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2 I Bottom Line Up Front

❑We've built systems dynamics models of critical infrastructure systems, particularly
petroleum fuels, that have been successful with various levels of detail/quality of
data;

❑We've leveraged the techniques used in building models made for incompressible
fluids and made strategic changes to be able to use the same structure for
compressible gases (e.g., natural gas);

❑Data is always an issue. We use an iterative process where we look to build models
with sufficient level of detail focused on the question at hand, rather than waiting
for perfect detail to build a model; and

❑ Questions drive both the scale of modeling we conduct and the resources we
dedicate looking for additional data.



3 History

NetFlow Dynamics (NFD)
O Originated as National Transportation Fuels Model (NTFM)
o Uses System Dynamics as its basis

O Flexible model

O Applied to infrastructure systems for multiple Federal customers

Developed to give subject matter expert analysts the capability to:
O Integrate data from multiple sources and create an internally-consistent and balanced system
representation

O Simulate operation of the infrastructure under a wide range of disruption scenarios

Designed to answer questions of the form:
o Which regions would experience shortages of fuel after a specified disruption to one or more
components of the fuel infrastructure?

o What would be the duration and magnitude of the shortages?

•
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4 
System Dynamics Fundamentals of NFD:
Satisfy demand subject to mass balance and capacity constraints

Flow rates are given by : qij = cij f ((si — sj)uij) (1)

where uu is a utilization
parameter and the function f(x) is:

Each node i has a
potential si

Each edge ij has
a capacity cii

f (x) E i - e-x (2)

In equilibrium, the net 1 
qji + qsi — di = 0 Vi (3)flow at each node i is 0:

i

The equilibrium solution {ši} is obtained by solving equations (1-3)

[dvi vl'p 1

Iqji + qsi di dt = 2b 2
i

qsi

qu di

In the transient case, net inflow
into a node results in the
accumulation of stored fluid:

(s b a)

1 + 1
[1 + (s 

b
— ct)2

F}I

p-1

where p, a and b are storage parameters

r s — a 1-3/2 dsi

I-1 + ( b )2] 
Vi

dt

Corbet et al., Reliability Engineering and System Safety 169 (2018) 451-465



I5 When data is available, this can lead to exquisite networks...

NetFlow

Dynamics
Basemaps Models Map Services Controls Run Simulation Results Help Database Manager Search Filter About -130.94564, 51.42523
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...enabling the analysis of disruptive events with the ability to identify
6 non-intuitive results

30

0 20

80c
o
+7J 60
a_ 5-,-,

u
o Z1 20

_a

E (Es 40
= -CJ
cn •-•..

0TU
= 0 20u_

0 45 90

- — —

140

120

100

80

60

40
0 20 40 60 80

20 40 60 80

Days

Days

30 - 40

40 - 50

rtfall (Percent)

acted 50 - 60

60 - 70

70 - 80

80 - 90

90 - 100 1



7 I This is the point at which you might be saying: How dare you!

Motivating questions concern large/persistent disruptions
What level of service does the remaining capacity permit?

How should restoration be prioritized?

Answers are controlled by the relationships among pipeline capacities, sources,
sinks, and significant storage

Controlling scenario parameters (location, intensity, initial state) are often arbitrary
or variable

System responses depend on how the remaining pieces are used (slides follow)

We need to efficiently explore the space of possibilities to define which
consequences must occur, which might occur, and which can't occur. Better resolution
of pipeline physics will not make this classification more accurate.

1
1
I
1
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I But every mighty oak starts as an acorn:
8 PADD Level Petroleum Model
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9 I And so we repeated the process, for compressible gases
NetFlow

Dynamics
Basemaps Models Map Services Controls Run Simulation Results Help Database Manager Search Filter About -119.21224, 38.64946
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10 But Storage is Different for Compressible Gases!

Input parameters specify the fraction

of capacity used at equilibrium p,
and the responsiveness of stored

volume to changes away from

equilibrium y

ra
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We grow the acorn as needed:
State-level network reflecting production/consumption/flow

NetFlow
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Or focus the growth in particular areas:
12 Small-scale NG Network

NetFlow
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I Look at the Network under Nominal Conditions:
13 Current Flow vs Current Capacity (%)
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Look at the Network under Nominal Conditions:
14 Flow

Dynourillve
Basernaps mc-dc15. M5131 SenA ces Controls Run. Siinuiatkpn Help Databa5e Mar wer Search Fiter A II -1118.17212, 31.5003

Itire WV •

P#Ya Mesa

 11:1km-

d'arral

Rcorlt cata Flew Results cialrici Itacsulta Change Threshahl ;N.) Wm !mini lagenint PAlagreure Change sihd.

Flawf 5toga9, Flewo/Stehhila

GradienL Beal Bieck I

0
(1 kbblJd

.santa F6

J-

dIbuque rqu4

GG

0 0

o al,

.0 V -5" r. if 1, N. az. Cr-V.1;es
\ TU Clic:01 .4:1.: <em. 0 -C

1 0 _ "•-•, .
> ), CI .0 

4
Pcii•ligl.tr-----°-

,.-.,. ..., ,S-f .4 
Ck ‹- - <0 e- cr-t. .. 1%.

7 .1 -. 
..- • -- .C.

4 ...,(---11,—_, 0 Odemdi
3-. Ei PO:iiM--

Zilly4 CI 4.: °- 4-  -4'N
•q' 

.‹ .  %. 00 0 •

AP31 si III*

11.

  Screensnot

4.\\A 0 7
0 •

a, .6 d_
714. t

'‘f

101 104le4

rch e

pnitrrilme Step 1

3111 aholna

F 411



15 I Perturb the Network
Disruptions

Note: Nodes are not used in disruption calculations at this time.
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161 Compare the Perturbation to the Baseline
likrtFlow
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I1, Sensitivity of disruption response to selected parameters
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18 I Sensitivity to network resolution
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19 I Conclusion

❑We've leveraged the techniques used in building models made for incompressible
fluids and made strategic changes to be able to use the same structure for
compressible gases (e.g., natural gas)

❑Data is always an issue.
❑We use an iterative process where we look to build models with sufficient level of detail
focused on the question at hand, rather than waiting for perfect detail to build a model;

❑ Questions drive
❑the scale of modeling we conduct
Lithe resources we dedicate looking for additional data

❑We continue to apply this capability to regions of interest to our customers, and to
build it such that it can be integrated with other capabilities


