Ammonia Production with
Concentrated Sunlight

H. Evan Bush
Concentrating Solar Technologies
National Solar Thermal Test Facility

Sandia National Labs

5
. Ry
g R \‘z"& »:
o . <
< . k >
. @l :
Py - ’

SAND2020- 5670PE

@ENERGY NS

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



Introduction

| \Motivations for Solar Ammonia Production
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Production: ~10° metric tons per year Steps:
1. Steam methane reforming

Fertilizer: 88% worldwide NH; consumption
CH, + H,0 — 3H, + CO

Haber-Bosch Process 2. Cryogenic air separation
¢ Standard for NH; production Air — 0.8N, + 0.20,
* Developed early 1900s 3. Ammonia synthesis
* NH; from N, + H, with aid of catalyst 3H, + N, 5 2NH,
* Conditions
* High temperatures, = 400°C I :
* High pressures, = 200 bar mpac ,S. .
o ~107 increased population
* Inputs . 5 ¢ k8CO2 eq
* H, source: steam methane reforming " kg NHj3
* N, source: cryogenic air separation o Constitutes >1% global GHG emissions

aiche.org/resources/publications/cep/2016/september/introduction-ammonia-production




Sustainable Haber-Bosch Alternative

Challenge: Sustainable production of NH,
> Reduce/eliminate CO, emissions

o Use concentrated solar energy to drive chemical processes

Two Step Reduction-Oxidation (Redox) Cycles
° Vehicle for numerous solar thermochemistry processes
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Perovskite Air Separation Materials

Perovskite oxides (ABO,): i :
° Many combinations Qsolamr Qlass

o Maintain structure (nonstoichiometric redox)
MIEC: rapid kinetics
A/B site doping/substitution

o
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Can tune properties to desired reactor conditions
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Cycle Design

| | Selecting Materials and Operating Conditions for
t—~ Solar Air Separation
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Considerations

Perovskite Material
> Amount of N, purified per Ib/mol/day
° Temperatures of reactions
o Reaction rate
° Long-term stability

> Cost of metals, synthesis

Reactors and Cycle Conditions
° Temperatures and efficiencies
> Compuatibility with solar infrastructure
° Transport of working materials

° Materials compatibility and cost

Things We Need To Measure/
Predict

> Equilibrium reaction extents of perovskite at
cycle conditions (thermodynamics)

> Rates of reaction of perovskite within solar
reactor and reoxidizer (kinetics)

° Cycle efficiency and economics, accounting
for (coupled to) chemistry of the perovskite

Accomplishing the Goal
> Material synthesis
o Experiments

> Modeling (commercial and home-made)



s I Synthesis and Characterization

Lab scale, batch synthesis methods

(e]

(e]

Pure, single phase samples

Controlled dopant concentrations

Characterization techniques

(e]

X-ray diffraction (XRD): provides crystalline
structure; can be matched to known materials to
confirm sample composition

Scanning Electron Microscopy (SEM):
provides sample morphology, particle size, porosity

Electron-dispersive X-ray spectroscopy (EDS):
provides spatial elemental distribution, can be used
to ensure samples are homogenous

Thermogravimetric Analysis (TGA): Measures
weight change; equipped with furnace, gas
controls; can study thermodynamics and kinetics

High Flux Solar Simulator (HFSS): Measures
reactions under on-sun conditions

purge gases
I




Redox Characterization and Modeling

TGA screening study identified substituted
SrFeO; materials for air separation
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TGA equilibrium experiments used to model 7 27
reaction extents, temperatures, and input energy
requirements (enthalpy and entropy) 265
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0 I Redox Characterization and Modeling

Cycle Inputs |

200 , : ,
Data were plugged into thermodynamic cycle model to predict air
separation efficiency = '
HFSS experiments were performed to study reduction kinetics, and TGA £ 100 /”\
for oxidation kinetics Oeomenton

50 | ,,
Cycling studies in HFSS and TGA showed that reaction was reversible and Widea X 10
repeatable in the short-term i L=
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Future Work

\ \Studying Materials in Prototype Systems
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12 I Next Steps

Build prototype reactors to study air separation process on-sun
Study longer-term material stability with TGA experiments
Pair thermodynamic models with cost studies to predict process technoeconomics

Design process for producing NH; from the N, and H,
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