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2 Complexity is Available

Advanced manufacturing provides ever expanding
design freedom & value
0 complex freeforms, internal structures, integration

Geometry

Engineered materials
0 gradients & microstructure

AM Ti6AI4V mirror w/ diamond turned electroless Ni
coating, Jared, ASPE, 2017

Sandia HOT
SHOT sounding
rocket launch

from Kauai Test
Facility, Hawaii

-
-1014*..marlr- 

Photo by Mike Bejarano and Mark Olona, Sandia Lab News

316L SS test structure for
LANL gas gun shot

316L SS HOT
SHOT top

cap on plate

CTH simulation of 250m/s
lattice impact



high throughput dogbone sample

3 Laser Powder Bed Fusion

3D Systems ProX 200

• CW ytterbium, single mode fiber laser

• 1070nm, 300W max power, 100pm dia.

• scan speed = 1.4m/sec

rotating powder roller

Ar backfill & cover gas flow

Part capabilities

O 140x I. 40x 1 00mm build volume

• 316L stainless steel

• 20-30µm diameter powder

o deposition rate —100mm3/min

o 105-106°C/s heating & cooling rates

powder fp ,
roller



4 But, Complexity Isn't Free

Features tied to requirements incur costs

AM material formation concurrent w/geometry

O want to predict part/material performance

O how to ID a bad art?

significant design margins and/or rigorous post-process inspection / validation

Understand mechanistic impacts on properties

o build process-structure-property relationships to predict margins &
reliability

o characterize stochastic response to design for uncertainties 

o provide scientific basis for qualification of AM metals for high
consequence applications

Quantify critical material defects & useful signatures

O D-tests, NDE, process monitoring, mod-sim

100 pm

17-4PH dogbone fracture surface

Requirements

Material
feedstock

Validation printed
final

Acceptance
qualification
certification

part acceptance

Control

Process
printing
machine

postprocessing

Standards

17-4PH dogbone porosity

elements of
qualification

Jared, Sci Tech and
Appl of Metals in 

AM, 2019



5 Lack of Process Control Produced Material Uncertainty in Early AM Metals

17-4PH parts from external vendor
0 analysis confirmed 17-4PH composition, but unexpected

microstructure

Sandia did not know
feedstock pedigree, machine, build environment, process inputs or
post-processing steps

Not-surprisingly, extensive material variability observed
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High Throughput Tensile Testing (Gen I)

Monolithic build w/110 dogbones
0 custom design per ASTM

Digital image correlation (DIC)

Necessary to rapidly capture material distributions
0 applicable for the lab & production

drop-in tensile tester

Salzbrenner, Journal of Materials Processing Technology, 2017

high throughput test sample w/ 120 dogbones,
lxlmm gage x-section

tensile test
w/DIC strain
field overlay

1.11,i75

IVA
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7 Stochastic Response of AM Metals

Defect dominated failure

o 3-parameter Weibull informs design threshold

o ductile dimples & shear rupture planes

o voids & lack-of-fusion boundaries are likely crack nucleation sites

How to capture efficiently & accurately?
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AMS spec for H900: modulus = 197 MPa, yield = 1172 MPa, UTS = 1310 MPa, strain at failure = 5%
failure at 2% elongation, SHT+H900



8 Size Effects
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. Tying Structure (Porosity) to Properties

Extensive work using computed tomography (CT)
O multiple potential metrics exist

o correlations are immature

Prediction of uniformly dispersed porosity fields is difficult

o behavior falls within an expected performance distribution
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■ Total volume of defects ( Vw)

■ Pore volume fraction (1/fract )

■ Spatial location of pores (x, y, z)

■ Total number of defects (N)

■ Total defects/length (N/L)

■ Average defect volume ( Vavg.)*

■ Average equivalent spherical diameter ( ESDavg.)

■ Average cross-sectional area ( a„g )*

■ Average nearest neighbor distance ( NNDavg. )*

Madison,
QNDE, 2018

;



10 Gross Defects Drive Performance Outliers

Failure initiates near large pores

Potential tolerance bound

- design requirements

o CT inspection

o process monitoring

Performance simulation represent power analysis & diagnostics tools

representing porosity as initial damage Johnson, Int J Fract, 201
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All data

20 40 60 80
Pore diameter (microns)

lx1x1Omm 316L SS tensile dogbone (left) from digital
volume correlation (DVC), gross porosity region (top right),

failure region (bottom right)

Kyle Johnson, David Moore



11 Monitoring Powder Reuse

Tracking powder size, morphology & EDS
composition w/reuse

O satellites & agglomerates increase

O observe highly spherical, ferrite particles

O increase in fines & reduction in larger particles

O collected over 30 reuses w/powder under Ar

Material properties remain stable

316L SS is a robust material for processing &
properties
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12 Machine Metrology is Critical to Assure Part Quality
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13 Process-Structure-Property Process Maps

Parameters
o 316L stainless steel

O laser power: 10-240W

o velocity: 50-2800mm/sec

o layer thickness: 30, 40p,m

o average powder diameter: 15, 25pm

O laser focus offset: -1.5mm below focus to +3.5mm above

Experiment forms
line scans, area pads, density cubes, HTT tensile, Charpy

Performance metrics
- surface finish, form error, density, tensile properties, Charpy toughness, microstructure

o where are optimal process settings?

20 la() 160 240 :;20 400 y [rnm/s1

Kruth, Rapid Prototyping Journal, 2008

The Influence of Process Variables on Physical and Mechanical Properties in Laser Powder
Bed Manufacturing
o Josh Koepke, MS Thesis, UNM Dept of ME, 2019



14 Line Scans

Substrates: bare plate, powder layer on 20 layer AM pad

o 60 lines on each substrate, 1.0 cm long

O power: 25-175W

o velocity: 250-2500mm/sec

Simplistic first step, but quick & informative

O capturing melt pool geometry via metallography

O useful to define nominal process boundaries for any material

o used to establish relevance of simple Rosenthal model

100 W, 250 to 2500 mm/s on pad

melt pool on plate, 100W, 1500 mm/s

o



1 5 Line Scans: Plate vs. Powder Layer on Pad

Key-holing

I 1

50 µ,m

Key-holing

on plate

powder layer on pad

Smooth Balling?

200

180 • •
160 Key-holing

"§-- 140

s- 120
• •

• 100
C

- 80

ro ▪ 60

40

20

0

•

•

•

Smooth

• •

Balling

• • • •

• • •

• • • •

• • • • •

500 1000 1500 2000 2500 3000

Laser Velocity (mm/s)

• Keyholing • Balling • Smooth

200

180

160

140

c) 80

• • •

Key-holing

500 1000 1500 2000

Laser Velocity (mm/s)

•

No connection

2500 3000

• Keyholing • Borderline keyholing • Regular Balling • No connection



16 Density Cubes

lcm cubes, 24 per plate

0 10 plates, power, velocity, focus offset, layer thickness, powder size, variation across plate

Bulk material measurements

O density (Archimedes)

o top & side surface form & finish

O microstructure: optical, EBSD

100.2W, 1500mm/sec 209pm PV form (left), top 13.5pm Sa roughness (center), side 9.98pm Sa roughness (right)
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60.1W, 300mm/sec 891pm PV form ((eft), top 73.8pm Sa roughness (center), side 38.1pm Sa roughness (right)
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18 Material Microstructures, 30pm Layer Thickness
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1 9 High-Throughput Tensile Properties

lx1x4mm gauge section, 10 or 25 dogbones/array

O five build plates

o varied power, velocity, powder diameter

o Gen2 HTT system

>500 dogbones tested

o density (Archimedes)

O surface roughness

o mechanical properties
UTS, YS, modulus, ductility

316L SS dogbone array with 25 dogbones

build plate w/ 20 arrays,
10 dogbones/ array

_
Heckman, Mat. Sci. Eng. A, 2020
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21 Process Understanding & Control Reduced Material Uncertainties

Controlling & logging part, build & powder cycles

• 316L stainless steel

O feedstock pedigree, build environment, process inputs, post-
processing, meta data

O print / test artifacts

Heuristic dependent
O restrictive

O time consuming

O expensive

Desire accelerated cycles
• tolerances & uncertainties

build plate w/process artifacts

E
100

0.1

• Old lens, 2017-18

- Lens upgrade, 2018-19

-600 tensile bars
27 arrays, 8 orders

1
Elongation, %

10 100

100
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• Lens upgrade, 2018-19
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Strength, M Pa



22 I Real-Time Machine Monitoring Reveals Process Perturbations

-30
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motion

captured hole
structure design
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lx1x5mm 316L SS column
w/support walls

2231
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melt pool motion, nominal settings

pCT reconstruction

Exploring multiple sensor signatures
O thermal, optical, acoustic

o two-color pyrometry explored here

o data management & analysis is critical

E

two color
pyrometer data
reconstruction



23 I Correlating Process Signatures w/Material Structures
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24 Material Reconstruction

part side
view

micro-computed
tomography

pCT grayscale
image stack

■

Adobe
Photoshop

batch processing
16bit > 8bit conversion

lossless filetype
conversion

FIJI

alignment a
registration
cropping

grayscale matching
autoleveling

image filtering
thresholding

aligned sa- segmented bitmap stack
white = material, black = air/void

MATLAB

part reconstruction

Interactive Data Language
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reconstruction
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Parallel Visualization Application

image processing
visualization
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the 10 a 20pm
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25 Data Management

Sharepoint site
• 5Gb storage
• project log — customer, project / program, part CAD files / drawings,

requirements, schedule
• part & process log file — build identifier, powder, reuse cycle, process

settings, process file name, notes
• as-printed build pictures

Machine computers (lab)
• machine & process build files
• process data — ARCS, in-situ sensor data (thermal, optical, acoustic)
• feedstock data — Aspex SEM image analysis, EDS composition

\\CEE\Projects\AM Defects \BuildData share folder
• >100Gb storage
• feedstock — powder data, rheology, specification, etc.
• part — CAD file, drawing, specs, build pictures
• process — build file, in-situ process data
• property — tensile, density, Charpy, hardness, corrosion, etc.
• characterization — metallography (optical, SEM, TEM, EBSD), metrology

(surface finish, geometry), computed tomography, functional testing

GRANTA
• feedstock, machine, process, material data
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Bradley Jared, Shaun Whetten, Jon Madison, Rick Karnesky



26 Qualification Tomorrow: Born Qualified

"Changing the Engineering Design & Qualification Paradigm"

0 leverage AM, in-process metrology & HPC to revolutionize product realization

° accelerating design to production

material / part
performance simulation

Data Analytics

process
simulation

AM 17-4PH tensile dogbone
(above) EL- stress-strain response

(below)

Predict

Measure

In-Situ
Measurements

Alinstante
Properties

Property
Aware

Processing
Process
Models

Exemplar
Models

Materials
Models

thermal history
during bi-directional

metal deposition

17-4PH dogbone
porosity

Allen Roach



27 Models Bridging Length Scales
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29 Abstract IIII

"Complexity is free" has been an oft-cited refrain during the recent renaissance of manufacturing,
typically referencing additive manufacturing (AM). To be sure, however, advanced manufacturing
techniques make complexity available as new materials, processes and part topologies are realized
enabling performance gains inaccessible through traditional means. Such gains will be discussed in
the context of laser-powder bed fusion (L-PBF). The development of physics-based engineered
controls and automation methodologies are preferred to satisfy requirements by optimizing process
performance, by minimizing output uncertainties, and by increasing product throughput.

Research on L-PBF will be presented to address these process complexities and performance
uncertainties. Initial material behavior mimicked an open loop state as properties varied widely and
proved difficult to anticipate. Work has since quantified important process-structure-property
relationships for powder feedstocks, laser settings and machine components. Machine improvements
and metrology procedures have also been developed, producing an increase in process consistency
and material confidence. Continued research is examining in-situ melt pool dynamics and exploring
advanced data analytic techniques (ex. machine learning) to correlate melt pool outliers to process
defects.


