Two cycles of
conjugate gradient energy minimization and NPT pre-
equilibration were conducted using a 2 fs timestep for a total
of ~3 ns. During this phase, the ACE2 and spike proteins
and the glycans were harmonically restrained at 5 kcal/mol,
allowing for the relaxation of the two lipid bilayers, the
OmpG porins, water molecules and ions within the context
of the double membrane system. We remark that the two
lipid patches were previously equilibrated, therefore not
requiring a melting phase at this stage. The dimension of
the cell in the xy plane was maintained constant while
allowing fluctuation along the z axis. Upon this initial pre-
equilibration phase, a ~17 ns NPT equilibration was per-
formed by releasing all the restraints, preparing the system
for production run. From this point, three replicas were run
or a total of ~522 ns comprehensive simulation time. By
using the trained Al learning model, three conformations
were extracted from this set of simulations, each of them
representing a starting point of a new replica with re-
initialized velocities. A total of three additional simulations
were therefore performed, collecting ~ 180 ns and bringing
the total simulation time to ~ 702 ns.

2.1.5. SARS-CoV-2 viral envelope. The full-scale viral envel-
ope was constructed using the LipidWrapper program
(v1.2) previously developed and described by Durrant and
Amaro (2014). A 350 A x 350 A lipid bilayer patch used as
the pdb input was generated using CHARMM-GUI with an
ERGIC-like lipid composition and an estimated area per
lipid of 63 A. An icospherical mesh with a 42.5 nm radius,
in accordance with experimentally-observed CoV-2 radii,
was exported as a collada file from Blender (v2.79b) and
used as the surface file (Ke et al., 2020)." LipidWrapper
was run in a Python 2.7 conda environment with lipid head-
group parameters “_P, CHL1_03,” a lipid clash cut-off of
1.0 A, and filling holes enabled.” The final bilayer pdb was
solvated in a 110 nm cubic box using explicit TIP3P water
molecules and neutralized with sodium and chloride ions to
a concentration of 150 mM. The final system contained
76,134,149 atoms.

Since the LipidWrapper program operates via tessella-
tion, lipid clash removal, and a subsequent lipid patching
algorithm, the bilayer output attains a lower surface pres-
sure than that of a bilayer of the same lipid composition at
equilibrium (Casalino et al., 2020a). Due to this artifact, as
the bilayer equilibrates, the lipids undergo lateral compres-
sion resulting in the unwanted formation of pores. Thus, the
envelope was subjected to multiple rounds of minimiza-
tion, heating, equilibration, and patching until the appro-
priate equilibrium surface pressure was reached.

All-atom MD simulations were performed using NAMD
2.14 and CHARMM36 all-atom additive force fields. The
conjugate-gradient energy minimization procedure
included two phases in which the lipid headgroups were
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restrained with 100 and 10 kcal/mol weights, respectively,
at 310 K for 15,000 cycles each. The membrane was then
melted by incremental heating from 25 K to 310 K over 300
ps prior to NPT equilibration. The equilibration sequen-
tially released the harmonic restraints on the lipid head-
groups from 100 to 0 kcal/mol over 0.5 ns. Following
this sequence, the structure was visually evaluated to deter-
mine whether to continue equilibration or to proceed with
pore patching. Most structures continued with unrestrained
equilibration for 4-26 ns prior to patching, with longer
unrestrained equilibrations attributed to later, more stable
envelopes.

Patching of the envelope was done by overlapping the
initial LipidWrapper bilayer output with the newly-
equilibrated envelope. All superimposed lipids within 2.0
A of the equilibrated lipids were removed to eliminate
clashes. Superimposed lipids within 4.0 A ofan equilibrated
cholesterol molecule were also removed to eliminate ring
penetrations. The patched system, with new lipids occupying
the pores, was then re-solvated, neutralized, and subjected to
the next round of minimization, heating, and equilibration.

After ten rounds of equilibration and patching, 24 spike
proteins with glycans, 8 in the closed and 16 in the open
state, were inserted randomly on the envelope using a
house tcl script. A random placement algorithm was used
in accordance with experimental microscopy imaging
which has suggested that there is no obvious clustering of
the spikes and no correlation between RBD state and loca-
tion on the spike surface (Ke et al., 2020). The number of
spikes was selected based on experimental evidence report-
ing a concentration of 1000 spikes/nm 2 on the envelope
(Ke et al., 2020). The new structure containing spikes was
re-solvated, neutralized, and processed to remove clashing
lipids prior to further simulation. The resulting cubic sol-
vent box was 146 nm per side and contained 304,780,149
atoms. The spike-inclusive envelope was then subjected to
three more equilibration and patching sequences. The final
virion used for all-atom MD production runs had a lipid
envelope of 75 nm in diameter with a full virion diameter of
120 nm. The complete equilibration of the viral envelope
totaled 41 ns on the TACC Frontera system and 75 ns on
ORNL Summit. Full-scale viral envelope production simu-
lations were performed on Summit for a total of 84 ns in an
NPT ensemble at 310 K, with a PME cutoff of 12 A for
non-bonded interactions.

3. Performance attributes

Our Submission
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Whole application including I/O
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Measured on full system
Hardware performance counters,
Application timers,

Performance Modeling
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Results reported on the basis of
Precision reported

System scale
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4. Current state of the art
4.1. Parallel molecular dynamics

NAMD (Phillips et al., 2005) has been developed over
more than two decades, with the goal of harnessing parallel
computing to create a computational microscope (Lee
et al., 2009; Shaw et al., 2007) enabling scientists to study
the structure and function of large biomolecular complexes
relevant to human health. NAMD uses adaptive, asynchro-
nous, message-driven execution based on Charm++ (Kalé
et al., 2019; Kalé and Zheng, 2013). It was one of the first
scientific applications to make use of heterogeneous com-
puting with GPUs (Phillips et al., 2008), and it implements
a wide variety of advanced features supporting state-of-the-
art simulation methodologies. Continuing NAMD and
Charm++ developments have brought improved work
decomposition and distribution approaches and support for
low overhead hardware-specific messaging layers,
enabling NAMD to achieve greater scalability on larger
parallel systems (Kumar et al., 2012; Phillips et al.,
2014). NAMD incorporates a collective variables module
supporting advanced biasing methods and a variety of in-
situ analytical operations (Fiorin et al., 2013). Simulation
preparation, visualization, and post-hoc analysis are per-
formed using both interactive and offline parallel VMD
jobs (Humphrey et al., 1996; Stone et al., 2013a, 2013D,
2016b). NAMD has previously been used to study viruses
and large photosynthetic complexes on large capability-
oriented and leadership class supercomputing platforms,
enabling the high-fidelity determination of the HIV-1 cap-
sid structure (Zhao et al., 2013), the characterization of
substrate binding in influenza (Durrant et al., 2020), and
the structure and kinetics of light harvesting bacterial orga-
nelles (Singharoy et al., 2019).

4.2. Weighted ensemble MD simulations

The weighted ensemble (WE) method is an enhanced
sampling method for MD simulations that can be orders
of magnitude more efficient than standard simulations in
generating pathways and rate constants for rare-event
processes. WE runs many short simulations in parallel,
instead of one long simulation, and directly gives both
thermodynamic and kinetic properties. The simulations
go through “resampling” where simulations are repli-
cated in less-visited regions and merged in well-visited
regions. The simulations also carry probabilities or
“weights” that are continuously updated to ensure that
no statistical bias is added to the system. In addition, the
WE method is one of the few methods that can obtain
continuous unbiased pathways between states, so this
was the most suitable method for us to obtain and
observe the closed to open transition for the spike sys-
tem. Before the WE method was applied to the spike
system under investigation here (about ~500,000 atoms),
the largest system used for the WE method was the
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barnase-barstar complex (100,000 atoms) (Saglam and
Chong, 2019).

4.3. Al-driven multiscale MD simulations

A number of approaches, including deep learning methods,
have been developed for analysis of long timescale MD
simulations (Noé, 2020). These linear, non-linear, and
hybrid ML approaches cluster the simulation data along a
small number of latent dimensions to identify conforma-
tional transitions between states (Bernetti et al., 2020;
Ramanathan et al., 2012). Our group developed a deep
learning approach, namely the variational autoencoder that
uses convolutional filters on contact maps (from MD simu-
lations) to analyze long time-scale simulation datasets and
organize them into a small number of conformational states
along biophysically relevant reaction coordinates (Bhow-
mik et al., 2018). We have used this approach to character-
ize protein conformational landscapes (Romero et al.,
2019). However, with the spike protein, the intrinsic size
of the simulation posed a tremendous challenge in scaling
our deep learning approaches to elucidate conformational
states relevant to its function.

Recently, we extended our approach to adaptively run
MD simulation ensembles to fold small proteins. This
approach, called DeepDriveMD (Lee et al., 2019), succes-
sively learns which parts of the conformational landscape
have been sampled sufficiently and initiates simulations
from undersampled regions of the conformational land-
scape (that also constitute “interesting” features from a
structural perspective of the protein). While a number of
adaptive sampling techniques exist (Allison, 2020; Bonati
et al., 2019; Kasson and Jha, 2018; Lamim Ribeiro and
Tiwary, 2019; Ribeiro et al., 2018; Wang et al., 2019,
2020), including based on reinforcement learning methods
(Pérez et al., 2020), these techniques have been demon-
strated on prototypical systems. In this paper, we utilize
the deep learning framework to suggest additional points
for sampling and do not necessarily use it in an adaptive
manner to run MD simulations (mainly due to the limita-
tions posed by the size of the system). However, extensions
to our framework for enabling support of such large-scale
systems are straightforward and further work will examine
such large-scale simulations.

5. Innovations realized
5.1. Parallel molecular dynamics

Significant algorithmic improvements and performance
optimizations have been required for NAMD to achieve
high performance on the GPU-dense Summit architecture
(Acun et al., 2019; Phillips et al., 2020; Stone et al., 2016a).
New CUDA kernels for computing the short-range non-
bonded forces were developed that implement a “tile list”
algorithm for decomposing the workload into lists of finer
grained tiles that more fully and equitably distribute work
across the larger SM (streaming multiprocessor) counts in

modern NVIDIA GPUs. This new decomposition uses the
symmetry in Newton’s Third Law to eliminate redundant
calculation without incurring additional warp-level syn-
chronization (Stone et al., 2016a). CUDA kernels also were
added to offload the calculation of the bonded force terms
and non-bonded exclusions (Acun et al., 2019). Although
these terms account for a much smaller percentage of the
work per step than that of the short-range non-bonded
forces, NAMD performance on Summit benefits from fur-
ther reduction of CPU workload. NAMD also benefits from
the portable high-performance communication layer in
Charm-++ that communicates using the IBM PAMI (Par-
allel Active Messaging Interface) library, which improves
performance by up to 20% over an MPI-based implemen-
tation (Acun et al., 2019; Kumar et al., 2012).

Additional improvements have benefited NAMD per-
formance on Frontera. Recent developments in Charm++
now include support for the UCX (Unified Communica-
tion X) library which improves performance and scaling
for Infiniband-based networks. Following the release of
NAMD 2.14, a port of the CUDA tile list algorithm to
Intel AVX-512 intrinsics was introduced, providing a
1.8 x performance gain over the “Sky Lake” (SKX) builds
of NAMD.

A significant innovation in NAMD and VMD has been
the development of support for simulation of much larger
system sizes, up to two billion atoms. Support for larger
systems was developed and tested through all-atom model-
ing and simulation of the protocell as part of the ORNL
CAAR (Center for Accelerated Application Readiness)
program that provided early science access to the Summit
system (Phillips et al., 2020). This work has greatly
improved the performance and scalability of internal algo-
rithms and data structures of NAMD and VMD to allow
modeling of biomolecular systems beyond the previous
practical limitation on the order of 250 million atoms. This
work has redefined the practical simulation size limits in
both NAMD and VMD and their associated file formats,
added new analysis methods specifically oriented toward
virology (Gonzalez-Arias et al., 2020), and facilitates mod-
eling of cell-scaled billion-atom assemblies, while making
smaller modeling projects significantly more performant
and streamlined than before (Acun et al., 2019;
Gonzalez-Arias et al., 2020; Phillips et al., 2020; Stone
et al., 2016a, 2016b).

5.2. Multiscale molecular dynamics simulations

Often referred to as “computational microscopy,” MD
simulations are a powerful class of methods that enable the
exploration of complex biological systems, and their time-
dependent dynamics, at the atomic level. The systems
studied here push state of the art in both their size and com-
plexity. The system containing a full-length, fully-
glycosylated spike protein, embedded in a realistic viral
membrane (with composition that mimics the endoplasmic
reticulum) contains essentially all of the biological
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complexity known about the SARS-CoV-2 spike protein.
The composite system contains ~ 1.7 million atoms and
combines data from multiple cryoEM, glycomics, and lipi-
domics datasets. The system was simulated with conven-
tional MD out to microseconds in length, and several
mutant systems were simulated and validated with indepen-
dent experiments.

A related set of experiments utilizing the weighted en-
semble method, an enhanced sampling technique, explored
a truncated version of the spike protein (~ 600,000 atoms
with explicit solvent) in order to simulate an unbiased spike
protein conformational transition from the closed to open
state. This is the largest system, by an order of magnitude,
that has been simulated using the WE method (biggest sys-
tem until now was ~ 60,000 atoms). Using calculations opti-
mized to efficiently make use of extensive GPU resources,
we obtained several full, unbiased paths of the glycosylated
spike receptor binding domain activation mechanism.

The second system increases the complexity by an order of
magnitude by combining the spike system described above
with a full-length, fully-glycosylated model of the ACE2
receptor bound into a host cell plasma membrane. This system
represents the encounter complex between the spike and the
ACE2 receptor, contains two parallel membranes of differing
composition, has both the spike and ACE2 fully glycosylated,
and forming a productive binding event at their interface. The
composite system contains ~ 8.5 Million atoms with explicit
water molecules and provides unseen views into the critical
handshake that must occur between the spike protein and the
ACE2 receptor to begin the infection cascade.

Our final system is of the SARS-CoV-2 viral envelope.
This system incorporates 24 full-length, fully-glycosylated
spike proteins into a viral membrane envelope of realistic
(ER-like) composition, where the diameter of the viral mem-
brane is ~ 80 nm and the diameter of the virion, inclusive of
spikes, is 146 nm. Until now, the largest system disclosed in
a scientific publication was the influenza virus, which con-
tained ~ 160 million atoms. The SARS-CoV-2 viral envelope
simulation developed here contains a composite 305 million
atoms, and thus breaks new ground for MD simulations of
viruses in terms of particle count, size, and complexity.

Moreover, typical state of the art simulations are run in
isolation, presenting each as a self-contained story. While
we also do that for each of the systems presented here, we
advance on state of the art by using an Al-driven workflow
that drives simulation at one scale, with knowledge gained
from a disparate scale. In this way, we are able to explore
relevant phase space of the spike protein more efficiently
and in environments of increasing complexity.

5.3. Using Al for driving multiscale simulations

5.3.1. Using deep learning to characterize conformational states
sampled in the SARS-CoV-2 spike simulations. MD simulations
such as the ones described above generate tremendous
amounts of data. For e.g. the simulations of the WE sampling
of the spike protein’s closed-to-open state generated over

100 terabytes of data. This imposes a heavy burden in terms
of understanding the intrinsic latent dimensions along which
large-scale conformational transitions can be characterized.
A key challenge then is to use the raw simulation datasets
(either coordinates, contact matrices, or other data collected
as part of a standard MD runs) to cluster conformational
states that have been currently sampled, to identify biologi-
cally relevant transitions between such states (e.g., open/
closed states of spike), and suggest conformational states
that may not be fully sampled to characterize these transi-
tions (Ramanathan et al., 2012).

To deal with the size and complexity of these simulation
datasets, approaches that analyze 3D point clouds are more
appropriate. Indeed, such approaches are becoming more
commonly utilized for characterizing protein binding pock-
ets and protein-ligand interactions. We posited that such
representations based on the C ¢ representation of protein
structures could be viable to characterize large-scale con-
formational changes within MD simulation trajectories. We
leverage the 3D PointNet based (Qi et al., 2017) adversarial
autoencoder (3D-AAE) developed by Zamorski and col-
leagues (Zamorski et al., 2020) to analyze the spike protein
trajectories. In this work, we employ the chamfer distance
based reconstruction loss and a Wasserstein (Arjovsky
et al., 2017) adversarial loss with gradient penalty (Gulra-
jani et al., 2017) to stabilize training. The original PointNet
backbone treats the point cloud as unordered, which is true
for general point clouds. In our case however, the protein is
essentially a 1D embedding into a 3D space. This allows us
to define a canonical order of points, i.e. the order in which
they appear in the chain of atoms. For that reason, we
increase the size-1 1D convolutional encoder kernels from
the original PointNet approach to larger kernels up to size
5. This allows the network to not only learn features solely
based on distance, but also based on neighborhood in terms
of position of each atom in the chain. We found that a 4-
layer encoder network with kernel sizes [5, 3,3, 1, 1] and
filter sizes [64, 128,256,256, 512] performs well for most
tasks. A final dense layer maps the vectors into latent space
with dimensionality 64. For the generator, we only use unit
size kernels with filter dimensions [64, 128,512, 1024, 3]
respectively (the output filter size is always the dimension-
ality of the problem). The discriminator is a 5 layer fully
connected network with layer widths [512, 512, 128, 64, 1].

The trajectories from the WE simulations were used to
build a combined data set consisting of 130,880 examples.
The point cloud data, representing the coordinates of the
3,375 backbone C ¢ atoms of the protein, was randomly
split into training (80%) and validation input (20%) and
was used to train the 3D-AAE model for 100 epochs using
a batch size of 32. The data was projected onto a latent
space of 64 dimensions constrained by a gaussian prior
distribution with a standard deviation of 0.2. The loss opti-
mization was performed with the Adam optimizer, a variant
of stochastic gradient descent, using a learning rate of
0.0001. We also added hyperparameters to scale individual
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components of the loss. The reconstruction loss was scaled
by 0.5 and the gradient penalty by a factor of 10.

The embedding learned from the 3D-AAE model sum-
marizes a latent space that is similar to variational autoen-
coders, except that 3D-AAEs tend to be more robust to
outliers within the simulation data. The embeddings learned
from the simulations allow us to cluster the conformations
(in an unsupervised manner) based on their similarity in
overall structure, which can be typically measured using
quantities such as root-mean squared deviations (RMSD).

We trained the model using several combinations of
hyperparameters, mainly varying learning rate, batch size and
latent dimension (Figure 3A). For visualizing and assessing
the quality of the model in terms latent space structure, we
computed t-SNE (van der Maaten and Hinton, 2008) dimen-
sionality reductions on the high-dimensional embeddings
from the validation set. A good model should generate clus-
ters with respect to relevant biophysical observables not used
in the training process. Therefore, we painted the t-SNE plot
with the root mean squared deviation (RMSD) of each struc-
ture to the starting conformation and observed intelligible
clustering of RMSD values (Figure 3B). We tested this model
on a set of trajectories from the full scale spike-ACE2 system,
using the same atom selection (3,375 C ¢ atoms) as the cor-
responding WE spike protein. We subsequently performed
outlier detection using the local outlier factor (LOF) algo-
rithm, which uses distance from neighboring points to iden-
tify anomalous data. The goal of the outlier detection step is to
identify conformations of the protein that are most distinct
from the starting structure, in order to story board important
events in the transition of the protein from an open to closed
conformation. Although the number of outlier conformations
detected can be a parameter that the end-user can specify, we
selected 20 outlier conformations, based on the extreme LOF
scores. These conformations were visualized in VMD (Hum-
phrey et al., 1996; Stone et al., 2016a), and further analyzed
using tilt angles of the stalk and the RBD. The final selection
included 3 structures which were used as the starting confor-
mations for the next set of simulations (Figure 3C). These
“outlier” conformers are cycled through additional MD simu-
lations that are driven by the ML-methods.

6. How performance was measured
6.1. 3D-AAE

Since this application dominantly utilizes the GPU, we do
not need to profile CPU FLOPs. Instead, we measure
FLOPs for all precisions using the methodology explained
in (Yang, 2020) with the NVIDIA NSight Compute 2020
GPU profiling tool. We collect floating point instructions
of relevant flavors (i.e. adds, mults, fmas (fused multiply
adds) and tensor core operations for FP16, FP32 and FP64)
and multiply those with weighting factors of {1, 1,2, 512}
respectively in order to transform those into FLOP counts.
The sum of all these values for all precisions will yield our
overall mixed precision FLOP count. To exclude FLOPs

occuring during initialization and shutdown, we wrap the
training iteration loop into start/stop profiler hooks pro-
vided by the NVIDIA CuPy Python package.’

6.2. NAMD

NAMD performance metrics were collected on TACC
Frontera, using the Intel msr-tools utilities, with NAMD
2.14 with added Intel AVX-512 support. FLOP counts were
measured for each NAMD simulation with runs of two
different step counts. The results of the two simulation
lengths were subtracted to eliminate NAMD startup oper-
ations, yielding an accurate estimate of the marginal FLOPs
per step for a continuing simulation (Phillips et al., 2002).

FLOP counts were obtained by reading the hardware
performance counters on all CPU cores on all nodes, using
the rdmsr utility from msr-tools.* At the beginning of each
job, the “TACC stats” system programs the core perfor-
mance counters to count the 8 sub-events of the Intel
FP_ARITH_INST_RETIRED.5 Counter values are
summed among the 56 cores in each node, and ultimately
among each node. Each node-summed counter value is
scaled by the nominal SIMD-width of the floating point
instruction being counted and the 8 classes are added
together to provide the total FLOP count per node. The
hardware counters do not take masked SIMD instructions
into account. SIMD lanes that are masked-out still contrib-
ute to the total FLOPs, however static analysis of the AVX-
512-enabled NAMD executable showed that only 3.7% of
FMA instructions were masked.

A breakdown of floating point instruction execution fre-
quency for the AVX-512 build of NAMD across 2048 nodes
is shown in Table 1. For CPU versions of NAMD, arithmetic
is performed in double precision, except for single-precision
PME long-range electrostatics calculations and associated
FFTs. In the GPU-accelerated NAMD on Summit, single-
precision arithmetic is used for both PME and also for
short-range non-bonded force calculations, significantly
increasing the fraction of single-precision instructions, at the
cost of requiring a mixed-precision patch-center-based
atomic coordinate representation to maintain full force cal-
culation precision (Phillips et al., 2020; Stone et al., 2016a).

7. Performance results
7.1. 3D-AAE training performance

We used the aforementioned recipe for GPU profiling to
determine the performance for the 3D-AAE training. We
measure the FLOP counts individually for 2 training and 1
validation steps for a batch size of 32. The latent dimension
of the model is a free hyperparameter and affects the FLOP
count. We trained three models with latent dimensions
[32, 64, 128] in order to determine an optimal model for
the task and thus we profile and report numbers for all of
those. All models were trained for 100 epochs with batch
size 32 on a single V100 GPU each. As mentioned above,
the train/valdiation dataset split is 80%/20% and we do one
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Figure 3. 3D-AAE training and test results. A) The loss progression for reconstruction, discriminator and validation loss over 100
epochs. B) The t-SNE plot visualization of the reduced latent space, with training embeddings represented in grey and test examples
represented in color over the range of RMSD values. Outliers identified in the outlier detection stage are represented with an outlined
diamond. C) VMD visualization of outlier structures (yellow, orange, dark orange) aligned and compared to the starting structure (blue).
The inset highlights the relative motions between the Spike head region based on the outliers selected. Note the significant displace-

ment of the head region from the initial structure (blue).

Table 1. NAMD AVX-512 FP operation breakdown.

FP Instr. Ops % total  FP Instr. Ops % total [t]
DblScalar 4.99el6 26.9% SglScalar 2.09el5  1.1% [t]
Dbli28b 6.86el5  3.7% Sgll28b 3.6lel5 1.9%
Dbl256b  1.06el7 57.1% Sgl256b  1.18el6  6.3%
Dbl512b  4.96el5  2.7% Sgl512b  3.43el4  0.2%

validation pass after each training epoch. Thus, we can
assume that this fraction translates directly into the FLOP
counts for these alternating two stages. Our sustained per-
formance numbers are computed using this weighted FLOP

count average and the total run time. In order to determine
peak performance, we compute the instantanecous FLOP
rate for the fastest batch during training. Note that the
3D-AAE does exclusively use float (FP32) precision. The
performance results are summarized in Table 2. Although
the model is dense linear algebra heavy, it is also rather
lightweight so it cannot utilize the full GPU and thus only
delivering 20% of theoretical peak performance.

As expected, the peak performance is very consistent
between the runs. The big difference in sustained perfor-
mance between latent dim 64 and the other two models is that
the frequency for computing the t-SNE was significantly
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Table 2. 3D-AAE training performance on one V100 GPU.

Table 4. NAMD performance: 8.5 M-atom Spike-ACE2.

Latent Dimensions Peak TFLOP/s Sustained TFLOP/s  Nodes Frontera Summit Summit [t]
32 2.96 0.97 CPU-only CPU-only CPU + GPU
64 3.16 2.28 64 7.52 ns/day 6.67 ns/day 52.15 ns/day [t]
128 3.13 091 128 13.00 ns/day 12.59 ns/day 79.68 ns/day

256 22.09 ns/day 24.19 ns/day 105.54 ns/day

512 34.32 ns/day 41.31 ns/day 135.31 ns/day
Table 3. NAMD simulation floating point ops per timestep. 1024 41.88 ns/day 66.31 ns/day 162.22 ns/day
NAMD Simulation Atoms FLOPS/step [t]
ACE2-RBD complex 800 k 21.57 GFLOPS/step [t]
Single Spike I.7M 47.96 GFLOPS/step 128
Spike-ACE2 complex 85M 243.7 GFLOPS/step Spike-ACE2
SARS-CoV-2 virion 305M 83511 TFLOPS/step 64 A

g Virion
@ 32

reduced, i.e. from every epoch to every 5th. The t-SNE com- % o
putation and plotting happens after each validation in a back- E
ground thread on the CPU, but the training epochs can be @ 4 |
m.uch shorte? than the .t—SNE time. In that case, the t'raining Saommit GPUrony —
will stall until the previous t-SNE has completed. Evidently, 4 , ‘ _ Frontera CPU-only —O—
decreasing the t-SNE frequency reduces that overhead signif- 64 128 256 . 51f2N ; 1024 2048 40%
icantly. We expect that the other models would perform simi-

larly if we would have enabled this optimization for those
runs as well. The remaining difference in peak vs. sustained
performance can be explained by other overhead, e.g. storing
embedding vectors, model checkpoints and the initial scaf-
folding phase. Furthermore, it includes the less FLOP-
intensive validation phase whereas the peak estimate is
obtained from the FLOP-heavy training phase.

7.2. NAMD simulation performance

Low-level NAMD performance measurements were made
on the TACC Frontera system, to establish baseline counts
of FLOPs per timestep for the four different biomolecular
systems simulated as part of this work, summarized in
Table 3, with the breakdown of CPU FLOPs described in
Table 1. Sustained NAMD performance measurements
were obtained using built-in application timers over long
production science runs of several hours, including all 1/0,
and reported in units of nanoseconds per day of simulation
time. NAMD sustained simulation performance for the
spike-ACE2 complex is summarized for the TACC Fron-
tera and ORNL Summit systems in Table 4 and Figure 4.
NAMD sustained simulation performance, parallel
speedup, and scaling efficiency are reported for the full
SARS-CoV-2 virion in Table 5. Peak NAMD mixed-
precision FLOP rates on ORNL Summit are estimated
in Table 6 by combining sustained performance measure-
ments with FLOPs/timestep measurements.

8. Implications

Our major scientific achievements are:

Figure 4. NAMD scaling on Summit and Frontera for 8.5 M-atom
spike-ACE2 complex (upper lines) and 305 M-atom virion (lower
line). Thin lines indicate linear scaling.

Table 5. NAMD performance: 305 M-atom virion.

Nodes Summit Speedup Efficiency [t]
CPU + GPU
128 4.23 ns/day ~1.0x ~ 100% [t]
256 8.02 ns/day 1.9 95%
512 15.32 ns/day 3.6x 91%
1024 25.66 ns/day 6.1x 75%
2048 44.27 ns/day 10.5x 65%
4096 68.36 ns/day 16.2x 51%

Table 6. Peak NAMD FLOP rates, ORNL Summit.

NAMD Simulation Atoms Nodes Sim rate  Performance [t]

Spike-ACE2 complex 85 M
SARS-CoV-2 virion

1024 162 ns/day 229 TFLOP/s [t]
305M 4096 68 ns/day 3.06 PFLOP/s

1.  We characterize for the first time the glycan shield of
the full-length SARS-CoV-2 spike protein (including
the stalk), and find that two N-glycans linked to N165
and N234 have a functional role in modulating the
dynamics of the spike’s RBD. This unprecedented
finding establishes a major new role of glycans in this
system as playing an active role in infection, beyond
shielding (Figure 1C) (Casalino et al., 2020b).

2. We discover that the human ACE2 receptor has a flex-
ible hinge in the linker region near the membrane that
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Figure 5. Flexibility of the spike bound to the ACE2 receptor. A) Schematic representation of the two-parallel-membrane system of
the spike-ACE2 complex. (B-E) Distributions of the ankle, knee, hip and spike-tilting angles resulting from MD replicas |-3 (darker
color) and 4-6 (lighter color). Starting points for replicas 4-6 have been selected using DeepDriveMD.

enables it to undergo exceptionally large angular
motions relative to the plane of the membrane. We
predict this flexibility will aid forming productive
complexes with the spike protein and may serve as a
mechanical energy source during the cell fusion pro-
cess (Barros et al., 2020).

the full closed-to-open transition of the spike’s RBD
(Figure 2), where knowledge of this pathway has the
potential to inform on mechanisms of viral infection
as well as potentially aid in the discovery of novel
druggable pockets within the spike. Our work set a

new milestone for the use of the weighted ensemble
method in biomolecular simulation, increasing appli-
cable system size by an order or magnitude over cur-
rent state of the art.

We characterize the spike’s flexibility in the context of
ACE2 binding. One of the most important properties of

3. We openly share our models, methods, and data, mak- the spike protein is its intrinsic flexibility, a key feature
ing them freely available to the scientific community. that facilitates the interaction with the ACE2 receptors
We are committed to the shared set of principles out- exposed on the host cell. CryoEM and cryoET structural
lined in Ref. (Amaro and Mulholland, 2020): deposit- data revealing the architecture of the SARS-CoV-2 viral
ing findings as preprints in advance of formal peer particle showed that the spike can tilt up to 60° with
review, making available our models at the time of respect to the perpendicular to the membrane (Ke et al.,
deposition into a preprint server (Barros et al., 2020), 2020; Yao et al., 2020). Behind this flexibility is the
and releasing the full datasets upon peer review (Casa- structural organization of the extra-virion portion of
lino et al., 2020b). By doing so, the reproducibility and the spike, composed of two major domains, the stalk
robustness of our findings and methods are enhanced, and the head, that are connected through a flexible junc-
and the scientific findings from our simulations are tion that has been referred to as “hip” (Figure 5A)
amplified through reuse by others. (Casalino et al., 2020b; Turonova et al., 2020). More-
4. We describe for the first time unbiased pathways for over, the stalk can be further divided into an upper and a

lower leg, which correspond to the extra-virion alpha-
helices of the coil-coiled trimeric bundle, and the trans-
membrane domain, which can be intended as the foot of
this organizational scaffold. The stalk’s upper leg, lower
leg and the foot are interspersed by highly flexible loops
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defined as “knee” and “ankle” junctions (Figure 5A)
(Turonova et al., 2020).

We then harnessed DeepDriveMD to perform adaptive
MD on the Spike-ACE2 8.5 million atoms system. Follow-
ing this workflow, we extracted three conformations from
the first set of Spike-ACE2 MD simulations (replicas 1-3)
and subsequently used them as starting points for a new
round of MD (replicas 4-6). We then calculated the distri-
bution of the overall spike tilting with respect to the per-
pendicular to the membrane (Figure SE) and of other three
angles involving the stalk, namely the “hip” angle between
the stalk’s upper leg and the head (Figure 5B), the “knee”
angle between the stalk’s lower and upper legs (Figure 5C),
and the “ankle” angle between the perpendicular to the
membrane and the stalk’s lower leg (Figure 5D).

The Al-driven adaptive MD approach expanded the con-
formational space explored, especially for the knee and hip
angles, showing average values of 18.5° + 7.7° and 13.8°
+ 7.6° for replicas 1-3, shifted to 30.4° + 5.1° and 18.8°
+ 6.0° for the subsequent set of MD (replicas 4-6), respec-
tively. The population shift is less pronounced for the
ankle, exhibiting an average angle of 21.8° + 2.7°. These
results, in agreement with the data from Turonova et al.
(2020) that however did not consider the spike in complex
with ACE2, reveal large hinge motions throughout the stalk
and between the stalk and the head that accommodate the
interaction between the spike’s RBD and the ACE2 recep-
tor, preventing the disruption of the binding interface. This
is further highlighted by the overall tilting of the spike that
remains well defined around 7.3° + 2.0° (Figure 5E),
showing that the stalk’s inner hinge motions prevent a
larger scale bending that could potentially disrupt the
RBD-ACE2 interaction.

(6) Our approach points to the very near term ability
to accelerate the sampling of dynamical configura-
tions of the complicated viral infection machinery
within in the context of its full biological complex-
ity using AL. The enormous amount of data arising
from MD and WE simulations of the single spike
served to build and train an Al model using the varia-
tional autoencoder deep learning approach, which we
demonstrate to accelerate dynamical sampling of the
spike in a larger, more complex system (i.e., the two
parallel membrane spike-ACE2 complex). Thus, the
combination of the Al-driven workflows together
with the groundbreaking simulations opens the possi-
bility to overcome a current major bottleneck in the
development and use of such ultra-large scale MD
simulations, which relates to the efficient and effec-
tive sampling of the conformational dynamics of a
system with so many degrees of freedom. The scien-
tific implications of such a technological advance, in
terms of understanding of the basic science of mole-
cular mechanisms of infection as well as the develop-
ment of novel therapeutics, are vast.

(7) We establish a new high watermark for the
atomic-level simulation of viruses with the simula-
tion of the SARS-CoV-2 viral envelope, tallying
305 million atoms including explicit water mole-
cules, and exhibiting a strong scaling on Summit.
The virion has a realistic ERGIC-like membrane, con-
tains 24 fully glycosylated full-length spikes (in both
the open and closed states) and replicates the spatial
patterning and density of viral proteins as determined
from cryoelectron tomography experiments (Ke et al.,
2020). These groundbreaking simulations, just now in
the process of being fully analyzed, set the stage for
future work on SARS-CoV-2 that will be unprece-
dented in terms of their ability to more closely mimic
realistic biological conditions. This includes, for
example, the ability to explore the interactions of the
virus with multiple receptors on the host cell, or mul-
tiple antibodies. It will allow researchers to explore
the correlated dynamics of the molecular pieceparts
on the surface of the virus and the host cell, and the
effects of curvature on such behavior. It will be used
as the ground-truth in the development of other simu-
lation approaches, including coarse grained simula-
tion methods, which are under development (Yu
etal., 2020). It will aid in the development of methods
related to the construction of complicated biological
membranes (Gonzalez-Arias et al., 2020). And the list
goes on.

(8) We developed an Al-driven workflow as a gener-
alizable framework for multiscale simulation.
Though we focus here on advances made relevant to
COVID19, the methods and workflow established
here will be broadly applicable to the multiscale
simulation of molecular systems.
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