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Abstract—Integration-technology feature shrink increases
computing-system susceptibility to Single-Event Effects (SEE).
While modeling SEE faults will be critical, an integrated proces-
sor’s scope makes physically correct modeling computationally
intractable. Without useful models, pre-silicon evaluation of
fault-tolerance approaches becomes impossible. To incorporate
accurate transistor-level effects at a system scope, we present
a multi-scale simulation framework. Charge collection at the
(i) device-level determines (ii) circuit-level transient duration
and state-upset likelihood. Circuit effects, in turn, impact (iii)
register-transfer-level architecture-state corruption visible at the
(iv) system-level. Thus, the physically accurate effects of SEEs
in large-scale systems, executed on an HPC simulator, could
be used to drive cross-layer radiation hardening by design. We
demonstrate the capabilities of this model with two case studies.
First, we determine a D flip-flop’s sensitivity at the transistor
level on 14nm FinFet technology, validating the model against
published cross-sections. Second, we track and estimate faults in
a MIPS processor for Adams 90% worst-case environment in an
isotropic space environment

Index Terms—Single event effects (SEE), single event transient
(SET), single event upset (SEU), fault modeling, structural
simulation toolkit (SST)

I. INTRODUCTION

INGLE-event effects (SEEs) are a key radiation suscep-
S tibility for electronic components fabricated with modern
highly scaled process technologies [1]. For microprocessors,
understanding the effect of SEEs on the architecture is chal-
lenging, due to the number of SEE-sensitive locations and
the inability to observe the architecture fully. From previous
work, we understand that microprocessors are susceptible to
silent data corruption (SDC), crashes, and halts from single-
event upsets (SEUs) and single-event transients (SETs) in the
control and data flow of the microprocessor architecture [2].

M. Cannon (mcannon@sandia.gov), A. Rodrigues, D. Black, J. Black, B.
Feinberg, M. Breeding M. McLain and M. Marinella (mmarine @sandia.gov)
are with Sandia National Laboratories, Albuquerque, NM.

L. Bustamante, M. Skoufis and S. Agarwal (sagarwa@sandia.gov) are with
Sandia National Laboratories, Livermore, CA.

H. Quinn is with Los Alamos National Laboratories, Los Alamos, NM.

L. Clark, J. Brunhaver and H. Barnaby are with Arizona State University,
Tempe AZ.

The authors acknowledge the use of Monte Carlo Radiative Energy Depo-
sition (MRED) software under the license from Vanderbilt University.

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of Energy or
the United States Government.

System designers need to understand how errors flow
through microprocessor-based systems to understand how
faults in the microprocessor affect the overall system. In many
ways, while halts and crashes are the hardest issue to mitigate
for system design, handling SDC faults is likely the more
challenging problem because the undetected error can affect
several components. Most SDC faults are written back into
dynamic random access memory (DRAM) for use in other
calculations, which means that the fault transitions from one
calculation to DRAM then back to the microprocessor in
other calculations. As systems scale into larger installations,
it might also be necessary to understand the effect of SEEs in
multiple-microprocessors systems, which makes the scalability
of tracking errors more challenging. Finally, accounting for
varying radiation sensitivity, component architectures, and
functionality in large-scale systems requires an understand-
ing of different component architectures and their radiation
sensitivities. Therefore, fault modeling for large-scale system
integration is necessary, but does not exist currently.

A holistic approach to model the effects of these faults
is needed. The current standard, radiation testing, does not
provide enough insight to how a microprocessor fails. De-
veloping an understanding of microprocessors from radiation
testing can be a complex and time consuming process. Fault
simulation and emulation techniques can be useful at providing
an initial understanding of how the microprocessor architecture
and software respond to faults that can be verified in radiation
testing.

Fault simulation tools are advantageous over many modeling
options, since they expose the underlying architecture. Some
of the most complicated design in modern electronics is the
intricate timing and data coordination in the pipeline stages
of a microprocessor (instruction fetching, ALU operations,
memory loading, storing data, etc, as shown in Fig. 1). Tools
that understand the microprocessor architecture well enough
to translate from faults in the transistor level to errors in
the pipeline structure are necessary to fully understand the
robustness of the given architecture.

To address this need, a multi-scale simulation framework
to model the effects of SEUs and SETs has been developed.
The framework considers several levels of abstraction to model
SEEs in microprocessors at both the software and transistor
level. The framework is illustrated in Fig. 2. At the software
layer, an algorithm in C or C++, is compiled to individual
assembly instructions that can be run on a discrete event sim-
ulation (DES) model of a faulty processor. SEUs are injected
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Fig. 1: The layout of the five-stage pipeline with locations where faults are inserted. The black bars show the location of
pipeline registers that break the computation into distinct and separate stages.
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into the registers of a simulated system. The probability of
an SEU on each register is calculated using transistor level
SEE sensitivities. As the effective cross-section is dominated
by the registers themselves and not the combinational logic,
we approximate the cross-section as the register cross-section.

The paper starts with a discussion of related work on
fault injection techniques in Section II. The fault injection
methodology in this paper is described in detail in Section III.
The paper includes two case studies in Section IV. The first
case study is the simulation of a D Flip-Flop. The second case
study is a full microprocessor implementation with different
software modifications. We end the paper with conclusions in
Section V.

II. RELATED WORK

Fault injection is the generic term for all methods of
injecting faults into a system, including both fault emulation
and fault simulation [3]. Fault emulation encompasses fault
injection methods that insert faults directly into the hardware
platform. Fault simulation methods focus on injecting faults
into a software simulation of the hardware architecture. In

this section, other methods of fault emulation and simulation
previously used on microprocessor architectures are covered.

Fault emulation on microprocessors is common, because it
does not require complete understanding of the underlying
architecture, which is often proprietary. The most common
techniques for microprocessor fault emulation rely on inter-
rupts, compilers, boundary scan, or software fault injection
to insert the faults into the component. The most common
method is software-based fault emulation that uses software
modification to insert SEUs into the microprocessor [4]-
[7]. Inserting faults into software through the compiler is
uniquely common to the open-source LLVM compiler, which
means that several LLVM-based fault insertion tools have been
developed, including LLFI, KULFI, CIAP (Ceritical Instruction
Analysis and Protection), and Relax [8]-[11]. Compiler-based
modification of the software is attractive, as the compiler
can handle the software modifications and is able to focus
specifically on the compiler’s intermediate representation or
the machine instructions, instead of software expressions.
Interrupt-based methodologies attempt to inject faults into reg-
isters or the cache using interrupt controller routines [12], [13].
Boundary scan ports, including the Joint Test Action Group
(JTAG) interface, can also insert faults directly into micro-
processors without software modification [14]-[16]. Inserting
faults through the debugger is also possible automatically or
by hand [17]. While fault emulation techniques are often faster
than fault simulation, in this case the hindrance of not being
able to inject faults across the entire architecture is a problem.
Furthermore, the instrumentation of the software or interrupt
controllers limits the scope of the injection sites to registers.
As shown in [18], [19], these software-based techniques can be
faulty and vary by as much as 45 times based on the method
used. Therefore, fault emulation on microprocessors can be
limited.

Fault simulation can be useful to microprocessors, as long
as a complete understanding of the architecture is possible. As
information scarcity is common in microprocessor design, the
ability to get a complete understanding of the architecture is
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an important aspect for fault emulation. The SEU_Tool uses
analytical reasoning and circuit simulation tools to analyze the
contribution of combination logic in the path to a sequential or
memory element [20]. This tool uses circuit models two levels
of simulation at the hardware description language level, and
probabilistic models. The SEU_Tool also has algorithms to
identify the worst-case contributors to soft errors to reduce
computation time. Given the detail of modeling capability in
this method, its accuracy is largely a function of the quality and
completeness of the parameters used for input [20], [21]. Most
tools do not have access to as many inputs as the SEU_Tool,
and in particular many micro-architectural fault modeling tools
cannot integrate experimental data into the model [22], [23].

In recent years, using architectural simulators have become
popular for fault simulation within the computer architecture
community. The MARSS and Gem5 [22], [23] simulators have
been used to inject faults into the x86 and ARM architectures.
These works can inject faults in any part of the simulator,
during any cycle and for any duration. Then the output of the
simulator can be compared with a golden model so failures can
be detected. However, while simulators accurately simulate
the instructions, they are generalized and may not accurately
represent the a specific processor implementation a user is
interested in (e.g. the x86 implementation varies between
different families and generations, although each processor
can execute x86 code). Therefore, simulation tools can be
useful, as long as the modeled architecture is the system
being used and the model can be extended to include radiation
sensitivities.

Several fault simulation and emulation tools for graphics
processing units (GPUs) have been released, including an ex-
tension of LLFI for GPUs [24], GPU-Qin [25], SASSIFI [26],
GPGPU-sim Fault Injector (GUFI) [27]. GPUs are particularly
difficult to model, due to the massively parallel structure of
the architecture, so GPU-specific fault injection tools are often
necessary for these components. SASSFI has the advantage of
being created by the largest manufacturer of GPUs, NVIDIA,
and has been adopted by many researchers since its release in
2017.

The tool described in this paper has similarities to both
fault simulation and fault emulation tools. The tool provides
the observability layer of the software from a software-based
fault emulation tool, but has the transistor-level model of fault
simulation tools. In that sense, the tool makes it possible to
link the faults in the transistor layer to the software layer,
so the transition from fault to error can be observed through
out the hardware and software architecture. Unlike other fault
simulation tools, it is possible to input a number of charac-
teristics, including the radiation test data for the transistors,
the software, and the full hardware architecture. The ability
to input the full hardware architecture is important, as most
simulation tools simulate the instruction set architecture (ISA)
only, and do not necessarily accurately depict all the registers
that would be implemented in a hardware implementation of
the processor. Therefore in our tool, the architectural model is
accurate to the hardware architecture, the software model is
accurate to the system design, and the radiation sensitivities
are accurate to the transistor design and fabrication. This tool

has a unique advantage over many other types of fault injection
systems, due to level of information that is input into the
system.

III. FAULT INJECTION AND TRACKING

We have a developed a multi-scale simulation framework
to understand how transistor level radiation properties can
affect a large-scale system. As illustrated in Fig 1, we present
a probabilistic framework that goes through four levels of
abstraction to model radiation impacts on a running system:

1) The probabilities and physics of an SET on a transistor
are modeled to create a probability distribution of charge
collected from the radiation event (Section III-A);

2) The charge collected is used to fit a dual, double expo-
nential current source and circuit simulations are used to
abstract radiation events as binary SETs on a gate with
varying pulse widths [28] (Section III-B);

3) The probabilities and duration of SETs on each gate
are abstracted to model the probability of a SEU being
latched at the register at the end of the pipeline stage
(Section III-A);

4) A discrete event simulation (DES) of software running
on a faulty processor is used to simulate and track the
faults and the impact of faults on benchmark algorithms
are probabilistically characterized. The DES is based on
modifying the Structural Simulation Toolkit (SST) [29], a
discrete event simulator for high performance computing
(HPC) systems (Section III-D).

By using 4 levels of abstraction, we enable a much more
comprehensive coverage of possible faults than if Monte Carlo
injection were directly used on a full processor model. Fault
simulation is focused on the entire system and not just the
sensitivity of the microprocessor. Using SST also allows us
to model large scale heterogeneous systems with multiple
discrete components and to track fault propagation through
the system. This modeling framework can be used to both
characterize how an existing system will behave in a radiation
environment and enable the design of both hardware- and
software-level fault mitigation strategies. In the remainder of
this section, details about these different layers of abstraction
are presented.

A. Radiation Events to Collected Charge

The total charge collected by individual charge generation
due to particle strikes in a transistor is determined. We follow
the methodology described in [3] consisting of two steps:

e TCAD simulations are used to determine the charge
collection efficiencies in each sensitive volume of a
transistor;

« Monte Carlo Radiative Energy Deposition (MRED) is
used to determine the probability distribution and events
with maximum collected charge.

Early soft-error, static-upset rate predictions were calcu-
lated with a single rectangular parallelepiped (RPP) sensitive
volume using tools that assume the same charge collection
rate in the entire volume, vastly over-estimating the soft error
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rate (SER) [20]. To overcome this, we use multiple sensitive
volumes each with their own charge collection efficiency.

Next, we combine multiple sensitive volumes with Monte
Carlo radiation transport techniques to estimate the total
charge collected [30], [31]. This tool is known as Monte
Carlo Radiative Energy Deposition (MRED). The power of
this approach is that it remains tractable in the absence of
simplifying assumptions, and therefore in principle, it is more
precise and accurate to predict errors. Moreover, it has been
experimentally validated [31]-[33].

B. Collected Charge to Single Event Transients

Once the collected charge from a radiation event is de-
termined, we need to convert it to a current source model.
Following [28], the collected charge is converted into dual
double-exponential current sources. A fast current source
provides the charge needed to flip the state and a slow current
source models the slow draining of excess charge once the
state has been flipped. TCAD models of individual transistors
are used to determine the time constants of the current sources.
The peak currents of each current source are determined from
circuit simulations based on the particular gate type and load
and are chosen to flip and hold the output voltage at the
opposite rail voltage. Next, the width of the slow current
source is determined by setting the integrated charge equal
to the collected charge. Finally, the length of rail-to-rail SET
is found using a simulation program with integrated circuit
emphasis (SPICE) simulation of chained logic gates and only
transients that are long enough to propagate and be latched
are kept. This process allows us to convert the probability
distribution of collected charge to a probability distribution of
pulse widths or SEUs for Flip Flops.

C. Logic Gate to Pipeline Stage Fault Simulation

The next level of abstraction is to create a model of SEU
probabilities on the output registers of each pipeline stage in
a microprocessor. As the effective cross-section is dominated
by the registers themselves and not the combinational logic,
the cross-section can be approximated as the register cross-
section. Nevertheless, we describe how the cross-section can
be optionally refined using the probability and pulse width of
SETs at individual gates in this section.

It is well known that there are logical masking effects that
occur within the circuit which naturally quash some SETSs
before they are latched [34]. This masking effect is usually
calculated for the entire circuit as the circuit reliability. We are
interested in the probability of a single SET for any given gate
within the circuit becoming logically masked before reaching
a register.

The probability of error at register r, for instruction %, P,;,
is given by:

P.; = Pr_sgu+ Z Z Pry,i x LMy;gr X Pa_sEU tigr

t=test g=gates
vectors

D

TsEt,,,
Pc_seutigr = E Pspr,,,, X (2)
- Tclock
p=pulse
widths

e Prp_gspy is the probability of an SEU occurring on the
register itself in one clock cycle.

e Pry.; is the probability of each test vector, ¢, used for
instruction i and (for now) is assumed to be 1/(# test
vectors). The possible test vectors for each instruction are
randomly sampled.

e LMji;q, is 1 or O and represents whether an SET on gate g
is logically masked at register r based on test vector ¢ and
instruction 4. It is computed using a static fault simulation
with the commercial fault simulator ZO1X.

e Pa_sEu,tigr 1s the calculated probability that an SET at
gate g that is not logically masked is latched as an SEU at
register r, given test vector ¢ and instruction %.

e Pspr,,,, is the probability of an SET on gate g with pulse-
width p, as computed in Section III. As the SET probability
depends on the exact data on the gate (rising vs falling edge),
it also depends on the test vector ¢ and instruction 1.

o Ty ETypr is the modified width of an SET as seen at register
r. The radiation induced pulse-width r on gate g needs to be
modified by the propagation delay to the register if the rising
and falling edges have asymmetric delays and by the average
latching window of the register. An average value of the
propagation delay, independent of the particular test vector,
is used to avoid the need for dynamic fault simulations
for every test vector. A reasonable approximation is to
directly use the radiation induced pulse width, r, and assume
symmetric propagation delays and latching exactly at the
clock edge.

To demonstrate the creation of an abstracted model, we
consider a simple 32 bit RISC ALU. To highlight the impact
of logical masking we assume that an SET on each gate
has the same probability, Pg_sgy, of being latched as an
upset and that a single upset occurs somewhere in the ALU:
Peo_sgu.tigr = 1/# of gates. The probability of an error due
to the digital logic at each output register of the ALU for an
add and or operations is shown in Fig. 3.

D. Pipeline Stage to System Software Fault Simulation

Once the probability of error on each register is computed,
faults are injected into a discrete event simulation (DES) of
software running on a faulty processor. Software for simulated
hardware is written in C or C++, and then compiled into
individual assembly instructions that can be run on a DES
model of the faulty microprocessor. As shown in Fig. 1, faults
are injected into key parts of a processor pipeline. Faults can
be injected either as temporary SEUs or as permanent stuck
at faults.

A physical processor will have many more registers than
fault injection locations shown in Fig. 1. To account for this,
the cross-section of each register will be added to one of the
modeled fault injection locations. This abstraction allows an
architectural simulator to run with a reasonable computational
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Fig. 3: The probability of an error during ADD and OR
operations at each output register due to the digital logic is
shown, averaged over one million faults.

efficiency. Accurately accounting for the register level cross-
sections from the previous section allows the fault sensitivity
of different pipeline stages to be assessed. It also allows the
effectiveness of fault mitigation to be determined.

As the DES is based on modifying SST, a discrete event
simulator for large scale HPC systems, the fault modeling
can encompass the full system, including external memories
and other microprocessors. The flexibility of the tool allows
each component to be defined individually, such that each
component can have its own design, technology node, and
radiation sensitivities to a given environment. In this manner,
faults can be tracked from component to component, if the
fault propagates outside of the component’s boundaries. This
type of modeling is important with external memory, buses,
and multiple processing elements. In cases where the fault
causes an SDC within a microprocessor, the microprocessor
writes the faulty value into external memory, such as dynamic
random access memory (DRAM), or transmits it to another
processing element for further calculation. In that sense, faults
cascade throughout the system, and the SST tool can track the
fault as it moves through a component internally and then
transfers to an external component for further propagation.

Faults are inserted into the model by changing the simula-
tor’s internal register (reg_word) data structures. This structure
is used to represent architectural registers and internal state

and is normally a simple 32-bit number. For our simulator,
we replace it with a custom data structure that records when
the fault occurred, which bit it flipped, and the original fault-
free value. Whenever an operation is performed (e.g. adding
two registers) we update the faulted and fault-free value and
propagate faults to the results register. In this way, we can
determine when, where and how a fault is quashed or how it
spreads throughout the system to eventually cause a failure.
For example, if a register with the value “1” is upset by an SEU
in its least significant bit (making it a “0”) and is later OR’d
with the value “1” it will end up with the correct value as if the
SEU never occurred. This sort of “correction by math” can be
tracked and counted in the simulator. This capability is useful
when designing fault-resistant data encodings or algorithms
and is a feature we have not found in other fault simulators.

IV. CASE STUDIES

To show the flexibility and scalability of the tool, we present
two case studies. The first one shows how to determine the
sensitivity of a D Flip Flop and validates the methodology
at the transistor level. The second one uses the D Flip-Flop
cross-section to study the effect of SEUs in a pipelined mi-
croprocessor architecture while executing different variations
of a matrix multiply code.

A. D Flip-Flops

First, we use the tools described above to compute the SEU
cross-section of a 14nm D Flip-Flop vs LET and compare the
modeling results to experimentally measured cross-sections by
Vanderbilt University in [35]. Next, we compute the upset
rate of a 14nm D Flip-Flop when exposed to the Adams
90% worst-case environment particles in an isotropic space
environment. The upset rate is used as an input in the next
processor level case study.

To compute sensitive volumes and charge collection ef-
ficiencies, we perform Technology Computer Aided Design
(TCAD) SET simulations of a single fin NFET a single fin
PFET connected in an inverter configuration as illustrated in
Fig. 5. This was done to determine how much of the collected
charge would contribute to the SET generation since charge
continued to collect over 1 ns. Multiple TCAD simulations
are run to simulate particles over a range of linear energy
transfers (LETs), and to insert particles at different spots
around the fins. The results are mapped into sensitive charge
collection volumes that can re-create the collected charge
versus deposited charge around the fins. For instance a 3.125
LET particle at normal incidence with a center strike location
deposited 0.13 pC but only 0.22 fC were collected. This
resulted in a collection efficiency of 0.1%. The charge is
injected into a circuit simulation of D Flip-Flop and critical
charge for an SEU is determined.

It is also necessary to develop a D Flip-Flop model in the
MRED tool. For this model all the fins in the design need
sensitive charge collection volumes. Each simulation of an
ion/energy results in collected charge at various circuit node(s),
which are then compared against critical charges Given a
radiation environment, MRED can convert the simulation into
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a 14nm D Flip-Flop is shown.
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Fig. 5: TCAD Simulation with (a) showing how large a
substrate is needed to allow the charge to recombine and (b)
showing a zoomed in view of the fins.

a predicted error rate or cross-section for that environment.
To validate our MRED model with test data, we simulated
monoenergetic particles at normal incidence matching the test
conditions. The resulting cross-section vs LET is plotted in
Fig. 4, showing extremely good fit to the experimental data.

Next, the upset rate of a 14nm D Flip-Flop when exposed
to the Adams 90% worst-case environment particles in an
isotropic space environment is computed to be 4.71 x 10~
errors/bit/s or 4.07 x 10~9 errors/bit/day. This was estimated
by simulating 1 x 10® particles from the environment and
comparing the collected charge resulting from each particle
against the critical charges of the transistors as described
in [31].

B. MIPS Processor Fault Injection

As a case study, we developed a fault simulation model of
the clspim MIPS model, based on the R2000 microprocessor,
in SST [36].

The simulator models the processor pipeline and so bit-
flips that affect the data and memory addresses can be directly

modeled. Details of the control flow and exception handling
are not modeled and so bit flips that affect those are recorded
and the simulation is stopped. These errors would immediately
change the operation of the processor and are not logically
masked. Faults are injected into the following locations.

« RF (Register File): Random register in the RF;

« MDU (Multiply-divide Unit): Randomly select a high or
low output register of the MDU;

« MEM_PRE_DATA (Memory Data, Pre): Data input to
the memory stage (only used if doing a store);

« MEM_PRE_ADDRESS (Memory Address, Pre): Ad-
dress input to the memory stage;

« MEM_POST (Memory, Post): Output of the memory
stage;

« WB (Write Back): Value written back to the register file;

« WB (Write Back “Address”): The location in the register
file that data should be written to is changed (i.e. the
correct data is written to the wrong place);

o ALU (Arithmetic Logic Unit): Output of the ALU. (This
does not impact the output of the MDU but rather it
impacts the value sent to the MEM stage and operand
forwarding);

o CONTROL_FLOW (Control flow registers): The simula-
tion is halted and a control flow error is recorded;

« EXCEPTION (Exception Handling): If an error occurs in
the exception handling hardware, the simulation is halted
and an exception error is recorded;

o INSTRUCTION_READ_ADDRESS: The address of the
instruction which is fetched from memory;

¢ INSTRUCTION_TYPE: The instruction itself is modi-
fied, potentially causing either the instruction opcode,
registers, or immediate values to be incorrectly decoded;

« MEM_BP_VAL (Memory Bypass Value): The value from
the memory stage which is forwarded to the ALU stage;

e PC (Program counter): The program counter, indicating
the instruction which is next in the program flow;

These locations are shown in the pipeline diagram in Fig. 1.
Faults are injected before each cycle of execution either
randomly from a probability table or at specified locations,
depending on the fault injection mode. For each fault, we can
track when it is injected, how it spreads throughout the system,
and if/when it gets masked or quashed (corrected).

In order to accurately compute the cross-section we need to
compute how many registers contribute to each fault injection
location. To do this, and to eventually allow for comparison
with a beam test, we analyzed the HERMES microproces-
sor [37], which is a MIPS 4KC based processor that has dual
redundant processor pipelines and triple redundant configura-
tion. This allows for an SEU to be localized to a particular part
of the processor. First, all the registers in the dual redundant
pipeline were listed and attributed to one of the fault injection
locations above. This allows us to capture the impact registers
that are not directly modeled in an architectural simulator.
We choose to disable the caches to simplify the modeling.
This gives a model that can be correlated to future beam tests
of HERMES. The HERMES processor does contain buffers
for the caches and bus I/O queues, which use custom self-
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correcting TMR flip-flops so they are correct in the event
of a DMR recovery. We modeled these as latches whose
cross-sections would be almost equivalent to a FF. For the
purposes of this paper, we added parts of the processor that
are protected in TMR so that the results will be representative
of a typical processor. However, details of the bus protocol,
the co-processor, and the division operation were not modeled.
Additionally, caches are disabled and the simulation is stopped
after exception handling and control flow errors. In Table
1, we give the number of register bits that contribute to
the cross-section of each fault injection location, representing
the number of physical bits in our processor (as opposed to
number of bits in our simulation registers). This information,
not usually provided by other fault simulators, is needed
to eventually calculate the cross-section. For the MDU, the
register count is multiplied by the number of cycles the MDU
is active for as a detailed MDU is not modeled.

To summarize the main differences between the MIPS SST
model and HERMES:

o SST lacks a TLB, but the TLB can be turned off in HER-
MES, removing its cross-section for correlation purposes;

o The SST model does not perform cache request coalesc-
ing;

e The SST model does not have the recovery pipeline
stage which is only used in HERMES during a soft-error
exception.

This case study specifically looks at an integer matrix-
matrix multiply benchmark and a quicksort benchmark [38].
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to faults with correct execution percentages shown beneath.

Location Bit Location Bit
ALU 64 CONTROL 52
INST_ADDR DATA 40 INST_ADDR CTRL 16
INST_TYPE DATA 32 INST_TYPE CTRL 5
MDU DATA 233 | MDU CTRL 122
MEM_POST DATA 160 | MEM_POST CTRL 8
RF DATA 992 | RF CTRL 5
MEM_PRE_ADDR DATA | 203 | MEM_PRE_ADDR CTRL | 48
MEM_PRE_DATA DATA 256 | MEM_PRE_DATA CTRL 8
MEM_PRE_ADDR BYTE | 16 MEM_PRE_DATA BYTE 23
MEM_BP_VAL DATA 32 WB 32
PC 64

TABLE I: The number of register bits contributing to each
fault injection location is given. DATA errors result in a single
bit being flipped and CONTROL errors result in all bits being
randomized. Byte errors result in eight bits being randomized.

To demonstrate the versatility of the simulation infrastructure,
the same benchmarks are implemented [39] in different ways:

« Matrix-Matrix Multiply

— Simplex: A standard matrix multiplication of two
12x12 32-bit unsigned integer matrices using a triple-
nested loop.

— Dual Modular Redundancy (DMR): The operations
in the innermost loop are duplicated and results are
compared. If the outputs do not match, the computation
is performed again, so that results can be voted.

— Triple Modular Redundancy (TMR): Each multiplica-
tion operation is completed three times and a bitwise
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majority vote determines the output. The load operation
for the multiply is also triplicated to ensure that the
registers are not shared.
— RD: The multiplication uses reduced-precision multi-
plication using 16-bit integers.
o Quicksort (gsort)

— Simplex: A standard integer recursive quicksort sorting
algorithm which sorts a list of 100 integers four times
(twice forwards, twice backwards)
— RD: The comparison uses reduced-precision 16-bit
integers
To explore the effect of compiler optimizations, each of these
variants is compiled with and without compiler optimizations
for a total of eight variations of the code. Code optimization
often focuses on three different types of optimizations: 1)
preferentially using local registers instead of cache memory
and 2) unrolling loops to reduce branching that could lose
performance on an improperly predicted branch, and 3) reusing
intermediate results, such as address offsets, to reduce re-
computation.

These optimizations can affect the radiation sensitivity of
the software in unexpected manners [40], [41]. If the registers
are more SEU sensitive than the cache, then it is possible
to increase the radiation sensitivity of the software by using
more registers. Likewise, avoiding branching hardware and
reusing computation, reduces the affect of SEUs and SETs
in the control and mathematical units. The performance of the
software can also affect the overall radiation sensitivity [41]. In
many cases, faster software is more resilient software, because
the radiation exposure is minimized. In this case, the optimized
code runs in about one quarter of the time of the unoptimized
code, so the radiation exposure is reduced by one quarter.
Because these results can increase and decrease the radiation
sensitivity of the software, the ability to quickly test these
different variations is helpful in determining which of these
issues will dominate the radiation sensitivity [41].

Each executable was run 384,000 times in SST on the MIPS
architecture model. Each simulation took between .4 and 1.6
seconds dependent on the compilation options and the fault
injection (e.g. an early fault injection could cause a crash and
cause the simulation to end very quickly). During each test
one SEU-type fault is injected into a fault location during the
execution. The timing of the injection is chosen randomly. The
fault location is weighted by the computed cross-section. The
execution was categorized into one of five states:

1) SDC (Silent Data Corruption): The program completes,
but the results are incorrect.

2) Terminated: The program failed to complete, which is
often from executing an illegal memory operation.

3) Timeout: The test’s execution time is more than four
times the expected execution time, which is often an
indication that the test is stuck in an infinite loop;

4) Stopped: Control Flow and Exception errors result in the
simulation being stopped. These errors are added to the
total failed error rate.

5) Correct: The program completes in the expected amount
of time without an error signal, and the results are correct.

Inverse of plotted failed bar.
The results of our fault injection study are shown in Fig. 6.

The different algorithmic variants of the basic benchmark
have a substantial effect on failure sensitivity. As expected,
the TMR and DMR versions eliminate any risk of MDU
faults and the RD version reduces MDU sensitivity by about
half. TMR/DMR also substantially reduces the risk of SDC
errors from other faults, while having less of an impact on
Terminated or Timeout errors.

Compiler optimization also impacts the failure sensitivity.
The greater use of registers makes the optimized version 3-
11x more susceptible (on a per-fault basis) to Register File
(RF) faults and up to 2x more susceptible to MEM_POST
faults. Overall, an individual fault is more likely to cause a
failure or SDC in the optimized versions. However, because
the optimized code runs so much faster, their susceptibility
over time is much less. These results show the versatility of
our tool and the type of data we can collect.

In addition to measuring the sensitivities of different failure
modes in registers, we can collect many other statistics, pre-
sented in Figs. 7-10 for only the matmat simplex program with
O3 optimizations. Fig. 7 shows how many instructions were
executed after a fault injection until the processor had some
sort of failure. Intuitively, injecting an SEU in the address of an
instruction or data load has an almost immediate impact. With
the exception of MEM_PRE_DATA, most injections cause
failure within about 100 instructions. This suggests that for
this benchmark, if an SEU is going to cause a failure, it will
do so quickly.

Fig. 8 shows how often we injected into a register that was
not actively being used. Since the register is not in active use
the fault had no affect on the program execution or processor
state. The PC and RF are always in use and are thus never
architecturally masked. With the exception of those registers,
every other register has a masking factor of .5 or more,
suggesting that SEUs in these registers can have no effect over
50% of the time. In future studies we can look at these masking
factors over numerous benchmark programs to observe if this
holds true to for other common algorithms.

Fig. 9 shows how often a fault gets masked through math
operation occurring in the natural program execution. This
can happen when only the most significant bits are used or
when something is multiplied by zero, etc. We note that for a
fault to be corrected, all the bits must be correct (even if the
least significant bits are in the noise and are thus unimportant
for “correct” program execution). Intuitively, math corrections
should rarely occur since the math operation needs to be
masking bits and the fault must be in the bits being masked.
RF fault are the most likely to be corrected since they are the
most likely to be immediately used in a math operation by the
ALU or MDU.

Fig. 10 shows how faults spread throughout the system.
Injections in some registers such as the instruction address
have an almost immediate impact on the program control,
causing a crash/exception almost immediately, so there are
not many additional faulted registers. On the flip-side, faults
in the register file usually affects data and not the control flow.
If the register is used in many other calculations the fault can
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Fig. 7: The average number of instructions after a fault
injection until the processor failed.
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Fig. 8: Fraction of injections into components which were not
in use during that injected clock cycle for matmatO3.

spread quickly, which then affects other registers used in other
calculations causing an exponential growth in the faults spread.

Using the data collected in fault injection for all the registers
combined with the register sizes in Table I, we can determine
the composite failure rate of the processor, shown in Fig. 11.
The composite failure rate is computed by taking a weighted
average of each register’s failure rate (weight is determined
by percentage of total bits represented by that register). This
gives us the probability of a failure from a random SEU within
any register in the processor.

With this probability we can calculate the cross-section in
a given environment using the per-bit cross-section and the
number of bits in the processor, presented in Fig. 11. This
is computed using a simple multiplication of the probability

T T T T
RF CONTROL INST ADDR MDU INST_TYPE MEM_BP
PC  MEM_PRE_| D MEM_POST ALU MEM_PRE_AWB_ADDR

1071

1072 4

1073 +

Fraction of Faults Corrected by Math

107 3

Fig. 9: Fraction of faults that were corrected through math
operations during normal program execution for matmatO3.
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Fig. 10: Average number of registers corrupted during program
execution after the fault injection for matmatO3.

of failure, per-bit cross-section and total number of bits in
the processor. We did this calculation using the Adams 90%
worst-case environment in an isotropic space environment.
Recall, the SEU rate of this environment was calculated in
section IV-A.

These calculations assume that the algorithm runs on an
infinite loop. We then scale these calculated cross-sections
based on program execution time (in number of clock cycles),
relative to the matmat simplex program and present those
results in Fig. 12. DMR and TMR versions of the matmat
perform worse in this scaled version because they they in-
crease execution time more than reducing the probability of
failure. On the flip-side, the O3 versions perform better since
they reduce execution time more than increasing the failure
probability. Interestingly, the DMR O3 gives the lowest failure
probability. This is likely because the DMR provides some
mitigation without increasing the number of execution clock
cycles drastically. Then, the O3 optimization flag is able to
make the most efficient use of these mitigations.

V. CONCLUSION

As computing systems become larger and more complex,
it becomes increasingly difficult, but important to model and
understand how faults induced by SEEs propagate. Faults may
get masked through natural flow of the program, or they could
sit idle and then cause havoc long after they first appeared in
the system. Understanding their behaviors will be essential for
developing future state-of-the-art mitigation strategies and will
help us better understand data collected through more typical
irradiation experiments.

We have extended upon fault simulation work by directly
correlating simulation registers with physical registers of a
actual hardware netlist and by allowing the injection rate of the
simulator to be dependent on radiation environment data. This
allows us to estimate cross-section rates based on the fault
injection results and environment. We have demonstrated a
multi-scaled framework for injecting, tracking and analyzing
faults in a micro-processor based system. Most of this frame-
work will eventually be made open-source and available to
the general community. We have incorporated physics based
calculations to estimate SEU and SET cross-sections by using
TCAD simulations using a chosen process technology and
logical/architectural masking effects can be calculated using
the circuit’s netlist. We have shown these results using the
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Adams 90% worse-case environment in an isotropic space
environment, but with the framework we have built, we
can estimate cross-sections in many other environments. The
collected SEU/SET and masking data can be used to drive fault
injection on high performance simulators, simulating the actual
hardware, where the fault can be monitored for disruptive
behavior.
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