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1 Introduction

Systems of chiral particles can exhibit a set of novel transport phenomena closely tied

to the anomalies of the underlying quantum field theory (QFT). These chiral effects can

considerably influence dynamics of a variety of systems from quark-gluon plasma (QGP)

in heavy-ion collisions to Weyl and Dirac semi-metals and attracted a lot of attention in

the literature, for review see [1–3].

Recently, it was suggested that some chiral effects can take place for photons and

other massless particles and quasi-particles with spin s > 1
2 , see e.g. [4, 5]. Particularly,

in a rotating gas of photons one may expect a separation of circular polarizations along

the angular velocity — the chiral vortical effect (CVE) of photons [5–8]. That generates

a non-zero magnetic helicity current of photons which is also related to the corrections to

the fermionic CVE in the axial current [9, 10]. This separation may affect the common

dynamics of microscopic and macroscopic helicities in chiral media leading to a new class

of instabilities, see e.g. [11–23]. However, while the corresponding total helical charge is

well-defined, the local helicity current

Kµ = εµναβAνFαβ (1.1)

is gauge dependent. This issue can be addressed if one finds a gauge-invariant and local

choice for the measure of the photon polarization transport.

The non-interacting Maxwell theory does have an infinite set of extra conserved gauge-

invariant currents sensitive to the polarization transport and known as zilches [24, 25].

The corresponding zilch charges count the difference between the number of right- and

left-handed photons weighted with an even power of their energy and summed over the

phase space. In [26] it was shown that the lowest zilch determines the chiral asymmetry in

the response of a chiral molecule to external electromagnetic (EM) fields and one can take

it as a gauge-invariant and local measure of the optical chirality. The general zilch current

possesses a contribution similar to the photonic CVE — the zilch vortical effect (ZVE),
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see [27, 28]. However, the relation between CVE and ZVE in systems of photons has not

been studied in the literature in details.

While the chiral effects in external electromagnetic fields are explicitly connected to the

axial anomaly, the microscopic origin of the chiral effects in rotating systems is still under

intense discussion, see e.g. [1, 2] and references therein. Indeed, vortical effects take place

even in the absence of EM fields when the expectation value of the axial current divergence

is zero, for a recent discussion see [29]. Moreover, the CVE in the axial current of fermions

at finite temperature is present in the limit of zero charge of constituents. This portion of

the fermionic CVE is suggested to originate in the mixed gravitational anomaly [30, 31] or

global gravitational anomaly [9, 10], although these conjectures are still under discussions,

see e.g. [5, 8, 32–34]. If the relation between the thermal part of CVE and the mixed

gravitational anomaly is used as a guidance [5, 27], the photonic CVE is also expected and

can be attributed to the axial anomaly of photons in an external gravitational field [35–38].

However, the foreseen relation between photonic CVE and ZVE is seemingly hard to fit in

the same picture unless a new class of anomalies exists for the zilch currents.

On the other hand, the origin of ZVE and its relation to CVE can be studied in the

semi-classical limit, in the framework of chiral kinetic theory (CKT). Then one may notice

that the anomalous chiral transport of fermions shares similarities with the spin Hall effect

and originates in the topological Berry phase. This relation between the fermionic anoma-

lous chiral transport and the Berry phase was first observed in terms of single particle semi-

classical action [39–41] and then generalized to chiral particles of arbitrary spin [4, 6, 42]

within the same approach. Thus, one may ask if ZVE has the same origin as CVE and is

related to topological phases arising in the CKT description allowing further discussion on

their anomalous nature. However, writing field-theoretical objects in the CKT terms re-

quires one to closely follow how the CKT appears from the underlying microscopic theory.

Such an identification between the kinetic theory and QFT attracted significant attention

recently. Using the Wigner-function formalism it was shown that the fermionic CKT in-

deed follows from the underlying theory and the current expectation values were identified

in the CKT terms correctly [43–49].

In this work, we utilize the same tools and show that the CKT of photons also arises

from the Wigner-function formalism. We consider a simple field theoretical calculation for

ZVE closely following [27] and identify a possible form of the general zilch current in the

semi-classical description. Then we introduce a “naive” CKT for photons and show that

the zilch current written in CKT terms gains the same ZVE contribution in this limit.

Strikingly, we find that the ZVE originates in the non-trivial topological Berry phase and,

in this sense, is similar to the CVE. We further review the basics of the Wigner function

description for gauge fields [50–52] and construct the Wigner function for photons in a

rotating system. The equations of motion (EOMs) of the Wigner function cannot fix it

completely and we utilize the QFT results to remove the arbitrariness. Using this Wigner

function we show that the CKT definition of the zilch current indeed corresponds to its

QFT definition and, in this way, support our CKT construction. Thus, we identify the

relation between vortical effects of photons in different observables and provide a basis for

further studies of the gauge field contribution to spin polarization phenomena.

– 2 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
7

Throughout this work we use the most-negative signature for the spacetime metric and

the convention ε0123 = −ε0123 = 1 for the Levi-Civita symbol.

2 Zilch currents and rotating thermal radiation

Let us start with a brief discussion of the zilch current definition and its properties [24, 25].

This current and the corresponding charge are originally introduced in [24] as non-covariant

3-dimensional objects constructed out of electromagnetic fields

JZ =
1

2

(
E × Ė + B × Ḃ

)
, Z =

1

2

(
B · Ė −E · Ḃ

)
, (2.1)

which are conserved on the free Maxwell equations

∂0Z + ∇ · JZ = 0 . (2.2)

The normalization is chosen in such a way that the corresponding charge Z involves dif-

ferences between number of right- and left-handed circularly polarized photons weighted

with photon energy squared when the theory is quantized [27]. One can notice that the

zilch charge and current are actually components of a rank-3 tensor

Z(3)
µνρ =

1

2

(
F̃ λ
µ ∂ρFλν − F λ

µ ∂ρF̃λν

)
, (2.3)

where F̃µν = 1
2ε
µνρσFρσ and the conservation (2.2) is equivalent to ∂µZ

(3)
µ00 = 0. As shown

in [25], in fact, one can introduce an infinite tower of higher-rank tensorial zilch currents

adding derivatives to the definition above. Then the general zilch current is given by

Z(s)
α1..αs =

1

2

(
F̃ λ
α1
∂α2 . . . ∂αs−1Fλαs − F λ

α1
∂α2 . . . ∂αs−1F̃λαs

)
(2.4)

and satisfies ∂α1Z
(s)
α1..αs = 0. Combining these zilch currents with other conserved quanti-

ties, a modified set of conserved currents (with the same charges) can be constructed and,

thus, the general zilch current is defined not uniquely.

In a large cylinder rotating with angular velocity Ω and being at equilibrium with

thermal radiation of photons one may expect a polarization transport due to photonic

CVE, see [4–6]. In this system the zilch current also has a non-zero expectation value [27]

giving a gauge-invariant measure of the chirality transport

Z(3)i
00 =

8π2T 4

45
Ωi . (2.5)

However, in this work we are interested in studying ZVE in CKT and it will be more

convenient to use a zilch definition with a higher degree of symmetry allowing to identify

the corresponding object in the single-particle language. A direct check shows that the fully

symmetric Lorentz tensor obtained from the zilch current is also conserved [28]. Thus, one

may introduce another set of conserved zilch currents ∂α1Z̄
(s)
α1..αs = 0 given by

Z̄(s)
α1...αs = F̃λ{α1

↔
∂ α2 . . .

↔
∂ αs−1F

λ
αs} , (2.6)

– 3 –
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where we introduce an index symmetrization A{α1..αs} = 1
s!

∑
AΠ(α1..αs) with the sum

going over all permutations Π and two-way derivative
↔
∂ = 1

2

(→
∂ −

←
∂
)
. Notice here that

the non-trivial zilch currents must have odd ranks so s = 2k + 1 with k ∈ Z and we will

assume that in what follows.

Using the definition (2.6) we can derive the expectation value of the general sym-

metric zilch current
〈
Z̄

(s)
α1..αs

〉
in a rotating thermal radiation closely following [27]. The

equilibrium expectation value of an operator is given by

〈O(x)〉 = Tr [ρO(x, t)] (2.7)

where ρ = C exp [−β (H −M ·Ω)] is the statistical operator in a rotating system [53], H

is the Hamiltonian, M is the angular momentum operator, C is a normalization constant,

and β = T−1. Without loss of generality we take Ω along the z-direction and work in the

cylindrical coordinates x = (r, φ, z). We take the Coulomb gauge 1√
−g∂i
√
−gAi = 0 which

additionally results in A0 = 0 in the absence of sources in the Maxwell equations. Solving

the Maxwell equations we use that the system is invariant under translations in time, angle,

and along the cylinder axis with an elementary solution obeying Aiλωkm ∝ e−iωt+ikz+imφ,

where λ = ± corresponds to the two possible polarizations, ω is the frequency, m ∈ Z is

the angular quantum number, and k is the linear momentum along the z-direction.

We are interested in the polarization transfer and choose the basis of circularly polar-

ized waves given by the condition

F̃µν±,ωkm ± iF
µν
±,ωkm = 0 , (2.8)

where F̃µν = 1
2
√
−g ε

µνρσFρσ for the curvilinear coordinates with εµνρσ the usual Levi-Civita

symbol. In the Coulomb gauge the Maxwell equations reduce to a cylindrical wave equation

and can be directly solved for. One can explicitly check that the harmonics satisfying (2.8)

and the Maxwell equations are given in terms of Bessel functions and read

A±ωkm =
1√
2k⊥


− im

r Jm(k⊥r)∓ ik
ω
∂
∂rJm(k⊥r)

1
r
∂
∂rJm(k⊥r)± mk

ω
Jm(k⊥r)

r2

∓k2⊥
ω Jm(k⊥r)

 e−iωt+ikz+imφ , (2.9)

where k2
⊥ = ω2 − k2 is the transverse/radial momentum, the subscript corresponds to the

sign in (2.8), and the overall factor is chosen in the standard way to lead to canonically-

normalized quantization relation. The boundary conditions may result in quantization of

k⊥ but we are interested in the limit of an unbounded space and k⊥ is continuous. As

usual the full set of harmonics form a complete orthonormal basis∫
d3x
√
−g gij Aiλωkm(t,x)Aj,?λ′ω′k′m′(t,x) = −4π2δλλ′δmm′δ(k − k′)

δ(k⊥ − k′⊥)

k⊥
, (2.10)

where the delta functions on the r.h.s. correspond to the choice of cylindric coordinates in

the momentum space. Thus, using the general solution of the Maxwell equations we can

– 4 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
7

write the photon field operator as

Ai =
∑
λ,m

∫ ∞
0

k⊥dk⊥
2π

∫ ∞
−∞

dk

2π

1√
2ω

[
aλωkmA

i
λωkm(t,x) + a†λωkmA

i,?
λωkm(t,x)

]
, (2.11)

where aλωkm and a†λωkm are the creation and annihilation operators satisfying the canonical

commutation relation[
aλωkm, a

†
λ′ω′k′m′

]
= 4π2δλλ′δmm′δ(k − k′)

δ(k⊥ − k′⊥)

k⊥
.

Now we can calculate the expectation value
〈
Z̄

(s)
α1..αs

〉
in a rotating system in the thermal

equilibrium. If the vacuum is defined in the non-rotating laboratory frame (for a static

observer), then applying (2.7) we find

〈a†λ′ω′k′m′aλωkm〉 = 4π2 fB(ξ) δλλ′δmm′δ(k − k′)
δ(k⊥ − k′⊥)

k⊥
, (2.12)

where fB(ξ) =
[
eξ − 1

]−1
is the Bose-Einstein distribution function for a rotating ensemble

and ξ = β (ω −mΩ) in cylindrical coordinates for a static observer. However, a rotating

relativistic system cannot be unbounded and one has to require that ΩR < 1. Thus, the

singularity in the distribution function must be regularized by the finite size effects on the

soft modes with k⊥ = ΛIR ∼ Ω. Following [53] we assume that the finite-size effects are

suppressed in the limit T � 1
R and focus on the leading contributions in powers of the

temperature, for an additional discussion see [27]. The expectation value of the normal

ordered zilch current can be expressed as〈
: Z̄(s)

α1..αs(x, 0) :
〉

=
∑
λ,m

∫ ∞
ΛIR

k⊥dk⊥
2π

∫ ∞
−∞

dk

2π
fB(ξ) zλωkmα1..αs , (2.13)

where zλωkmα1..αs is the value of (2.6) on a single harmonic (2.9). The zilch current is a Lorentz

s-tensor and its all-temporal-but-one-spacial component in the laboratory frame gives the

desired measure of the photon polarization transfer. After simple algebra one finds∑
λ

zλωkm30..0 = (−1)
s−1
2

4mωs−1

s

(
1 + (s− 1)

k2

ω2

)
Jm(k⊥r)J

′
m(k⊥r)

k⊥r
, (2.14)

and the value of the general rank-s zilch current can be explicitly calculated. On the

rotation axis (r → 0) this expression is non-zero only for m = ±1 and in the limit of Ω→ 0

there is no zilch current since the two contributions cancel. We are interested in the leading

linear term in Ω which reads〈
: Z̄

(s)
30..0 :

〉 ∣∣∣∣
r→0

= (−1)
s−1
2

(s+ 2)(s+ 1)

3s

Ω

π2

∫ ∞
0

dω ωs fB(βω) +O(Ω2) , (2.15)

giving the value of ZVE in the general symmetrized zilch current on the rotation axis for

a static observer, cf. [27].1

1We also notice here that our result for ZVE in the symmetrized zilch current obtained in QFT disagrees

with [28]. However, as we will see (2.15) is reproduced in the Wigner-function formalism along with the

correct ZVE in the non-symmetrized zilch current (4.26).
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3 Chiral kinetic theory

Let us now turn to a covariant formulation of CKT introduced in [54] and briefly discuss

the issues with the Lorentz properties of this theory. The fermionic case considered in [54]

can be readily extended to the general case of a massless particle with an arbitrary spin [4].

The decomposition of the full angular momentum of a relativistic massless particle

Jµν = xµpν − xνpµ + Sµν (3.1)

is ambiguous due to an arbitrariness in the definition of the spin part Sµν . To fix this

ambiguity one may introduce a frame vector nµ and require that pµS
µν = nµS

µν = 0 with

(n · p) 6= 0 constraining the spin tensor to have only spatial components in the particular

frame. Then Sµν is uniquely fixed and reads

Sµνn = λ ~
εµνρσpρnσ
p · n

, (3.2)

where λ is the particle helicity normalized to be ±1 in the case of photons. Here and in

the rest of the text we restore the powers of ~ working with the semi-classical expansion.

The physical quantities are expected to be independent of the frame choice. Thus,

changing the frame vector one has to modify the definition of the coordinate x to keep the

full angular momentum unchanged. This shift of the coordinate is nothing else but the side

jump [54–58] — an additional shift of the coordinate of a massless particle under a frame

change at first order in ~. Due to this shift the distribution function f is frame dependent

and the naive current pµf is not a Lorentz vector. However, it was shown in [54] that

jµ = pµf + Sµνn ∂νf (3.3)

is a 4-vector to linear order in ~ since the frame dependent shift in f cancels by the

modification of Sµνn .

Now we easily construct a tensor with the right dimensionality and Lorentz properties

of the general zilch current density in the phase space

z(s,λ)
α1..αs = λ(−1)

s+1
2 p{α1

pα2 . . . jαs} , (3.4)

where the normalization is chosen to match with the zilch defined in QFT. In equilibrium, a

system of photons is described by f(ξ) with ξ = βµp
µ + 1

2S
µν
n Ωµν in Cartesian coordinates,

where βµ is the temperature 4-vector satisfying T 2βµβµ = 1 and Ωµν = 1
2 (∂µβν − ∂νβµ)

is the thermal vorticity tensor, see e.g. [54]. Thus, the CKT zilch current in the laboratory

frame is given by a phase space integral of the single particle zilch (3.4) and reads

Z̄
(s)
30..0 =

1

~s
∑
λ

λ(−1)
s+1
2

∫
d4p

(2π)3
δ(p2) p{0p0 . . . j3} , (3.5)

where we impose the on-shell condition and restore powers of ~ in the definition of the

zilch. The equilibrium current is n-independent and, using the Schouten identity, we get

the leading terms in the ~ expansion

jµ = pµf(βνp
ν)− 1

2
λ ~ εµνρσpνΩρσf

′(β · p) +O
(
~2
)
, (3.6)

– 6 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
7

where the distribution function of photon gas is f(β ·p) = θ(β·p)fB(β·p)+θ(−β·p)fB(−β ·p)
and a term proportional to p2 is neglected since it does not contribute to the zilch current.

Finally, we find that on the rotation axis in the laboratory frame the general zilch current

is given by

Z̄
(s)
30..0

∣∣∣∣
r→0

= (−1)
s−1
2

(s+ 2)(s+ 1)

3s~s−1

Ω

π2

∫
dω ωsfB(βω) +O(Ω2) , (3.7)

where we used the fact that the only non-zero components of Ωµν are Ω21 = −Ω12 ≡ Ω
T

and β = 1
T . Thus, one finds that the symmetric general zilch current in a rotating system

derived in CKT agrees with the field theory result. Moreover, in the CKT formulation it

is related to the topological Berry phase through the side-jump term in the current and

the spin-orbit coupling in the distribution function which are proportional to Sµνn . This is

one of the main results of this paper.

4 Wigner function for photons

The Wigner-function formalism has been widely used to construct quantum kinetic theory,

see e.g. [43–49, 59–63]. This approach is particularly convenient to study spin-polarization

phenomena due to system rotation and external EM fields, and allows us to describe non-

equilibrium effects. However, most recent considerations are focused solely on the fermionic

degrees of freedom. In this section we will follow the early works [50–52] and construct the

Wigner function for photons in a rotating system. Using this Wigner function, the CKT

definition of the zilch current can be obtained directly. It will also allow us to re-express

the relation of ZVE and CVE to the Berry phase in terms of the underlying many-body

QFT and connect the CKT and QFT calculations of the previous sections.

We start by defining a gauge-dependent Wigner function of a spin-one Abelian gauge

field

Wµν(x, p) =

∫
d4y

(2π~)4
e−

i
~p·y〈: Aµ

(
x+

y

2

)
Aν
(
x− y

2

)
:〉 , (4.1)

where the Wigner representation is used. If the interactions are ignored the Wigner function

satisfies the same EOMs as the free fields and in the Lorenz gauge ∂µA
µ = 0 they read(

p2 − ~2

4
∂2

)
Wµν(x, p) = 0 , (4.2)

~ p · ∂Wµν(x, p) = 0 . (4.3)

To satisfy the gauge constraint we also require that(
pα − i

~
2
∂α

)
Wαµ(x, p) =

(
pα + i

~
2
∂α

)
Wµα(x, p) = 0 (4.4)

and fix the residual gauge freedom for free Maxwell theory with

nαW
αµ(x, p) = nαW

µα(x, p) = 0 , (4.5)

– 7 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
7

where nµ is taken to be a constant time-like vector satisfying n2 = 1. Notice that for free

EM fields the Lorenz gauge condition is, for instance, fully compatible with the Coulomb

gauge and nµ is introduced to classify a family of such gauges.

We study these equations by employing an expansion in powers of ~ which is equivalent

to a gradient expansion. Hence, we search for a solution of the type

Wµν = W (0)µν + ~W (1)µν + . . . . (4.6)

The leading order EOMs take the form

p2W (0)µν(x, p) = p · ∂W (0)µν(x, p) = 0 . (4.7)

Additionally, enforcing the gauge-fixing constraints we have to require

pαW
(0)αµ(x, p) = pαW

(0)µα(x, p) = nαW
αµ(x, p) = nαW

µα(x, p) = 0 . (4.8)

To proceed further one has to assume the form of the leading order Wigner function

W (0) which is not uniquely determined by the EOMs and constraints. Here we use an

ansatz motivated by a field theory calculation of (4.1) for free fields in the case of a static

uniform gas

W (0)µν(x, p) = Pµνn F (x, p)δ(p2) , (4.9)

where Pµνn = −gµν + pµnν+pνnµ

p·n − pµpν

(p·n)2
is an on-shell gauge projection operator and the un-

specified distribution function F (x, p) satisfies the Boltzmann equation p·∂F (x, p)δ(p2) = 0.

Note that W (0)µν in general does not need to be symmetric but we expect the anti-

symmetric terms to go to zero in the uniform limit. At first order in ~, the EOMs read

p2W (1)µν(x, p) = p · ∂W (1)µν(x, p) = 0, (4.10)

with W (1)µν additionally constrained by

pαW
(1)αµ(x, p)− i

2
∂αW

(0)αµ(x, p) = 0 , (4.11)

pαW
(1)µα(x, p) +

i

2
∂αW

(0)µα(x, p) = 0 , (4.12)

nαW
(1)αµ(x, p) = nαW

(1)µα(x, p) = 0 . (4.13)

In order to construct the general W (1)µν we first write the Wigner function as a sum of

a symmetric and antisymmetric part W (1)µν = W
(1)µν
S + W

(1)µν
A . Then the Lorenz gauge

constraints are equivalent to

pαW
(1)αµ
S = 0 , pαW

(1)αµ
A =

i

2
Pµαn ∂αF (x, p)δ(p2) . (4.14)

As we will discuss later the symmetric part of the Wigner function cannot contribute to

the polarization transport and, thus, we focus solely on W
(1)µν
A . Without loss of generality

we can parametrize the antisymmetric part of the Wigner function satisfying (4.13) as

W
(1)µν
A = εµνρσ nρHσ(x, p)δ(p2) , (4.15)

– 8 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
7

where Hσ is a generic function such that H · n = 0. Substituting (4.15) into (4.14) one

finds that

εµνρσ pνnρHσ(x, p)δ(p2) = − i
2
Pµαn ∂αF (x, p)δ(p2) (4.16)

and, in the general case,

Hµ(x, p) = − i
2
εµνρσ

pνnρ

(p · n)2
∂σF (x, p)− i p̃µ

(p · n)2
U(x, p) , (4.17)

where p̃µ = pµ − nµ(p · n) is a projection of pµ transverse to nµ, U is a free function

unconstrained by the EOMs, and we have used p ·∂F (x, p) = 0. Thus, the general solution

for W
(1)
A can be written as

W
(1)µν
A = − i

2

p̃[µP
ν]α
n

(p · n)2
∂αF (x, p)δ(p2) + iεµνρσ

pρnσ
p · n

U(x, p)δ(p2) , (4.18)

where a[µbν] = aµbν − aνbµ.

As we will see, the free function U contributes to the zilch current and the Wigner

function should be further constrained. However, this problem can be partially resolved if

one requires gauge invariance of the Wigner function defined for the field strength tensor

Y µνρσ(x, p) = ~2

∫
d4y

(2π~)4
e−

i
~p·y
〈

: Fµν
(
x+

y

2

)
F ρσ

(
x− y

2

)
:

〉
(4.19)

which satisfies
(
pµ − i

2~∂µ
)
Y µνρσ(x, p) =

(
pρ + i

2~∂ρ
)
Y µνρσ(x, p) = 0. Notice that we

analyze Y µνρσ order-by-order in ~ similarly to (4.6) and rescale it with ~2 to link the

gradient and semi-classical expansions. The zeroth-order contribution to Y µνρσ can be

readily obtained from (4.9) and is given by an explicitly gauge-invariant expression

Y (0)µνρσ(x, p) = −p[µgν][σpρ]F (x, p)δ(p2) . (4.20)

Turning to first order, we decompose Y µνρσ into two parts which are symmetric and an-

tisymmetric under a simultaneous exchange µν ↔ ρσ. Similar to W
(1)
S we leave Y

(1)
S

unconstrained since it gives no contribution to the polarization transport and focus on the

antisymmetric part

Y
(1)µνρσ
A (x, p) = p[µW

(1)ν][σ
A pρ] +

i

2
∂[ρW (0)σ][νpµ] − i

2
∂[µW (0)ν][σpρ] . (4.21)

Substituting the gauge-dependent Wigner functions (4.9) and (4.18) into (4.21) we find

Y
(1)µνρσ
A (x, p) = − i

2

(
p[µgν][σ∂ρ] − p[ρgσ][ν∂µ]

)
F (x, p)δ(p2)

+i

(
p[µnν]p[σ∂ρ]

p · n
− p[ρnσ]p[ν∂µ]

p · n

)
F (x, p)δ(p2)

+ip[µεν]λγ[σpρ] pλnγ
p · n

U(x, p)δ(p2) . (4.22)

The second and third line in the expression above are explicitly gauge dependent through

nµ and potentially U(x, p). From now on we assume global equilibrium, set F = F (β ·
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p), and notice that, on the EOMs, βµ(x) satisfies the conformal Killing vector equation

∂µβν + ∂νβµ = gµν φ with φ an arbitrary scalar function, see e.g. [49]. After some algebra

one finds that for U = 1
2ε
µνρσ pρnσ

p·n ΩµνF
′(β · p) + U0 we have a gauge-invariant result

Y
(1)µνρσ
A (x, p) = − i

2

(
p[µgν][σ∂ρ] − p[ρgσ][ν∂µ]

)
F (β · p)δ(p2)

+ip[µΩν][σpρ]F ′(β · p)δ(p2) + iεµνλ[σpρ]pλU0(x, p)δ(p2) , (4.23)

where U0 is the nµ-independent part of U .

Using the Wigner function up to first order in ~ one can derive the leading contribution

to the zilch current (2.6) and its expectation value can be written as

〈
: Z̄(s)

α1..αs :
〉

= 2
(−1)

s+1
2

~s−1

∫
d4p

[
p{α2

..pαs
](

pα1}U + εα1}µνσ
pµnν

p · n
∂σF (β · p)

)
δ(p2) .

(4.24)

This expression exactly agrees with the CKT definition of the zilch current while the

expression in the brackets can be related to the CKT current (3.3) introduced in the

previous section for U0 = 0,

1

2(2π)3~

(
jα
∣∣
λ=+
− jα

∣∣
λ=−

)
' pαU + εαµνσ

pµnν

p · n
∂σF (β · p) , (4.25)

where F (β · p) = 1
(2π)3

[θ(β · p)fB(β · p) + θ(−β · p)fB(−β · p)] . Thus, one may expect that

the solution U0 = 0 is the one corresponding to our setup. Indeed, with this assumption

we reproduce the results for ZVE in the general zilch current calculated in the field theory

as a function of s matching the Wigner-function formalism to an infinite set of expectation

values. The physical meaning of U is one half the difference between distribution functions

f± for the two polarizations expanded to first order in gradients and, under this assump-

tion, we completely reconstruct the CKT calculation in the Wigner-function formalism.

Strikingly, the parameter of the additional gauge symmetry nµ plays the role of the frame

vector for the spin of photons further clarifying its physical meaning.

As an independent check of the Wigner function formalilsm, we perform a calculation

of another known QFT object. Substituting the Wigner function (4.21) into the original

zilch current (2.3) and using (4.18) one finds〈
: Z

(3)3
00 :
〉 ∣∣∣∣

r→0

= − 2

~2

∫
d4p p{0

(
p3}U + ε3}µνσ

pµnν

p · n
∂σF (β · p)

)
p0 δ(p

2) =
8π2T 4

45~2
Ω ,

(4.26)

where we set U0 = 0 and work in the laboratory frame. Thus the expectation value of the

zilch current precisely agrees with the result of [27] obtained with the formalism described

in section 2 with the choice U0 = 0. One also may wonder what is the expectation value

of helicity current Kµ and, using the Wigner function (4.18), we find

〈
: Ki :

〉 ∣∣∣∣
r→0

=

[
−2

∫
d4p

(
2piU + εiνρσ

pνnρ

p · n
∂σF (β · p)

)
δ(p2)

]
n=n0

=
4

9
T 2Ωi ,
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where nµ0 = (1, 0, 0, 0) corresponds to the Coulomb gauge. We notice here that the struc-

ture in the helicity current differs from the CKT current arising in both definitions of zilch

indicating its gauge dependence. We leave the further investigation on the gauge depen-

dence of the photon CVE and its relation to the corrections in the fermionic CVE for future

studies.

Finally, in order to clarify the physical meaning of U0, we calculate the zilch charge

density of a non-rotating photon gas in a grand canonical ensemble. The conservation of

zilch as well as helicity allows us to introduce a chiral chemical potential to the distribution

function in (2.12), namely, fB(ξ) is replaced with fB(ξλ) with ξλ = β(ω − λµ). Thus,

from (2.13), we obtain

〈
: Z̄

(s)
0..0 :

〉
=

(−1)
s+1
2

~s

∫
d3p

(2π)3
ωs−1 [fB(ξ+)− fB(ξ−)] , (4.27)

where we have restored the ~ dependence. By comparing with (4.24) and considering the

case µ� T , we find that U0 = −(βµ/~)F ′(β ·p). Thus, U0 represents the effects of a chiral

chemical potential of photons. Therefore, our setup with U0 = 0 corresponds to a photon

gas with zero helicity and zilch charge densities at equilibrium.

5 Summary

In this work we have studied the chirality transport in a rotating gas of photons and

compared its manifestation in the helicity and zilch currents — the CVE [5] and ZVE [27].

We use the freedom in the definition of the general zilch current to introduce a set of higher

zilches symmetric in their indices in section 2. Using this additional property we identify

the corresponding single particle zilch and calculate the full zilch current in a rotating

gas of photons within the CKT description introduced in section 3. In this framework

we find that ZVE is related to the topological Berry phase in the same way as the other

chiral effects both in the case of photons and other massless particles with spin. The ZVE

contribution to the general zilch current obtained from the semi-classical description (3.7)

agrees with an explicit field theory calculation (2.15). We also notice that the universality

of the CKT construction [4] indicates that the zilch currents can be introduced for particles

with an arbitrary spin and there is a family of ZVEs, including ZVE for fermions which has

not been discussed in the literature. Furthermore, the relation between the zilch current

density in the phase space (3.4) and the CKT current obtained in this work makes one

expect a new contribution to the zilch current — a zilch Hall effect.

This common origin of ZVE and CVE gives further insight into the relation between

the vortical responses in chiral matter and anomalies of the underlying theory. Indeed,

if the thermal part of photonic or fermionic CVEs is related to the corresponding mixed

gravitational anomaly or global gravitational anomaly, a similar relation should be expected

in the case of zilch currents indicating a novel class of anomalies for the zilch currents.

The CKT used in section 3 is constructed from a single particle semi-classical action,

see e.g. [4], and the identification of the zilch current is based on its properties under

Lorentz transformation. This may seem unsatisfactory if one is interested in how the CKT
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arises from the microscopic theory. To address this issue in section 4 we have constructed

the Wigner function for a rotating photon gas for the first time and used it to derive the

expectation values of the helicity and zilch currents. We have explicitly seen how the CKT

single-particle currents enter in the phase space integrals in the Wigner-function formalism

and in this way we support our “naive” construction in section 3. The Wigner-function

formalism also allows us to relate the CVE and ZVE contributions with the Berry phase

in the QFT terms.

The Wigner function cannot be solved solely from the EOMs and one has to addi-

tionally constraint it from QFT. In (4.9) we have used the ansatz for the photon Wigner

function in a static uniform gas to fix the leading contribution. At first order in ~ the

Wigner function involves the term (4.18) which is transverse both to the momentum pµ and

gauge fixing vector nµ and is proportional to an unconstrained function U(x, p). However,

considering the gauge-invariant Wigner function Y µνρσ allows to fix a part of U required to

remove the n-dependence from (4.22). Comparing the results for the zilch currents we have

found that the remaining free part U0 should be set to zero for the agreement between the

results for ZVE in section 2 and section 4. Constraining this last term we have obtained

the fully defined photon Wigner function (4.23) and found that ZVE in the original zilch

current Z precisely agrees with the results of [27].

Curiously, the intermediate expression for the general symmetrized zilch current shows

that the gauge fixing vector nµ is, in fact, the frame vector introduced in the CKT to fix

the definition of the spin tensor. This is not surprising since the full angular momentum of

photon cannot be decomposed into orbital and spin parts in a gauge-invariant way. This

identification was not presented in the literature before to the best of out knowledge.

The helicity transport of guage fields is especially interesting in light of experimental

measurements of hadron spin polarization in off-central heavy-ion collisions at RHIC and

LHC [64–66]. The final state polarization follows the spin polarization of quarks and

gluons in the QGP which, in turn, is in correspondence with the helicity transport due

to the chiral effects. So far, in order to describe the experimental data, most works have

considered only spin-half degrees of freedom, see e.g. [67–75]. However, the contribution

of spin-one particles should be also taken into account. The CVE and ZVE of gauge fields

may shed light on their contribution to the spin polarization of QGP and require further

investigation. Finally, the Wigner function computed here may serve as a starting point to

develop relativstic hydrodynamics with spin degrees of freedom for vector particles [76–82].
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