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Abstract

We estimate the effect of lake water quality on residential housing prices using cross-sectional data
on water clarity from 113 lakes across the United States. An instrumental-variables approach is
developed to address potential endogeneity bias in the water-clarity variable. Three lake-based
physical variables serve as instrumental variables: total nitrogen concentration in lake water, total
phosphorus concentration in lake water, and water temperature near the lake surface. The
econometric results include three methodological findings: the instruments are valid and strong;
the ordinary-least-squares estimate of the coefficient on the water-clarity variable is unbiased; and
water clarity is the attribute of water quality valued in the housing market. The estimated water-
clarity effect shows that a one-tenth of a meter change in water clarity leads to a one-percent
change in housing price, or an elasticity of 0.20 at mean clarity. Coupling this effect with estimates
of an ecological production function, a lake-specific benefit index is developed that shows the effect
on housing values of bringing lakes into compliance with the US Environmental Protection Agency’s
regional recommendations for phosphorous concentration in lake waters.
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1. Introduction

Water quality is a pressing environmental issue in the United States despite the prolonged period of
improvement that followed passage of the 1972 Clean Water Act (Keiser and Shapiro 20193;
National Research Council 2004 2009; USEPA 2009). While a few cases have garnered much of the
public attention (e.g., Chesapeake Bay and northern Gulf of Mexico), over 40 percent of U.S. inland
lakes were experiencing fair to poor water conditions in 2007 (USEPA 2010), and a 2012 assessment
found little change in conditions (USEPA 2016), with more U.S. lakes becoming eutrophic (Stoddard
et al. 2016). In large areas of the country, nutrient flows of phosphorus and nitrogen intersect with
major zones of agricultural production (Steffen et al. 2015). Given the ongoing intensification of
agricultural production to meet food demand while complying with the federal biofuel mandate,
fertilizer use and related nutrient runoff into U.S. freshwater systems are only likely to increase in
the absence of new regulations (National Research Council 2011). In this paper, we analyze the
effect of lake water clarity on residential housing prices in a study of U.S. lakes and then develop an

integrative ecological-economic tool on nutrients, water quality, and economic benefits.

Environmental economists have long applied hedonic price theory (Rosen 1974) to study the effect
of environmental quality on the residential housing market. While air quality has been studied
more than water quality (Olmstead 2010), a recent spate of hedonic price studies have examined
various aspects of water quality, including: grant-funded water treatment infrastructure under the
Clean Water Act (Keiser and Shapiro 2019b); groundwater contamination risk from shale gas
development (Muehlenbachs, Spiller, and Timmins 2015); invasive species in lakes (Horsch and
Lewis 2009; Zhang and Boyle 2010); water quality in Chesapeake Bay (Klemick et al. 2018; Walsh et
al. 2017); coastal water quality in Florida (Bin and Czajkowski 2013; Bin et al. 2017), and inland lake
water quality in different states and regions of the United States (Tuttle and Heintzelman 2015;
Walsh et al. 2011; Wolf and Klaiber 2017). The first three studies in this list apply panel data

methods, while the remaining eight apply cross-sectional methods.

Beginning with Small (1975), omitted variables bias has been an ongoing concern when using cross-
sectional methods in hedonic price studies (e.g., Chay and Greenstone 2005). Kuminoff, Parmeter,

and Pope (2010) examine spatial fixed effects as a way to control for unobserved neighborhood



characteristics in hedonic regressions with cross-sectional data. Based on findings of reducing or
nearly eliminating bias in their analyses, they recommend spatial fixed effects as a strategy for use
with cross-sectional methods. Several of the recent hedonic studies apply spatial fixed effects,
some using census tracts as the spatial unit (e.g., Tuttle and Heintzelman 2015; Wolf and Klaiber
2017) and others using lakes (Horsch and Lewis 2009; Zhang and Boyle 2010), cities (Bin et al. 2017),
and regional districts (Bin and Czajkowski 2013). At the same time, Kuminoff, Parmeter, and Pope
(2010) also warn that spatial fixed effects are not perfect controls. For example, census-tract fixed
effects do not control for variation across census blocks within a census tract.? Lake fixed effects,
similarly, may be poorly aligned, spatially, with neighborhoods and school districts. In addition,
spatial fixed effects do not control for omitted variables related to structural features of the house.?
In short, the ability of spatial fixed effects to mitigate omitted variables bias is generally an

untestable empirical question.

Measurement error in the environmental quality variable creates a similar endogeneity concern in
hedonic price studies. Frequently overlooked, Keiser (2019) raises this issue in a related context —
the effect of water quality on recreation demand at U.S. lakes — and addresses the issue with an
instrumental variables estimator.® The relevant question, for our purposes, is how to define the
water-quality variable that enters the consumer’s demand function for residential property near a
lake. A homebuyer, for example, might be influenced by one or more temporal variations of a
single water-quality variable such as water clarity: clarity at the time of the sale; clarity during the
summer recreation season; average clarity over the last year; or average clarity over a longer time
horizon, say three years or even ten years. In addressing this issue, the main approach applied in
the hedonic price literature is to estimate OLS regressions with several different definitions of water
clarity and, then, to apply the different estimates to derive a set of distinct implicit prices of water

clarity (e.g., Michael, Boyle, and Bouchard 2000; Walsh et al. 2017; Klemick et al. 2018). Following

1 Bayer, Ferreira, and McMillan (2007) develop a model of individual neighborhood choice and use the census
block, not the (larger) census tract, as the spatial unit to represent a neighborhood.

2 |n studies with panel data on individual housing transactions (e.g., Muehlenbachs, Spiller, and Timmins 2015), the
repeat sales approach is being used such that parcel fixed effects control for time invariant characteristics at the
smallest possible spatial scale, i.e., they control for both structural features of the house and spatial amenities and
disamenities of the neighborhood.

3 Keiser (2019) finds that the negative effect of phosphorus pollution on recreation demand is an order of
magnitude larger in absolute value when estimated with an instrumental variables estimator rather than OLS.
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Keiser (2019), an alternate approach is to posit that, for both conceptual and empirical reasons, any
water-clarity variable comes with measurement error, and one can address the resulting

endogeneity bias with an instrumental variables estimator. We take this alternate approach.

We apply hedonic price theory to the residential housing market in a study of U.S. inland lakes. The
study applies a unique database that combines water-quality data from the 2007 National Lakes
Assessment (NLA) and data on housing market transactions at properties near 113 lakes in 32 U.S.
states. Following Keiser and Shapiro’s (2019b) study of water quality, we analyze the 32 states as a
single market in the main results. Water clarity is the variable of interest, and it is represented

using a standard measure, Secchi disk depth.*

We develop an instrumental-variables approach to address concerns related to endogeneity bias in
estimating the effect of water clarity. Three physical variables serve as instruments for water
clarity: water temperature near the lake’s surface, total phosphorus concentration in lake water
(hereafter P concentration), and total nitrogen concentration in lake water (hereafter N
concentration). Keiser and Shapiro (2019b) note that, while omitted variables are relevant to the
study of air quality, their relevance to the study of water pollution and the housing market is

unknown.

A second focus of the analysis is to couple the hedonic price results with an ecological production
function to develop an integrated ecological-economic framework. Here we apply the NLA data to
estimate an ecological production function for water clarity as a function of lake water temperature
and the two nutrient concentrations. We integrate the ecological results and the hedonic price
results to derive a benefit index that shows, by each study lake, the percentage increase in housing
prices from achieving federally prescribed, ecoregion-based recommendations for P concentrations
in lake waters. The coupled ecological and economic models provide a new water-quality

application of the ecosystem services paradigm (Keeler et al. 2012).

4 A Secchi disk is an 8-inch disk with alternating black and white quadrants. As a measurement device, the disk is
lowered into the water of a lake until the observer can no longer see it. This depth of disappearance, called the
Secchi disk depth, is the common measure of water clarity.
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We develop three main findings. One, the OLS estimator does not suffer from endogeneity bias
with respect to the variable of interest, water clarity. The three instrumental variables are physical
variables that correlate with water clarity through phytoplankton production (Lorenzen 2003;
Beaulieu, Pick, and Gregory-Eaves 2013), thus making them good candidates for instruments. Each
instrumental variables regression generates three tests related to water clarity and the instruments:
overidentifying restrictions, endogeneity, and weak instruments. The tests of overidentifying
restrictions develop strong evidence indicating that the instrumental variables are valid. Valid
instruments are necessary for endogeneity tests. Next, the endogeneity tests develop strong
evidence that water clarity is not an endogenous variable in the OLS regressions. Lastly, the
instrumental variables are not weak instruments according to results from the first-stage
regressions of the instrumental variables estimator. Our study is the first application of an

instrumental variables estimator in a hedonic study of water quality with cross-sectional data.®

Two, water clarity has a positive and statistically significant impact on housing price. The preferred
coefficient estimate on water clarity is 0.099, or a one-meter change in Secchi disk depth results in a
9.9-percent change in housing price given the log-linear form. This scales linearly in meters versus
percentage change, such that a 0.1-meter change in SECCHI generates a 0.99-percent change in
price. The impact is relatively inelastic, with an elasticity of 0.20 evaluated at mean water clarity
and 0.14 evaluated at median water clarity. We find evidence that clarity’s effect is robust to a

variety of different model assumptions and variable definitions.

Three, with the coupled hedonic price results and ecological results, we derive for each study lake
the incremental benefit of achieving the lake’s recommended P concentration. Seventy-five of the
113 lakes have excess P concentrations. For these noncompliant lakes, the percentage increase in
housing prices ranges from 0.4% to 9.2%, with a mean of 3.3%. We also demonstrate how this
method can inform a local water quality issue by evaluating the change in the housing stock’s value

at a single lake in Indiana.

5 Zhang, Boyle, and Kuminoff (2015) apply an instrumental-variables approach to address a related topic, the
endogeneity problem in identifying amenity demand parameters from the hedonic price model’s second stage.
We focus solely on the first stage of the hedonic model.



2. Econometric Model and Data

2.1 Hedonic Price Regression. In the context of the housing market, the hedonic price function
(HPF) represents an equilibrium between housing prices and characteristics.® Tangencies between
seller offer functions and buyer bid functions determine the equilibrium. The HPF is expressed as

housing price (HP) as a function of characteristics, or

(1) HP =f(z1, 22 ,..., Zn)

where the z1, z,,..., zn include structural characteristics of a house, local public good characteristics
of the neighborhood, and environmental quality characteristics. In our application to lake water
quality, three variables are of primary interest in explaining variation in transaction prices. Water
quality of a nearby lake is measured using the water-clarity variable SECCHI (Secchi disk depth).
LKFRNT is a binary variable that represents whether the property is lakefront property. LK_DSTNC

measures the property’s distance in feet to the lake. We form a log-linear regression equation:

(2) InHP,, = a+ BSECCHI, + B,LKFRNT,y, + B;sLK_DSTNCgyp + XgmPB + Zg¥ + ligm
g=1,..G;m=1,.,M,.

where g is a lake (i.e., a cluster), m is a residential property, and Mg is the number of properties
sampled near lake g. Explanatory variables, other than the three primary variables, include xgm,
which is a 1 X k vector of variables that vary both within and across lakes, and zg, whichisa 1 X/
vector of variables that vary only at the lake level. The variables x4m are structural features of the
house (Table 1). The variables z,4 are individual lake characteristics (other than water quality
SECCHI,) and neighborhood characteristics that serve as local public goods nearby individual lakes
(Table 1). In the regressions, year fixed effects and quarter-of-the-year fixed effects are included in
all specifications (the year 2010 and the first quarter are the omitted fixed effects). The year fixed
effects control for annual trends in the housing market during the period from which the housing
transactions data are taken, 2010-2013. Quarter-of-the-year fixed effects capture intrannual
cyclical movements in the housing market. In one specification, state fixed effects are included for

the 21 states in which more than one lake is sampled.

5 More insight into this approach is available in Davis (2011), Greenstone and Gallagher (2008), Freeman, Herriges
and Kling (2014), and Muehlenbachs, Spiller, and Timmins (2015).
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Equation (2) shows that the estimated effect of SECCHI, 3, is identified from cross-sectional

variation in water clarity at the 113 study lakes.

The composite error term pgm in equation (2) consists of three components,

(3) Hgm = C4 + gqgm + €gm

where cg is an unobserved cluster effect, 8¢, is an unobserved factor, and €;m is the idiosyncratic
error. The cluster effect represents arbitrary within-lake correlation, which could occur due to an
omitted lake or neighborhood characteristic that serves as a local public good (e.g., local school
quality). Because such a characteristic is nonrival and spatially invariant within the relevant area,
we model this as a cluster effect rather than as spatial autocorrelation. We also posit that, with
cross-sectional data, a variable g4, is unobserved (i.e., an omitted variable, or variables), and hence
its effect 8¢, enters the error term. The omitted variable could be a house characteristic such as

whether the lake is the household’s source of drinking water.

The error term in (3) shows two complications for which the estimation accounts. First, with the
omitted variable, the variable of interest, SECCHI,, is potentially an endogenous variable. We thus
develop an instrumental-variables approach. Second, with lakes serving as clusters, we estimate
cluster-robust variance-covariance matrices and apply cluster-robust inference. The data are
consistent with the (desirable) case of the number of clusters g substantially exceeding the typical
number of individual observations within the clusters M, (Angrist and Pischke 2009; Wooldridge
2010). The number of clusters equals 113, i.e., the number of lakes at which we sample residential
housing transactions. The mean number of observations within the clusters is 12.9 housing
properties and the standard deviation is 16.8. Note that these two corrections —an IV approach
and cluster-robust standard errors — are known to pose challenges for inference by generating
larger standard errors on coefficient estimates. We will see, later in the paper, that they are not

detrimental to the results.

Lastly, the SECCHI variable could suffer from measurement error relative to the theoretically correct

variable. As described in the Introduction, several arguments can be made for different temporal
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definitions of SECCHI in the hedonic price function. The NLA data are for 2007, such that SECCH/
potentially could serve as a proxy for average water clarity prior to the housing market transactions
in 2010-2013. Our approach thus is to recognize that our SECCHI variable comes with measurement
error relative to the true value in the function and to address the corresponding potential

endogeneity bias with an instrumental-variables approach (as in Keiser 2019).’

2.2 Data. The U.S. EPA’s 2007 NLA deployed a standardized method of data collection to produce
the first large-scale systematic study of the physical, chemical, and biological characteristics of over
1,000 lakes across the continental U.S. (USEPA 2010). The 113 lakes in our study were selected
because of their nearly complete data on phytoplankton biovolume, from which three variables
were constructed (concentration of total phytoplankton biovolume, concentration of
cyanobacterial biovolume, and concentration of green algal biovolume). Other candidate lakes
were excluded if the cell biovolume data were missing for more than one-third of the relevant
phytoplankton taxa (Doubek et al. 2015). Analysis with phytoplankton-based variables is important

for understanding their role relative to water clarity and N and P concentrations.

Table 1 describes all variables and provides descriptive statistics. Additional details follow here.

Housing data. To develop data on residential housing, we used the Zillow® database on actual

residential property transactions for 2010 through 2013. Individual houses are spatially explicit at

www.zillow.com, including houses for which transaction data are available. We first prepared a

spatial representation of each lake with a 0.1 mile GIS buffer around the lake. This distance was

chosen to select houses in proximity to the lakeshore.® Transactions within the buffer were then
recorded. The mean number of transactions was 12.9 per lake, and the median was seven. Only
eleven lakes (of 113) had 30 transactions or more. The final sample consists of 1,462 housing

transactions.

7 Keiser (2019) develops an interesting approach of explicitly examining the validity of instrumental variables for
phosphorus concentrations in lake waters by regressing measurement error estimates on the instrumental
variables, upstream concentrations of phosphorus.

8 A similar buffer distance is used in other NLA studies to assess relationships of land use and lake water quality
(e.g., Doubek et al. 2015; Read et al. 2015).



In addition to sales price and transaction date, the data on house characteristics included square
footage, number of bedrooms, number of bathrooms, and year built. We identified geographic
coordinates for each house using Geocoding API, and then recorded whether the house was a
lakefront property and calculated the distance to the lake using the distance tool on Google maps.
The sales prices were converted to real terms in 2013 dollars using the House Price Index of the

Federal Housing Finance Agency.

The effect of SECCHI is identified from cross-sectional variation at the 113 study lakes (equation (2)).
Thus, the number of transactions is not a limiting factor in the estimation even though the sample
of 1,462 transactions is small relative to studies with data purchased from vendors.® Furthermore,
like Zhang, Boyle, and Kuminoff (2015), our analysis is limited to parcels on or near inland lakes, and

thus we are not attempting to estimate the price gradient for houses beyond the 0.1 mile buffer.

Water quality data. The NLA data on lake water quality included Secchi disk depth, total N
concentration, total P concentration, water temperature at a subsurface depth of 0.1 meter in the
middle of the lake, and the three measures of various phytoplankton biovolumes. The NLA applied
a stratified random sampling design to lakes in the contiguous U.S. that were at least 1 meter depth
and had a surface area of at least 0.04 km?2. Researchers followed a consistent protocol across lakes
to sample physical (e.g., water temperature), chemical (e.g., total N) and biological (e.g.,
phytoplankton biovolume) conditions of each lake. The data were collected between May and
September in 2007, on a date that varies by lake. About 10% of the lakes were sampled more than
once, but we include data only from the first visit to keep this consistent across the 113 study lakes.

Data from the NLA are available at: http://water.epa.gov/type/lakes/lakessurvey index.cfm.°

An important point is that the NLA measurements of Secchi disk depth for the lakes in our study
were quite similar over time. This is relevant as the lake data were collected earlier than the
housing data. Data from the second NLA in 2012 only recently became publicly available, i.e., they

were not available at the start of this project. Thirty-eight of the 113 study lakes that were sampled

9 Other recent studies (e.g., Zhang, Boyle, and Kuminoff 2015) use relatively small samples of house transactions.
10 Although the NLA is now scheduled for every five years, Keiser and Shapiro (2019a) note that data on water
pollution are relatively limited, especially in contrast to air pollution in which some data are reported hourly.
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in 2007 had repeat sampling in the 2012 assessment. For these lakes, the Pearson correlation
coefficient for the SECCHI variables is 0.85. For all lakes sampled in both years — a total of 376 —the
correlation coefficient is 0.84. In short, the correlations are relatively high and provide evidence of
relative stability over time, which lends credibility to use of the 2007 data as a proxy for average
water clarity in this study. We include a robustness check in Section 3.2.3 that makes a rigorous

regression-based comparison of the 2007 and 2012 SECCHI data.

Lake characteristics. The NLA data also include lake surface area, lake perimeter, the area of
developed land, and the area of agricultural land (both within a 200-meter zone around each lake).

The land area data are originally from the USGS National Land Cover Dataset.

Neighborhood characteristics. Data on neighborhood characteristics near each lake were collected
at the zip code level from the U.S. Census (using factfinder2.census.gov). These included
socioeconomic data (e.g., median income, education, and race), population density, proportion of
population below the poverty level, proportion of residential property that is rental housing, and

mean commuting time to work.

Data for two climate variables, annual heating degree days and annual precipitation, were obtained

from the National Climatic Data Center (http://www.ncdc.noaa.gov/cdo-web/datasets). NCDC

computed annual climate normals for the 30-year period, 1981 to 2010. Data were collected at the
zip code level for each lake if available at this resolution. If data were not available at the zip code
level, they were collected at the county level (if there were multiple stations present in a county,
data were averaged across all stations). The climate variables are included because research shows

that climate affects geographical sorting and thus housing demand (Albouy et al. 2016).

3. Empirical Results

3.1 Main Results. We estimate equation (2) using ordinary-least-squares (OLS) regressions and
instrumental variables generalized-method-of-moments (IV-GMM) regressions. In the main results,
we report on eight regressions that explore different variable specifications across the OLS and IV-

GMM regressions (Table 2). The specifications include four different combinations of house
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characteristics, lake and neighborhood characteristics, and state fixed effects. These include four
variables for structural characteristics of the house; fourteen variables for public-good
characteristics of the neighborhood and lake; a flexible functional form for the house covariates;

and state fixed effects for the 21 states with more than one lake in the study.

The results show that lake water clarity, the variable SECCHI, has a statistically significant impact on
lake housing prices near 113 lakes across the United States. The estimated coefficients on SECCHI
range across a fairly narrow band from 0.099 to 0.154, with all coefficients being highly statistically
significant (Table 2). This occurs despite use of cluster-robust standard errors to account for
heteroskedasticity and cluster effects by lake; cluster-robust standard errors typically are much

higher than their robust counterparts (Angrist and Pischke 2009).

To develop a preferred estimate of the coefficient on SECCHI, we first need to address potential
endogeneity of SECCHI in light of the cross-sectional approach. Three variables serve as
instrumental variables for SECCHI: P concentration in the water (PHSPHRS), N concentration in the
water (NITROGEN), and water temperature just below the lake surface (TEMP). These three
physical variables correlate with water clarity through phytoplankton production (Beaulieu, Pick,
and Gregory-Eaves 2013; Lorenzen 2003), thereby making them good candidates for instruments.*!
Each IV-GMM regression generates three types of tests related to SECCHI and its potential
instruments: a test of overidentifying restrictions, an endogeneity test, and a test for weak

instruments (Table 3).

We develop both conceptual arguments and empirical evidence that the three instrumental
variables satisfy the exclusion restriction. We first argue that N concentration, P concentration, and
lake temperature do not directly enter as arguments of the hedonic price function. Concentrations

of N and P are imperceptible to humans, given that they are tasteless, colorless, and odorless when

11 Lakes can be either N or P limited, or co-limited by N and P, depending on many factors such as land use,
nutrient stoichiometry, and type of prevalent primary producers present. Historically, P-limitation by
phytoplankton was considered the more common limiting reagent (e.g., Schindler 1977; Smith 1983). Recently,
however, studies and evidence suggest co-limitation (e.g., Xu et al. 2010; Filstrup et al. 2018; Lewis et al. 2020).
Without information on nutrient limitation for each lake, we are not able to determine whether lakes are N
limited, P limited, or co-limited by N and P. We thus included both N and P as instrumental variables.
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dissolved in water. In addition, the regressions include two land-use variables, percentages of the
land base within 200 meters of the lake that are developed land and agricultural land, respectively.
These two variables belong in the hedonic price regression as local characteristics that affect
housing demand. They also represent typical vectors of N and P inputs into water bodies through
fertilizer runoff, and thus they reduce the potential for lake concentrations of N and P to correlate

with the regression’s error term.

Water temperature of the lake (the third instrumental variable), similarly, is likely unknown to a
prospective homebuyer, rather than an observed data point. A homebuyer would simply observe
whether and how a lake was being used for recreation. The hedonic price regression does include a
variable for air temperature (average annual heating degree days) to account for climate. Albouy et
al. (2016) find that average annual heating degree days, and other climate variables, factor into
residential location decisions. Once again, with air temperature in the regression, the potential for

water temperature to correlate with the regression’s error term is reduced.

Next, the empirical evidence on the instruments comes from a test of overidentifying restrictions.
As context here, the three instruments could correlate with the error term of the regression. For
example, P concentration, N concentration, and lake temperature affect phytoplankton biovolume
(including cyanobacterial biovolume); if phytoplankton is an omitted variable from the hedonic
price regression, then this is another reason why the instruments could correlate with the error
term.1? The test of overidentifying restrictions examines this. With the IV-GMM estimator, the test
of overidentifying restrictions applies Hansen’s J statistic, which is distributed as x* with degrees of
freedom equal to the degree of overidentification. As reported in Table 3, the relatively high p
values indicate that the null hypothesis cannot be rejected in specifications (1)-(3). This provides
suggestive evidence that the variables PHSPHRS, NITROGEN, TEMP are valid instruments. The
statistical evidence also suggests that NITROGEN and TEMP continue as valid instruments in

specification (4).1* Valid instruments are necessary for endogeneity tests.

12 |n section 3.2.1, we report hedonic price regressions with both SECCHI and three phytoplankton variables to
provide evidence that water clarity, and not the phytoplankton attributes, is the water-quality attribute valued by
consumers in the housing market.

13 Wooldridge (2010, p. 135) issues a caution with the overidentification test. He provides an example in which
one of the instruments is endogenous (not exogenous), and the full and reduced set of instruments is
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The endogeneity tests on SECCHI apply the C test, which is distributed as x> with one degree of
freedom. The high p values indicate that the null hypothesis — that SECCHI may be treated as
exogenous — cannot be rejected. To provide supporting evidence for the test results, note that the
coefficients on SECCHI in the paired OLS and IV-GMM regressions are very close in magnitude (Table
2), e.g., 0.099 in column 4a and 0.101 in column 4b of the table. The results show convincingly that

SECCHI is not an endogenous variable in the OLS regressions.

Lastly, the instrumental variables are not weak instruments according to the first-stage regressions
of the IV-GMM estimator. The estimated coefficients on the instruments are highly significant, and
have the expected signs, in explaining variation in SECCHI (Appendix Table 1); this is one test for
valid instruments. In joint tests, the instruments add substantial explanatory power to the
regressions, and the values of the F statistics in general exceed the rule-of-thumb that weak
instruments have values lower than 10 (Staiger and Stock 1997) (Table 3). In addition, the value of
Shea’s partial R? statistic exceeds 0.47 in specifications (1)-(3) and 0.28 in specification (4). The IV-

GMM results thus are not affected by issues associated with weak instruments.

In light of these results, the preferred estimated coefficient on SECCHI is 0.099; this is the OLS
estimate that utilizes the entire set of covariates (Table 2, column 4a). The coefficient from the
related IV-GMM regression is very similar, 0.101 (column 4b), and is also unbiased, yet its standard

error is almost twice as large.

Given the log-linear form of the hedonic price function, housing price (and marginal willingness-to-
pay) increases at an increasing rate with lake water clarity. The coefficient of 0.099 implies that a
one-unit change in water clarity (i.e., a one-meter change in SECCHI) causes a 9.9-percent change in
housing price. This scales linearly in meters versus percentage change, such that a 0.1-meter

change in SECCHI generates a 0.99-percent change in price. For context, the values for

asymptotically biased in similar ways, such that the null hypothesis of the overidentification test is (falsely) not
rejected.
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mean/minimum/maximum SECCHI in the sample are 2.1/0.2/9.5 meters, thus making a one-meter

change fairly substantial.*

The coefficient of 0.099 combines with the mean housing price to generate an estimated change of
$3,971 in mean price for a 0.1-meter change in SECCHI. This also translates into an estimated
change of $12,104 for a one-foot change in SECCHI. For comparison, a study of central Florida
estimates a $5,595 change in mean lakefront property value for a one-foot change in SECCHI
(Walsh, Milon, and Scrogin 2011). A study of southern Florida estimates a $36,070 change in mean
waterfront property value for a one-percent change in water clarity (Bin and Czajkowski 2013).
Water clarity in that study is measured as the ratio of Secchi disk depth to bottom depth at points in
the St. Lucie River Estuary of southern Florida. A related study (Bin et al. 2017) estimates a $2,614
change in mean waterfront property value for a one-percent change in a water quality index. Their
index is a percentage value based on data from four water-quality measures: water clarity,
dissolved oxygen, pH, and salinity. Overall, the results suggest that water clarity is an economically

significant factor in explaining housing prices.

The preferred estimate, 0.099, also generates relatively inelastic elasticities of 0.20 evaluated at
mean SECCHI and 0.15 evaluated at median SECCHI. These elasticities are similar in magnitude to
other hedonic price estimates. For lakefront property, an elasticity of 0.13 is estimated for SECCHI
in the central Florida application (Walsh, Milon, and Scrogin 2011). Similarly, for waterfront
property on Chesapeake Bay, elasticity estimates are highly inelastic, ranging from -0.033 to -0.156
(Walsh et al. 2017; Klemick et al. 2018). Their negative numbers are expected, as their water-
quality variable is a measure of water-column light attenuation, which essentially is the inverse of
water clarity. With air pollution, the elasticity of housing price with respect to total suspended
particulates ranges from -0.20 to -0.35 in a national study (Chay and Greenstone 2005). In the Bay
Area of California, three housing price elasticities are evaluated at the medians of three air
pollutants (Bajari, et al. 2012); the particulate matter elasticity ranges from -0.076 to -0.084; the

sulfur dioxide elasticity ranges from -0.18 to -0.22; and the ground-level ozone elasticity ranges

14 The range of SECCHI covers a spectrum of ultra-oligotrophic to hypereutrophic lakes.
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from -0.60 to -0.64. The evidence thus shows a pattern of strongly inelastic responses of housing

prices to water and air quality.

Two other variables of interest — lakefront property (LKFRNT) and distance to the lake (LK_DSTNC) —
have estimated coefficients that are reasonable in magnitude, highly statistically significant, and
robust to alternate specifications (Table 2). We again rely on the OLS estimates that utilize the
entire set of covariates as the preferred estimates (column 4a). Lakefront property receives a 42.5
percent premium over non-lakefront property. Housing price declines by 6.4 percent for each 100
feet of distance between the house and lake, holding LKFRNT (and other variables) constant. These
estimates are comparable to estimates from a hedonic price study of lakes in Adirondack Park in

New York State (Tuttle and Heintzelman 2015).

The estimated coefficients on the four variables for the structural features of a house have the
expected signs and are statistically significant (Appendix Table 2). Most of the estimated
coefficients on the fourteen variables for the public-good characteristics of the lake and

neighborhood have the expected signs, and half of them are statistically significant.

3.2 Robustness Checks on SECCHI. In the robustness checks, we continue the pattern of estimating
regressions based on OLS and IV-GMM estimators, with specifications (1) through (4) continuing to
represent four combinations of house characteristics, lake and neighborhood characteristics, and
state fixed effects. We report three robustness checks related to the SECCH/ variable here. In
Appendix B, an additional check on SECCHI is reported that investigates whether SECCHI exerts a
diminishing marginal effect on housing price. Appendix B also reports results from a two-stage least

squares (2SLS) estimator as a comparison to the IV-GMM estimator.

3.2.1 Do water-quality variables related to phytoplankton affect housing prices? Environmental
concerns with water quality focus on the relationship between nutrient runoff and biological
growth, including outcomes such as harmful algal blooms and hypoxic conditions. Using NLA data,
we formed three variables related to the biomass of phytoplankton in the lakes: concentration of
total phytoplankton biovolume in the lake water (PHPLNKTN), concentration of cyanobacterial

biovolume (CYANBCTR), and concentration of green algal biovolume (GRNALGAE). While
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homeowners clearly value water clarity, do homeowners perceive and value the biological
attributes independently of water clarity, i.e., do one or more of these three variables affect

housing price after controlling for SECCHI?

We included the three biovolume variables iteratively in hedonic price regressions using OLS. We
report results only for specifications (1) and (4) of the covariates (Table 4), although the results are
consistent across all four specifications. The estimated coefficients on the biovolume variables
were not statistically significant, while the coefficients on SECCHI continued to be highly significant

and very similar in magnitude to the main results, i.e., results without the biovolume variables.

As a second check on this, we repeated the regressions with the three biovolume variables while
using an IV-GMM specification. The regressions use the same instrumental variables as above: N
concentration, P concentration, and water temperature. The estimated coefficients on the
biovolume variables were not statistically significant, while the coefficients on SECCHI continued to
be highly significant and very similar in magnitude to results without the biovolume variables.

Overidentification tests showed that, once again, the instruments are valid.®

The robustness checks with the biovolume variables raise a question about how to include different
aspects of water quality in a hedonic regression. Concerns about harmful algal blooms have
increased both in the United States and other countries (Ho, Michalak, and Pahlevan 2019). Wolf
and Klaiber (2017) develop a variable that applies a cyanobacteria toxicity threshold above which
use of the water is dangerous. In a study of inland lakes in Ohio, they find that the variable exerts a
negative effect on housing prices for parcels on or near a lake. An open question is whether their
regression specification should include a water-clarity variable such as Secchi disk depth to
counteract potential omitted variables bias. In our analysis, an OLS regression with cyanobacterial
biovolume (CYANBCTR) and without SECCHI finds a negative and significant coefficient on
CYANBCTR. However, the CYANBCTR coefficient is not statistically different from zero when SECCHI
is included in the regression (Table 4). This suggests that potential homebuyers perceive water

quality in terms of clarity rather than the biovolume concentrations of phytoplankton in a lake.

15 These results are available from the authors upon request.
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3.2.2 Does the marginal effect of SECCHI vary regionally? Several previous studies assume a
national housing market when estimating hedonic price functions (e.g., Chay and Greenstone, 2005;
Bayer, Keohane, and Timmins 2009; Davis 2011; Keiser and Shapiro 2019b). We make the same
assumption, but examine it by estimating regressions in which the marginal effect of SECCHI varies
by state (Table 5). We first identify the three states with the largest number of study lakes and
property transactions: Florida has 10 lakes and 151 observations; Indiana has 25 lakes and 238
observations; and Washington has 9 lakes and 178 observations. In the regressions, estimated
coefficients on the variables SECCHI*FLORIDA, SECCHI*INDIANA, and SECCHI*WASHINGTON are not
statistically different from zero, and the estimated coefficients on SECCHI are quite similar to
estimates in the benchmark regressions reported as the main results. We conclude that, within our

sample, the marginal effect of SECCHI does not vary regionally.'®

3.2.3 Do results change when using SECCHI data from the 2012 National Lakes Assessment? The
timing of the NLA (2007) relative to the housing transactions (2010-2013) raises a question about
whether the SECCHI data from 2007 represent lake water quality for homebuyers in the 2010-2013
period. Here we compare regression results from the 2007 and 2012 NLA.'” The main results rely
on water-quality data from 113 lakes that were sampled in the 2007 NLA. Of those 113 lakes, 38
lakes were both sampled again in the 2012 NLA and had the requisite water-quality data. Our
comparison focuses on two sets of OLS regressions using data from the 38 lakes that are common
to the two periods. This dataset includes 600 observations on housing transactions at the 38 lakes.
This comparison holds constant all variables, observations, and lakes in the compared regressions
except for the SECCHI variable, whereby one regression uses the 2007 SECCHI variable and its
paired regression uses the 2012 SECCHI variable. This comparison isolates performance of the two

SECCHI variables.

Table 6 reports results for the SECCHI variables in the two sets of regressions. Specifically, the two

sets of regressions are identical in all regards (house, lake, and neighborhood covariates; the

18 It would be informative to repeat this type of analysis with larger samples of housing transactions and lakes.
17 We thank reviewers for suggesting this approach.
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various fixed effects; and clustering on the lakes for cluster-robust standard errors) except for using
a variable based on 2007 SECCHI data in the first set of regressions and a variable based on 2012
SECCHI data in the second set.

The results are very similar across the two years. For each specification (i.e., for each column in the
table), the coefficient estimates on the SECCHI variables are very similar in magnitude and statistical
significance. This is particularly true in specification (4) with the full set of controls — the coefficient
estimates are 0.085 and 0.089; the standard errors are 0.029 and 0.031; and the coefficients are
both significant at the 0.01 percent level. We conclude that the SECCHI variables are sufficiently
stable to generate very similar regression results across the two years. This lends credibility to our

main results using 2007 NLA data.

4. Economic Benefits with Coupled Ecological-Economic Results

In this section, we estimate an ecological production function to explain variation in SECCHI across
lakes and then couple the ecological results and hedonic price results to develop a benefit index for
achieving EPA-prescribed P concentrations in lake waters. This approach of integrating models to
understand the value of managing P concentrations addresses a research gap identified by

Garnache et al. (2016).%8

We begin by first explaining the context in which hedonic price results can measure the economic
benefits of environmental quality changes. The gradient of a bid function at the tangency with the
hedonic price function represents a household’s marginal willingness-to-pay (MWTP) for an
individual characteristic (Rosen 1974). For a localized amenity, the hedonic price function serves as
an approximate measure of MWTP for a nonmarginal change in environmental quality (Freeman,
Herriges, and Kling 2014).%° Lake water quality is such a localized amenity. The housing stock near

lakes is a very small percentage of the national housing stock. Water quality, moreover, might

18 Garnache et al. (2016, 1348) write, “The critical need here is for empirical applications that produce results
directly relevant to policy by estimating site-specific values and connecting them to P [phosphorus].” Our
approach is consistent with their recommendation.

19 The localized amenity argument was applied recently in national studies with circumstances of spatially distinct
changes in environmental quality, including power plant openings (Davis 2011), toxic plant openings and closings
(Currie et al. 2015), and Superfund site remediation (Greenstone and Gallagher 2006).
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change at only some lakes in the country. Our preferred estimate of the effect of SECCHI, 0.099,

thus is appropriate for measuring the economic benefits of water-clarity changes at U.S. lakes.

4.1 Ecological Regression Model. We estimate an ecological production function in which SECCHI
is explained by P concentration in the water (PHSPHRS), N concentration in the water (NITROGEN),
and water temperature near the lake surface (TEMP).?° Data from the 113 study lakes and a Cobb-

Douglas form for the production function are applied in an OLS regression:

(4) In SECCHI; = a + B;ln PHSPHRS, + B,In NITROGEN, + B3In TEMP, + ¢,
g=1,.,G,

where g is a lake. The parameter of interest is the estimated coefficient on In PHSPHRS, which is
ﬁl= 0.49. This response is relatively inelastic in that a 1% change in P would result in a 0.49%
change in SECCHI. The estimation procedure and results for equation (4) are described in Appendix

Table 3 and the accompanying material in Appendix A.

4.2 Coupled Results: Economic Valuation of Phosphorus Standards. To link the valuation results
to a management action, we couple the ecological results with the hedonic price results to evaluate
the economic benefit of a potential reduction in P concentration in lake waters. In the potential
action, P concentration in individual lakes is reduced to meet ambient lake water quality
recommendations made by the U.S. EPA (2000). As a basis for this, we match our individual study
lakes with recommended P concentrations for lakes in Level Il Subregions of the U.S. EPA
Ecoregions. That is, each lake is matched with a P concentration for its respective Level lll
Subregion.?! Comparison of the recommended P concentration and the actual P concentration
(from the NLA data) shows that: 36 lakes from our study already meet or exceed the
recommendations; 75 lakes need to reduce concentrations; and recommended phosphorus
concentrations are not available for two lakes. For the noncompliant lakes, the percentage

decrease in P concentration to meet the recommendations ranges from 6% to 97% (mean = 63%).

20 We include the two nutrient variables in the regression model based on the same rationale for using both N and
P concentrations as instrumental variables: without information on nutrient limitation by lake, we are not able to
determine whether lakes are N limited, P limited, or co-limited by N and P. See footnote 11 for more detail.

21 A spreadsheet that reports, by lake, actual P concentrations from the NLA and the matching P concentration in
the respective Level Il Subregion is available from the authors upon request.
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We derived a benefit index that shows, by lake, the percentage increase in housing values (i.e., the
incremental benefit) that would result from achieving the recommended P concentrations. The
index is computed for each lake by applying three relationships. (1) Using the ecological result on
., the percentage decrease in P concentration to meet the recommended level translates into a
percentage increase in SECCHI. (2) This converts to an absolute increase in SECCH/ based on the
baseline SECCHI measurement from the NLA. (3) Using the hedonic price result on the effect of

SECCHI on price, the SECCHI increase translates into a percentage increase in housing prices.

The benefit index shows that, for the 75 noncompliant lakes, the percentage increase in housing
values ranges from 0.4% to 9.2%, with a mean of 3.3%. Panel A of Figure 1 plots the frequency of
percentage increase for the 111 lakes, i.e., including the 36 zeroes for the compliant lakes. Panel B

of Figure 1 maps the benefit index for the study lakes.

The methodology described above can also be used to inform a local water quality issue. To
illustrate, we identified (using Google Maps) a population of 216 residential properties within the
0.1 mile buffer zone of Big Barbee Lake in northeastern Indiana, where water quality concerns have
been identified (Bosch et al. 2015). Using Zillow® estimates for each property, the total value of
these properties equals $39.837 million. A 52% reduction in P concentration in the lake is necessary
to meet the EPA-recommended concentration of 10.0 pug/L. This reduction would increase SECCHI/
from the baseline of 1.85 meters to the improved 2.32 meters. This would translate into a 4.7%
increase in housing values, i.e., 4.7% is the benefit index’s level for Big Barbee Lake. When
aggregated across the housing stock, the 4.7% increase equals $1.872 million. The projected $1.872
million in benefits could be compared to the costs of reducing P loadings to inform management
policy at Big Barbee Lake. More generally, the methodology could be applied to the 75

noncompliant lakes and, with adequate data, to any U.S. lake.

5. Discussion and Conclusion

This research advances the literature in three ways. First, we developed the first instrumental-

variables approach for assessing endogeneity bias when applying the hedonic price model to lake
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water quality and the housing market.?? In principle, unobserved variables may covary with water
clarity and housing price, e.g., variables such as the type of recreational infrastructure or level of
recreational activity on a lake. While several water-quality studies apply spatial fixed effects to
control for omitted variables, whether such fixed effects succeed in remedying bias is unknown.
The additional concern about measurement error as a second source of bias in the context of lake
water quality (Keiser 2019) only strengthens support for an approach that directly addresses

potential endogeneity.

The instrumental-variables approach generated one main finding: despite the use of cross-sectional
data, the OLS estimator yielded unbiased estimates of the effect of water clarity on housing price.
The effect of water clarity was identified by the cross-sectional variation in Secchi disk depth at the
113 study lakes, such that the sample size of housing transactions was not a shortcoming in the
analysis. The approach also developed suggestive evidence that three variables — P concentration
in lake water, N concentration in lake water, and water temperature — were valid and strong
instrumental variables. Because natural experiments and quasi-experiments are difficult to find
with water pollution (Keiser and Shapiro, 2019a), future research can follow our approach to
identifying the hedonic price function by using cross-sectional variation in an environmental quality
variable in tandem with instrumental-variables methods. While our broad geographic scale breaks
new ground on hedonic studies of lake water quality, a study with a larger number of lakes and a
larger spatial area around each lake (i.e., observations beyond the 0.1 mile buffer of this study)

could produce a truly national study of the economic value of lake water quality.

Second, we isolated water clarity as the attribute of lake water quality that is valued by lake-based
property owners. The ecosystem services literature emphasizes that economic valuation should
focus on a valued attribute of an ecosystem service (Boyd and Banzhaf 2007; Polasky and Segerson
2009; Keeler et al. 2012), i.e., an attribute that enters directly as an argument of the consumer
demand function. For example, Keeler et al. (2012) argue that water clarity is the attribute valued

by lakeshore homeowners. In previous research, however, valuation studies (e.g., Bockstael,

22 7hang, Boyle, and Kuminoff (2015) apply an instrumental-variables approach to address a related topic, the
endogeneity problem in identifying amenity demand parameters from the hedonic price model’s second stage.
We focus solely on the first stage of the hedonic model.
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McConnell, and Strand 1989; Egan, et al. 2009) have used water-quality variables that measure
attributes that likely would be unknown to homeowners or recreationists, attributes such as N or P
concentrations in the water, which are invisible to the typical consumer. Their use could have

resulted in specification errors in the regression estimation.

Here, we showed in Section 3.2.1 that the estimated coefficients on the water-clarity variable are
consistently robust to regression specifications that also included three biophysical variables
associated with lake water quality, including green algal biovolume, cyanobacterial biovolume, and
phytoplankton biovolume. Environmental concerns with lake water quality focus on the scientific
relationship between nutrient runoff and biological growth, including outcomes such as harmful
algal blooms from high concentrations of cyanobacteria. In the robustness checks, the estimated
coefficients on the three biophysical variables are statistically insignificant while the estimated
coefficients on the water-clarity variable are highly statistically significant and similar in magnitude
to the coefficients in the main results. That is, homeowners appear not to value these attributes
independently of water clarity. This finding provides empirical evidence that the biophysical
variables do not affect housing price directly. In addition, these regressions suggest that water
clarity could be an important omitted variable in a hedonic study of the effect of a cyanobacteria
toxicity threshold on residential housing prices near inland lakes (Wolf and Klaiber 2017). Our
results suggest that future work needs to focus on variables that potential homeowners both

directly perceive and care about when purchasing a house.

Third and last, we developed a framework that merged an ecological production function and an
economic valuation function, thus providing a new application of the ecosystem services paradigm
(e.g., Keeler et al. 2012). Scientists and managers frequently use water quality metrics such as N
and P concentration, while the public actually values different attributes such as water clarity. Our
framework thus creates a tool to integrate economic valuation with policy prescriptions on nutrient
concentrations, thereby providing a basis for improved decision-making on water quality and other
ecosystem services (Bateman et al. 2011; Egan et al. 2009; Garnache et al. 2016). With the
framework, we derived a benefit index that showed, by lake, the percentage increase in housing

prices from achieving U.S. EPA-recommended P concentrations in the 113 study lakes. The benefit-
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index results provide new insight into the spatial heterogeneity of economic benefits as a basis to

consider a spatially differentiated policy on water quality (Keiser and Shapiro 2019b).

While we developed a coupled framework, a fully comprehensive approach to studying phosphorus
pollution would require linking four modeling frameworks: farmer decision-making on phosphorus
use and management, watershed modeling, an ecological production function for lake water
guality, and an economic valuation model. Implementing such an integrated framework would best

be accomplished at the watershed scale. This is a topic for future research.

More research is also needed to understand the role of monitoring and measurement of the various
dimensions of water quality. The sampling protocol followed in the NLA — described as “snapshot
sampling” — has been deployed in Europe in addition to the U.S. to capture large-scale associations
at the continental-level, despite the limitation of only having one or a few samples per lake (e.g.,
Stoddard et al. 2016; Mantzouki and Ibelings 2018; Mantzouki et al. 2018). At the same time, Keiser
(2019) demonstrated that the NLA has measurement error relative to a long-term monitoring
dataset of lakes in the state of lowa. Understanding tradeoffs in monitoring approaches and their
implications for water-quality valuation is a topic on which economics can inform natural science

and resource management.

A final caveat to our study is that the valuation estimates are only partial measures of the benefits
of improved lake water quality. They count benefits accruing to lake residents from ecosystem
services that depend solely on water clarity, such as lake aesthetics and lake recreation
opportunities. They do not, however, count nonuse benefits and benefits derived by other users of
the lakes — most prominently, people who travel to lakes for various recreation activities. The
economic benefits of improved water quality are sure to rise even higher as future research

develops more comprehensive estimates of water-quality benefits at lakes across the United States.
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Figure 1, Panel A. Frequency distribution of the benefit index for 111 study lakes (mean = 2.2%;
minimum = 0%; maximum = 9.2%). The index estimates, by lake, the percentage increase in
housing prices after a hypothetical total phosphorus reduction to meet the recommended
phosphorus concentration for the lake. Thirty-six lakes meet the recommendation and thus are at
0%. Recommended phosphorus concentrations are not available for two lakes.
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Figure 1, Panel B. Map of United States shows variation, by lake, in benefit index
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TABLE 1
Variable Definitions and Descriptive Statistics

Variable Description Units Mean St.dev. Maximum Minimum
Housing Price  Transaction price of S 401,146 534,757 5,160,907 4,148
house in 2013S

In Housing Log-transformed S 12.40 0.97 15.5 8.3

Price transaction price

SECCHI Water clarity meters 2.1 1.9 9.5 0.2

LKFRNT Whether house was Oorl 0.6 0.5 1.0 0.0

lakefront

LK_DSTNC House distance to feet 234 145 530 10
lake

Instrumental variables:

NITROGEN Total nitrogen pg/L 972 1066 6672 37

PHSPHRS Total phosphorus pg/L 69 124 819 1

TEMP Lake water °C 25.9 3.0 32.2 19.4

temperature
House covariates:
BDRMS Number of - 3.2 1.0 9.0 1.0
bedrooms
BTHRMS Number of - 2.4 1.1 8.0 0.5
bathrooms
SQFT Square footage of ft? 2221 1265 10271 192
house

YR_BUILT Year house was - 1972 25 2012 1850
built

Lake covariates:

LK_AREA Area of the lake km? 40.2 192.0 1674.9 0.1

LK_PRMTR Perimeter of the km 49.9 120.6 962.2 1.2
lake

Neighborhood covariates:

CMMT_TM Commuting time to minutes 25.2 5.3 40.2 13.3
work

PVRTY Proportion of % 11.1 6.5 36.9 1.5

population below
poverty level
EDUCTN Proportion of % 24.4 13.8 4.2 76.1
individuals with
bachelor degree

or above

MED_INCM Medium income S 56813 19584 159713 26313

%AFRAMER Proportion African- % 5.6 10.4 0.0 59.3
American

RENTAL Proportion rental % 24.4 10.8 4.7 66.4
properties
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POP_DNSTY Population density  person/acre 0.9 1.6 0.01 8.8

UNEMPLD Proportion % 8.7 4.0 29.1 2.1
unemployed
DVLPD_LND Proportion % 16.2 15.3 77.2 0.0
developed land
AG_LND Proportion % 215 16.5 77.2 0.0
agricultural land
CLMT_HDD Long-term average °F 5334 2028 9787 459
of annual heating
degree days
CLMT_PRCP Long-term average  hundredths 4227 1236 7684 805
of annual of inches

precipitation
Other water-quality variables:
PHPLNKTN Total um3/mL 43x10° 85x10° 7.0x107 1.6 x 10*
phytoplankton
biovolume
CYANBCTR Total um3/mL 1.5x10° 3.3x10° 2.1x10’ 739
cyanobacterial
biovolume
GRNALGAE Total green algal um3/mL 2.3x10° 7.4x10° 6.9x10’ 114
biovolume
Notes: N = 1,462 for house attribute data, including Housing Price, In Housing Price, LKFRNT, LK_DSTNC,
BDRMS, BTHRMS, SQFT, and YR_BUILT. N =113 (one observation per lake) for water quality, lake, and
neighborhood variables (i.e., all other variables).
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TABLE 2

Effects of Secchi Disk Depth, Lakefront, and Distance-to-Lake on Ln Housing Price

OLS IV-GMM OLS IV-GMM OLS IV-GMM OLS IV-GMM
(1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b)
SECCHI 0.151***  0.154*** 0.114%** 0.117*** 0.121*** 0.126*** 0.099*** 0.101***
(0.019) (0.027) (0.016) (0.026) (0.016) (0.025) (0.019) (0.037)
LKFRNT 0.322*%**  0.362*** 0.383*** 0.397*** 0.390*** 0.401*** 0.425%** 0.425%**
(0.061) (0.058) (0.055) (0.053) (0.057) (0.055) (0.057) (0.056)
LK_DSTNC -0.00035  -0.00049** -0.00062***  -0.00063*** -0.00058**  -0.00058*** -0.00064***  -0.00064***
(0.00025)  (0.00023) (0.00023) (0.00022) (0.00022) (0.00021) (0.00017) (0.00017)
House covariates @~ -------- YeS----mmmnn mmeee-- Yes -------- mmeeea-o-- Yes ~-----cen meemeee-- Yes ---------
Lake and neighborhood
Covariates  -------- NO-----vm-e cmmeeee- Yes -------- mmeeea-o-- Yes ~-----cen meemeee-- Yes ---------
Flexible form of house
Covariates  -------- NO ----=----  coeeee-- NO --------  ccceeen-- Yes ~-----cen meemeee-- Yes-----c-n--
State fixed effects ~ -------- No --------  -------- No -------- --------- No --------  --------- Yes----------
Year fixed effects ~ -------- Yes --------  -------- Yes --------  --------- Yes ---------  -------- Yes ---------
Quarter fixed effects ~ -------- Yes --------  -------- Yes --------  --------- Yes ---------  -------- Yes ---------
R? 0.616 0.614 0.674 0.673 0.688 0.688 0.731 0.731

Notes: N = 1,462 observations. OLS represents ordinary-least-squares regression. IV-GMM represents instrumental-variables generalized-method-of-
moments regression with the potential endogenous variable SECCHI. Three variables serve as instruments: NITROGEN (nitrogen), PHSPHRS
(phosphorus), and TEMP (lake temperature); except in regression (4b), in which only NITROGEN and TEMP are valid instruments. Regressions develop
cluster-robust estimates, with 113 lakes as clusters. Cluster-robust standard errors are reported in parentheses below the coefficient estimates. The
flexible functional form of house covariates includes quadratics, cubics, and interactions of the variables as controls.

*** Significant at the 1 percent level.
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TABLE 3
Tests of SECCHI and Its Instrumental Variables

Specification of IV-GMM regression

Add: lake and Add: flexible form
neighborhood of house Add: state
House covariates covariates covariates fixed effects

(1) (2) (3) (4)

(a) Tests of overidentifying restrictions (Hansen'’s J statistic)

X2(2) = 3.441 X2(2) = 1.883 X3(2) = 2.183 X3(1) = 0.015
(p=0.179) (p = 0.390) (p =0.336) (p = 0.903)

(b) Endogeneity tests (C tests)

X3(1) = 0.041 X3(1) = 0.012 X3(1) = 0.038 X3(1) =0.010
(p = 0.839) (p =0.914) (p = 0.845) (p=0.921)

(c) Tests of weak instruments

F(3,113) = 8.51 F(3,113) = 18.02 F(3,113)=17.56  F(2,113) = 18.58
(prob>F =0.00) (prob>F =0.00) (prob>F =0.00) (prob>F =0.00)

Notes: Regressions estimated using the instrumental-variables generalized-method-of-moments
estimator and cluster-robust variance-covariance matrices. Three variables serve as instruments:
NITROGEN (nitrogen), PHSPHRS (phosphorus), and TEMP (lake temperature); except in regression (4), in
which only NITROGEN and TEMP are valid instruments. Cluster-robust estimates developed using 113
lakes as clusters. Year fixed effects and quarter fixed effects included in regressions.
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TABLE 4
Effects of SECCHI and Other Water-Quality Variables on Ln Housing Price

(1) (4)
(a) (b) () (a) (b) ()
SECCHI 0.151***  (0.151*** 0.151*** 0.096*** 0.094*** 0.098***
(0.019) (0.020) (0.019) (0.019) (0.019) (0.019)
PHPLNKTN -6.13e-11 -4.06e-09
(3.59e-09) (3.13e-09)
CYANBCTR 1.32e-09 -9.59e-09
(1.23e-08) (8.57e-09)
GRNALGAE 8.12e-10 -3.21e-09
(4.72e-09) (3.12e-09)
House covariates @~  ----------- YeS-----------  eemeo--- Yes-----------
Lake and neighbor-
hood covariates @ ----------- NO----------- —--eee- Yes-----------
Flexible form of
house covariates  ----------- NO----------- —emeeeaa Yes-----------
State fixed effects @~ ----------- NO----------- —-eeea-- Yes-----------
Year fixed effects =~ ----------- YeS----------- eeeea------ Yes-----------
Quarter fixed effects - ---------- Ye§-------cmoo eeoeoooo- Yes-----------

Notes: N = 1,462 observations. OLS estimator. Specification (2) and Specification (3) of the covariates
(as defined in the text and several other tables) are not reported since they do not add insight to the
topic. Cluster-robust standard errors are reported in parentheses below the coefficient estimates.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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TABLE 5
State-based Effects of SECCHI on Ln Housing Price

(1) (2) 3) (4)
SECCHI 0.153*** 0.128*** 0.138*** 0.111***
(0.017) (0.023) (0.021) (0.023)
SECCHI*FLORIDA -0.118 0.407 0.358 0.251
(0.310) (0.278) (0.268) (0.478)
SECCHI*INDIANA -0.068 -0.029 -0.041 -0.072
(0.062) (0.066) (0.063) (0.065)
SECCHI*WASHINGTON  -0.017 -0.020 -0.030 -0.007
(0.037) (0.030) (0.028) (0.040)
House covariates Yes Yes Yes Yes
Lake and neighborhood
covariates No Yes Yes Yes
Flexible form of house
covariates No No Yes Yes
State fixed effects No No No Yes
Year fixed effects Yes Yes Yes Yes
Quarter fixed effects Yes Yes Yes Yes

Notes: N = 1,462 observations. OLS estimator. Cluster-robust standard errors are reported in
parentheses below the coefficient estimates. Florida has 10 lakes and 151 observations. Indiana has 25
lakes and 238 observations. Washington has 9 lakes and 178 observations.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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TABLE 6
Effects of Secchi Disk Depth (SECCHI) on Ln Housing Price,
OLS Regressions using 2007 NLA Data versus 2012 NLA Data

(1) (2) (3) (4)
SECCHI 0.210*** 0.090*** 0.103*** 0.085%**
2007 NLA Data (0.045) (0.031) (0.025) (0.029)
SECCHI 0.186*** 0.070* 0.084** 0.089***
2012 NLA Data (0.047) (0.035) (0.034) (0.031)
House covariates ----Yes---- ----Yes---- ----Yes---- ----Yes----
Lake and neighborhood ---- No----  ----Yes---- ----Yes---- ----Yes----
covariates
Flexible form of house ---- No---- ----No---- ~----Yes---- ----Yes----
covariates
State fixed effects ---- No---- ----No---- ----No---- ----Yes----
Year fixed effects ----Yes---- ----Yes---- ----Yes---- ----Yes----
Quarter fixed effects ----Yes---- ----Yes---- ----Yes---- ----Yes----

Notes: N =600 observations. OLS represents ordinary-least-squares regression. Regressions develop
cluster-robust estimates, with 38 lakes as clusters. Cluster-robust standard errors are reported in
parentheses below the coefficient estimates. The flexible functional form of house covariates includes
guadratics, cubics, and interactions of the variables as controls.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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ONLINE APPENDIX MATERIALS

Appendix A: Main Regressions: Additional Details

(a) First-stage regression results. One requirement for an instrumental variable is that, conditional on
the other exogenous variables, it is correlated with the endogenous variable. From an ecological
perspective, the three candidates for instruments — NITROGEN, PHSPHRS, and TEMP — increase net
primary production in a lake ecosystem by providing nutrients and ambient growing conditions. In the
case of a lake, net primary production involves phytoplankton production, and water clarity declines
with an increase in phytoplankton production. The expectation, then, is that the estimated coefficients
on NITROGEN, PHSPHRS, and TEMP will be negative in a regression that explains variation in SECCHI.

We report first-stage results based on the procedure (described in the main text and reported in Table
2) of sequentially adding covariates to the IV-GMM regressions to develop four standard specifications
for the analysis (Appendix Table 1). In the first-stage regressions, the estimated coefficients on
NITROGEN, PHSPHRS, and TEMP are negative and statistically significant at the 1 percent level in the
first three specifications. In the fourth specification, the coefficient on PHSPHRS is not statistically
significant. Column (4) thus reports the results with the two remaining instruments, in which the
estimated coefficients on NITROGEN and TEMP are negative and statistically significant at the 1 percent
level. These results demonstrate that the instruments meet the requirement of correlation with SECCHI.

In the main text, additional test results demonstrate that the variables are valid instruments and are not
weak instruments. Thus, the IV-GMM estimator is overidentified with SECCHI as a potential endogenous
variable and with the high-quality instruments in NITROGEN, TEMP, and, in several cases, PHSPHRS.

(b) OLS: complete results. The main text and Table 2 report hedonic price results for only three
variables, SECCHI, LKFRNT, and LK_DSTNC. In the appendix, we describe results on other variables and
report estimated coefficients for the entire set of exogenous variables in Appendix Table 2.

The expectation is that the estimated coefficients on the house covariates will be positive in the hedonic
price regression. For example, YR_BUILT increases as the house was built more recently, and a newer
house should come with a price premium. As reported in Appendix Table 2, estimated coefficients on
the house covariates are positive and statistically significant in the OLS regressions for specifications (1)
and (2). (We primarily report OLS results in Appendix A due to the finding that exogeneity could not be
rejected.) Specifications (3) and (4) apply a flexible functional form for the house covariates that
includes quadratics, cubics, and interactions of the variables. We do not report those results as their
purpose is to provide many control variables, not to provide informative parameter estimates.

Estimated coefficients on 7 of the 14 lake and neighborhood variables are statistically significant in the
OLS regressions (Appendix Table 2). Housing price declines in LK_AREA, suggesting that homeowners
prefer smaller lakes to larger lakes; yet it increases in LK_PRMTR, suggesting that homeowners pay a
premium for an irregular shoreline. AG_LAND near the lake results in a discount. We model
socioeconomic characteristics of the neighborhood as local public goods. Housing price increases in the
educational (EDUCTN) and median income (MED_INCM) composition of the neighborhood. Housing
price also increases in CLMT_HDD, which implies that housing price decreases as temperature increases
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given the definition of CLMT_HDD. Curiously, it decreases in the rate of rental property in the
neighborhood (%RENTAL).

Of note, we did not estimate regressions with a flexible functional form for the lake and neighborhood
covariates since these variables did not perform as strongly as the house covariates.

(c) Ecological production function: estimation results: Appendix Table 3 reports results of the OLS
estimates of the ecological model using a Cobb-Douglas functional form. The results show robustness in
the parameter of interest, the estimated coefficient on the In(phosphorus) variable. The coefficient is
estimated at 0.49 in specifications without and with the In(temperature) variable. With the addition of
three state fixed effects, the coefficient is estimated at 0.51. In Section 4 of the main text, we apply 0.49
in the quantitative analysis related to lake-specific phosphorus reductions because it is the more
conservative estimate.
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Appendix B: Additional Robustness Checks

Appendix B reports two additional robustness checks on the SECCHI variable along with a robustness
check on the IV-GMM estimator.

(a) Does SECCHI exert a diminishing marginal effect on housing price? A conjecture in the literature is
that water quality may have strongly diminishing marginal benefits (Keeler et al., 2012). To investigate
this, we estimate the hedonic price function using a model with Housing Price (not Ln Housing Price) as
the dependent variable and with SECCHI entering with linear and squared terms (Appendix Table 4).
Use of a quadratic function (i.e., a squared term for a variable in addition to a linear term) in regression
modeling is a standard approach for evaluating the possibility of curvature of a functional relationship.
According to a well-known econometric textbook (Wooldridge 2009, p. 192), “Quadratic functions are
also used quite often in applied economics to capture decreasing or increasing marginal effects.”

The estimated coefficients on the SECCHI and SECCHI*SECCHI variables are not statistically significant in
any specification. Our case, with water clarity as the measure of water quality, provides no support for
diminishing marginal benefits in the hedonic price model.

For additional context, we also estimate (but do not report) specifications with Housing Price (not Ln

Housing Price) as the dependent variable and SECCHI entering with only a linear term. The estimated
coefficients on SECCHI in these specifications are positive and statistically significant at the 1 percent

level.

(b) Robustness check on the IV-GMM estimator. Results from IV-GMM regressions, to this point, have
been reported to represent the instrumental-variables approach. The two-stage-least-squares
estimator (2SLS) is an alternate IV estimator, and the expectation is for a strong concordance between
the 2SLS and IV-GMM results. Comparative results are reported for the three main variables of interest,
SECCHI, LKFRNT, and LK_DSTNC (Appendix Table 5). The estimated coefficients and standard errors in
the paired IV-GMM and 2SLS regressions are very similar, and they are virtually identical in specification
(4) with all the controls in place. The estimated coefficients are clearly robust to the 2SLS estimator.
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APPENDIX TABLE 1

First-Stage Results for Instrumental Variables in IV-GMM Regressions

(1) (2) 3) (4)
NITROGEN -0.00050***  -0.00054*** -0.00054*** -0.00055***
(0.00017) (0.00011) (0.00011) (0.00013)
PHSPHRS -0.00344***  -0.00361*** -0.00364***
(0.00122) (0.00088) (0.00087)
TEMP -0.3163*** -0.3606*** -0.3574*** -0.3268***
(0.0795) (0.0722) (0.0730) (0.0689)
House covariates Yes Yes Yes Yes
Lake and neighbor-
hood covariates No Yes Yes Yes
Flexible form of
house covariates No No Yes Yes
State fixed effects No No No Yes
Year fixed effects Yes Yes Yes Yes
Quarter fixed effects Yes Yes Yes Yes
R? 0.546 0.711 0.717 0.843

Notes: N = 1,462 observations. Dependent variable is SECCHI. IV-GMM is the instrumental-variables
generalized-method-of-moment estimator. Cluster-robust standard errors are reported in parentheses
below the coefficient estimates. PHSPHRS is not a valid instrument in specification (4). The flexible
functional form of house covariates includes quadratics, cubics, and interactions of the variables as

controls.

*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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APPENDIX TABLE 2
OLS Results:

House, Lake, and Neighborhood Covariates

(1)

()

SECCHI
LKFRNT

LK_DSTNC

House covariates:

BDRMS

BTHRMS

SQFT

YR_BUILT

Lake and neighbor-
hood covariates:

LK_AREA
LK_PRMTR
DVLPD_LND
AG_LND
CMMT_TM
PVRTY
EDUCTN
MED_INCM
%AFRAMER
RENTAL
POP_DNSTY
UNEMPLD

CLMT_HDD

0.151%**
(0.019)
0.322%**
(0.061)
-0.00035
(0.00025)

0.102%**
(0.035)
0.168%**
(0.035)
0.00023***
(0.00005)
0.00228*
(0.00132)

0.114%**
(0.016)
0.383%**
(0.055)
-0.00062***
(0.00023)

0.056**
(0.028)
0.148%**
(0.030)
0.00023***
(0.00004)
0.00319%***
(0.00113)

-0.00040%**
(0.00009)
0.00069***
(0.00024)
0.0045
(0.0033)
-0.0147**
(0.0069)
0.0119
(0.0072)
0.0058
(0.0087)
0.0066*
(0.0036)
8.93e-06***
(2.88e-06)
-0.5185
(0.5571)
0.9591*
(0.4858)
-44.450
(163.279)
-0.0047
(0.0127)
0.00004
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(0.00003)

CLMT_PRCP - 1.73e-06
(0.00002)
Flexible form of
house covariates No No
State fixed effects No No
Year fixed effects Yes Yes
Quarter fixed effects Yes Yes
R? 0.616 0.674

Notes: N = 1,462 observations. Dependent variable is Ln Housing
Price. Cluster-robust standard errors are reported in parentheses
below the coefficient estimates. Specifications (3) and (4) are not
reported because “flexible form of house covariates”, while
useful as controls, generates results that are not informative.

*** Significant at the 1 percent level.

** Significant at the 5 percent level.
* Significant at the 10 percent level.
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APPENDIX TABLE 3
OLS Results: Cobb-Douglas Ecological Function

Intercept 2.78%** 7.56%** 5.62%**
(0.44) (1.38) (1.72)
LN_PHOSPHORUS -0.49%*** -0.49%*** -0.51***
(0.06) (0.06) (0.06)
LN_NITROGEN -0.13 -0.08 -0.03
(0.09) (0.09) (0.09)
LN_TEMP - -1.57%** -1.03**
(0.42) (0.51)
Florida FE - - -0.33**
(0.14)
Indiana FE - - -0.13
(0.11)
Washington FE --- --- 0.20
(0.13)
R? 0.72 0.75 0.76
N 113 113 113

Notes: Dependent variable is LN_SECCHI. The observations are from the 113 study
lakes. FE variables add state fixed effects for states with several lakes (Florida = 10;
Indiana = 25; Washington = 8). Robust standard errors reported in parentheses.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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APPENDIX TABLE 4
Effect of Quadratic Form for SECCHI on Housing Price

(1) (2) 3) (4)
SECCHI 42,786 18,593 15,245 26,670
(39,495) (33,334) (30,497) (40,272)
SECCHI*SECCHI 5,864 6,800 6,587 4,258
(5,588) (4,287) (3,974) (4,433)
House covariates Yes Yes Yes Yes
Lake and neighbor-
hood covariates No Yes Yes Yes
Flexible form of house
covariates No No Yes Yes
State fixed effects No No No Yes
Year fixed effects Yes Yes Yes Yes
Quarter fixed effects Yes Yes Yes Yes

Notes: N = 1,462 observations. Dependent variable is Housing Price, not Ln Housing Price. OLS
estimator. Cluster-robust standard errors are reported in parentheses below the coefficient estimates.
House covariates in this case include LKFRNT and LK_DSTNC.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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APPENDIX TABLE 5
Comparing 2SLS and IV-GMM Regression Results

2SLS IV-GMM 2SLS IV-GMM 2SLS IV-GMM 2SLS IV-GMM
(1A) (1B) (2A) (2B) (3A) (3B) (4A) (4B)
SECCHI 0.175***  0.154*** 0.120*** 0.117*** 0.128*** 0.126*** 0.102*** 0.101***
(0.029) (0.027) (0.027) (0.026) (0.025) (0.025) (0.037) (0.037)
LKFRNT 0.320***  0.362*** 0.383*** 0.397*** 0.390*** 0.401*** 0.424*** 0.425%**
(0.063) (0.058) (0.055) (0.053) (0.056) (0.055) (0.056) (0.056)
LK_DSTNC -0.00038  -0.00049** -0.00062***  -0.00063*** -0.00057***  -0.00058*** -0.00064***  -0.00064***
(0.00024)  (0.00023) (0.00023) (0.00022) (0.00022) (0.00021) (0.00017) (0.00017)
House covariates @~ -------- YeS----mmmnn mmeee-- Yes -------- mmeeea-o-- Yes ~-----cen meemeee-- Yes ---------
Lake and neighborhood
covariates - ------- NO-----vm-e cmmeeee- Yes -------- mmeeea-o-- Yes ~-----cen meemeee-- Yes ---------
Flexible form of house
covariates - ------- NO ----=----  coeeee-- NO --------  ccceeen-- Yes ~-----cen meemeee-- Yes-----c-n--
State fixed effects ~ -------- No --------  -------- No --------  --------- No --------  --------- Yes----------
Year fixed effects ~ -------- Yes --------  -------- Yes --------  --------- Yes ---------  -------- Yes ---------
Quarter fixed effects ~ -------- Yes --------  -------- Yes --------  --------- Yes ---------  -------- Yes ---------
R? 0.614 0.614 0.674 0.673 0.688 0.688 0.731 0.731

Notes: N = 1,462 observations. Dependent variable is Ln Housing Price. 2SLS is the two-stage-least-squares estimator. IV-GMM is the two-stage
instrumental-variables generalized-method-of-moments estimator. The potential endogenous variable is SECCHI. Three variables serve as instruments:
NITROGEN (nitrogen), PHSPHRS (phosphorus), and TEMP (lake temperature); except in regression (4B), in which only NITROGEN and TEMP are valid

instruments. Cluster-robust standard errors are reported in parentheses below the coefficient estimates.
*** Significant at the 1 percent level.

** Significant at the 5 percent level.

45

* Significant at the 10 percent level



--- This page is intentionally left blank. ---

46



