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Abstract—This paper presents an automated blade collision
detection system for use on wind turbines, toward the goal of sup-
porting monitoring and quantitative assessment of wind energy
impacts on wildlife. A wireless, multisensor module mounted at
the blade root measures surface vibrations, and a blade-mounted
camera provides image capture of colliding objects. Using sensor
data recorded during field testing of the system on an operational
wind turbine, we present the development, training, and testing
of automated detection algorithms for collision detection using
machine-learning approaches. In particular, we compare the
use of a new two-step, anomaly-based classification algorithm
with conventional adaptive boosting and amplitude-based detec-
tion techniques, where the two-step approach improves average
precision for the experimental data set. This integrated sensor
and classification systems demonstrates a new approach for
automated, on-blade collision detection for wind turbines, with
broad utility across structural health monitoring applications.

Index Terms—Autonomous sensors, wind energy, sensor sys-
tems at the edge

I. INTRODUCTION

Wind turbines serve an increasing proportion of total energy
generation, with expanded onshore and offshore installations
proceeding worldwide [2], [3]. Continued construction, ex-
pansion, and operation of wind energy installations must be
managed in conjunction with effects on local and migratory
wildlife, specifically bird and bat species that may be af-
fected by wind turbine collisions [4]-[6]. Ongoing efforts
to measure and mitigate wind turbine impacts on wildlife
include improved preconstruction siting and postconstruction
monitoring, development of wildlife deterrent technologies
and real-time curtailment strategies, and improved quantitative
assessment of wildlife mortality due to wind turbines [7]-[10].
Current automated monitoring solutions leverage cameras on
the ground [11] or mounted on the wind turbine tower for
recognition of nearby birds [12], and can include audible deter-
rents or automated curtailment of turbine operation. However,
these approaches cannot provide physical verification of blade
strikes or images of colliding objects, both of which are critical
for quantitative assessment of wildlife impacts. An alternative
approach is the use of blade-mounted vibration sensors [13],
which have been demonstrated for recording surface vibrations
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Fig. 1. Overview of a collision detection and imaging system for wind
turbine blades. multisensor modules are mounted at the root of each blade
to measure vibration, providing input to classification processes used in
automated collision detection and image capture of colliding objects.

but to date lack the integrated signal processing and automated
collision detection required for long-term monitoring.

Toward the goal of long-term, automated blade strike mon-
itoring, we have developed an intelligent, multisensor system
designed for installation on a wind turbine blade to provide
real-time collision detection along with image capture of col-
liding objects. The sensor system comprises an accelerometer,
gyrometer, and contact microphone to measure vibrations from
the blade surface near the hub, and a camera focused down-
blade enables video and still image recording along the blade
length. Our approach combines physical sensors with trained
classification algorithms for automated collision detection.

In this paper, we present an overview of the integrated
blade-mounted hardware system, sensor signal processing
and feature extraction, development of automated collision
detection algorithms using machine-learning approaches, and
training and validation using experimental data. The approach
is demonstrated using data recorded from multiple blades of
an operational wind turbine during field testing of the sensor
system. Provided data analysis includes the comparative as-
sessment of multiple classification algorithms, including naive
threshold-based classification and two variants of a boosted
ensemble classifier, with and without anomaly detection.

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of the multisensor system de-
signed for real-time, on-blade collision detection monitoring;
Section III describes experimental procedures used for data
collection on an operational 1.5-MW wind turbine and summa-
rizes recorded data sets; Section IV describes the development,
training, validation, and comparison of automated collision
detection classifiers; and Section V concludes the paper.
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II. SENSOR SYSTEM OVERVIEW

A high-level overview of the automated collision detection
system is provided in Fig. 1. A multisensor module is mounted
at the root of each wind turbine blade to continuously record
local vibrations along multiple axes using accelerometers,
gyrometers, and a contact microphone, and a complementary
metal-oxide semiconductor (CMOS) imager aligned along the
leading edge of the blade towards the tip, is used to capture
images of colliding objects. Sensor data can be used for
automated collision detection using a trained classifier to
trigger recording of the most recent buffered image frames,
used for offline analysis, such as species identification.

The primary sensor system is designed for mounting on
the surface of each wind turbine blade at the root, near
the central hub, where surface vibrations are recorded by
multiple transducers. Vibration sensors include a commercial
MEMS inertial measurement unit (IMU), comprising three-
axis accelerometer and three-axis gyrometer, along with a
piezoelectric contact microphone coupled to a custom analog
front-end (AFE) input circuit for signal conditioning. A custom
printed circuit board (PCB) is used for implementing the
AFE, power conditioning for all root module components,
IMU interfacing, and a stand-alone microcontroller providing
analog-to-digital conversion of the contact microphone signal,
as well as all control and digital data flow among sensors.

The system is managed locally by a commercial single
board computer (SBC), which interfaces with the custom PCB
and with a CMOS imager module; the sensor interface PCB is
designed as a daughter board to the SBC to minimize volume.
The SBC (Raspberry Pi 3B+) is also used for nonvolatile
sensor data logging from the microcontroller, wireless commu-
nication, and continuously buffering the CMOS imager data
stream to save recordings of detected collisions when triggered
by the collision detection algorithm.

Each of three identical wireless sensor systems was mounted
in a weather-proof enclosure and validated in a laboratory
setting prior to use in the field.

III. SYSTEM DEPLOYMENT AND DATA COLLECTION

The collision detection system was deployed for multi-day
field testing in July 2019 on an operational wind turbine at
the National Wind Technology Center, located at the National
Renewable Energy Laboratory’s Flatirons Campus in Boulder,

Fig. 2. A multisensor module designed for use on wind turbine blades
incorporates a custom printed circuit board (PCB) for data capture from
inertial measurement unit and blade-mounted contact microphone, a single-
board computer for recording and wireless communication, and a CMOS
image sensor for imaging along the length of the wind turbine blade.

Fig. 3. A) A collision detection module is mounted at the root of the wind
turbine blade, near the hub, alongside a blade-mounted contact microphone;
the integrated CMOS imager field of view is aligned toward the blade tip;
and, B) one module is mounted on each of three blades on a GE 1.5-MW
wind turbine for data collection and system validation.

CO. This section details the installation and experimental
data collection performed using the developed sensor system,
including validation, background vibration recording across
multiple operating conditions, and recording during surrogate
blade collisions.

A. System Installation

Sensors were installed on the DOE 1.5 turbine, a GE 1.5-
MW three bladed wind turbine, with a rotor diameter of
approximately 77 m and a hub height of 80 m. The mounting
location for each sensor module was approximately 1.5m
distal to the connection point of the blade to the central hub. A
photograph of an installed sensor module is shown in Fig. 3,
where each module was installed with its camera view aligned
parallel to the leading edge of the blade and focused toward
the blade tip. The IMU coordinate system is annotated for use
throughout the paper. As shown, the contact microphone was
installed next to the root module with direct contact to the
blade. A small dome was placed over the contact microphone
for wind protection. Sensors were affixed using two-sided
adhesive (3M VHB), which provides secure but reversible
attachment for multiday testing.

A rail-mounted DC power supply was installed in the rotor
hub, on the rotational side of the slip ring. DC power lines
(24 V) run from this supply to each root module on the blades.
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Fig. 4. Surrogate projectiles, such as tennis balls, were launched into the
swept blade path of the operating wind turbine in order to simulate an avian
collision with the turbine blades. Projectiles were launched from a compressed
air cannon located on a nearby vertical personnel lift.

For sensor module communication and coordination, a wire-
less access point/router was installed in the internal nacelle
housing. Each of the root modules connected to the access
point over WiFi. The access point data connection routed to
the base of the tower via an Ethernet-over-fiber connection for
remote access and control of each of the installed on-blade
sensor modules.

B. Baseline Data Collection during Turbine Operation

For data collection and system validation, the sensor mod-
ules were installed on a GE 1.5-MW wind turbine, as described
previously. Each module was installed at the root of a wind
turbine blade, with the camera facing toward the tip, as shown
in Fig. 3. All modules were connected to a local, up-turbine
wireless network and accessible from the ground using a fiber-
optic data connection through the turbine tower.

For initial validation and to provide baseline noise measure-
ments, data were recorded from all on-blade sensor modules
in parallel for a variety of turbine operating conditions: this
includes both generating and idle rotations (blades rotating
with and without the generator engaged); individual blade
pitching (rotation about the blade spar axis); and, nacelle
rotations (yaw of the nacelle for orientating the turbine blades
into the wind). Data were retrieved remotely for review to
validate successful sensor module installation and operation
prior to projectile testing, including operation of the IMU and
contact microphone sensors on each turbine blade, as well as
video streams recorded by each on-blade CMOS image sensor.

C. Data Collection Using Surrogate Turbine Blade Collisions

To simulate blade strikes by avian or bat species in a
nonlethal manner, surrogate projectiles were launched into
the path of the rotating turbine blades. Projectile materials,
for these tests tennis balls and small-diameter potatoes, were
directed at the wind turbine from a compressed air cannon
located on an adjacent vertical personnel lift, approximately
30m above the ground; this experimental test setup is shown
in Fig. 4. For safety, the personnel lift was parked in a location
that made it impossible for operators to accidentally extend the

A.

B.

Fig. 5. Images from on-blade CMOS imager located within the root module.
Image A. demonstrates the field of view of the on-blade imager. Image B. is a
still frame from an automated recording capture triggered by the root module.
The surrogate projectile, a potato, is highlighted by the green box annotation.

basket into the rotor of the operating turbine. Test projectiles
were loosed either as individual units or in small batches into
the rotational plane of the wind turbine, allowing a collision
to occur where the blade strikes the projectile, simulating an
avian collision along the leading edge of the turbine blade.
Sensor data were recorded by all on-blade modules throughout
the testing. In addition to recorded sensor data, additional
parameters were recorded, including which blade was struck,
approximate blade position at impact, where on the blade
impact occurred, current wind turbine operating mode, and
projectile type.

D. Automated Camera Capture of Surrogate Blade Collisions

Each blade root sensor module contains a CMOS image
sensor aligned to view the blade area distal to the hub, toward
the blade tip. The function of this compact camera is to
have automated image capture of detected on-blade collisions,
which can be later reviewed for collision verification and
species identification. The image sensor interfaces with the
SBC, which provides a constant, 5s looping video buffer. If a
collision is detected, the 2.5 s buffered frames prior to the col-
lision are automatically saved, along with the 2.5 s of frames
following the collision detection; buffer and window sizes are
adjustable. Example images provide in Fig. 5 demonstrate the
image sensor field of view of along the blade length, and an
automatically recorded image of a surrogate collision.

E. Overview of Collected Data

The complete set of recorded on-turbine sensor data was
collected, saved, and used to develop a collision detection
algorithm (Section IV). Here we summarize the data set
generated during field testing of the integrated sensor system.

1) Wind Turbine Operational Modes: The data collected
can be categorically labeled by three different wind turbine
operational modes used during testing: stopped, idle spinning,
and spinning with generator engaged. A stopped turbine occurs
during instances with very low wind velocity, and the turbine
blade is not rotating; this can be observed as a near-zero slope
in y- and z-axis accelerometer data. Idle operation occurs
when there exists sufficient wind velocity for rotation, but
insufficient wind velocity and aerodynamic torque for the
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Fig. 6. Typical transient data recorded from a blade-mounted contact

microphone using the installed sensor module.

generator to engage and start producing power. Spinning with
generation occurs when the turbine is rotating at sufficient rate
of rotation to produce power and can be characterized by a sine
wave signal in the accelerometer y- and z-axes. All operational
mode data sets are useful for baseline noise analysis, and
possibly for future applications to structural health monitoring;
however, for developing blade collision detection algorithms,
analysis was focused on the spinning-mode data sets, which
represent the greatest threat for avian collisions.

2) Contact Microphone Data: Each sensor module contact
microphone records vibrations on the blade surface near the
blade root. These data were sampled at 2kS/s with a 10-bit
sample depth, and an example of typical data recorded during
a surrogate blade strike is shown in Fig. 6. Collisions can
be visually identified as a decaying spike in the recording.
However, other turbine motions can present similar spikes, ap-
pearing as artifacts in the contact microphone data, precluding
the implementation of a simple, single-sensor, amplitude-based
detection algorithm for reliable classification.

3) Accelerometer Data: The on-blade accelerometer mea-
sures acceleration on the root module unit in each of the z-,
y-, and z-axis directions, as pictured in Fig. 3; these data were
recorded at 200 S/s with a 16-bit sample depth; a typical three-
axis recording during blade rotation is shown in Fig. 7. During
operation, the primary observable feature on each axis is a sine
wave, with a base frequency of the wind turbine operational
rate of rotation, representing the blades rotation and change of
position relative to gravity. This primarily presents in the y-
and z-axis recordings, but due both to box alignment on the
blade surface and to relative blade pitch of the wind turbine,
the peaks and offsets of these periodic signals vary among
recordings and from unit to unit. Collisions can be identified as
abrupt perturbations from the baseline rotational sine wave. As
with the contact microphone, other turbine motions unrelated
to collisions can also cause abrupt changes to blade position
and can provide similar changes in the accelerometer signals.

4) Gyrometer Data: The three-axis gyrometer measures
rotation of installed sensor module about each of the =z, y,
and z axes Fig. 3, and it shares the same axes orientation and
sample rate of 200 S/s as the accelerometer; a typical recording
during wind turbine operation is shown in Fig. 8. During wind
turbine operation, each axis is relatively constant, with larger
changes happening as the wind turbine rotates to match wind
direction, or as directed blade movements, such as pitching;
these can be identified through characteristic changes to the

0.5
0.0 ‘VW
-0.5
-1.0 — Acc. X
S 0.5
c
2 0.0
b
it
o -0.5
3
[
o
g Lo ——/Acc.
0.5
0.0
-0.5
-1.0 7 Acc.

Tlme [s]

Fig. 7. Typical transient data recorded from the three-axis accelerometer
integrated into the installed sensor module.

65.5
65.0
64.5
64.0
63.5 — Gyro X
4
w
S~
2
2
c
=3
o
T
i
<} [¢]
x — Gyro Y
-3
-4
-5
— Gyro Z
[¢] 5 10 15 20
Time [s]
Fig. 8. Typical transient data recorded from the three-axis gyrometer

integrated into the installed sensor module.

y-, and z-axis rotation measurements. Blade collisions can be
visually identified as transient spikes superimposed on top of
the gyrometer baseline.

IV. AUTOMATED COLLISION DETECTION METHODOLOGY

In this section, we present our methodology for developing
and evaluating wind turbine blade collision detection algo-
rithms using recorded wind turbine vibration data, gathered as
described in Section III. The goal of the collision detection
algorithm is to provide an automated system-level trigger
that saves a looped video buffer from the on-blade camera,
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recording image frames shortly before and after the detected
collision; these images and data can be reviewed later to
determine the collision source, magnitude, and species.

A. Overview of Collision Detection Methodology

To achieve high-precision automated collision detection, we
utilized on-turbine sensor recordings to train and test multiple
algorithms, with a goal of improving algorithm sensitivity
while reducing the false positive rate.

Specifics of classifier development, training, and testing are
described here in more detail. Following a brief description
of data sets and preprocessing, we first start by describing the
naive detection algorithm for amplitude-based collision detec-
tion, which was running on installed sensor modules during
field testing. To further improve sensitivity and precision, we
then describe a conventional machine-learning approach using
an adaptive boost, AdaBoost, classifier. Finally, we present
a custom, two-step classification approach using an anomaly
detector, further improving the precision of the detection
algorithm.

B. Data Sets

Two broad sets of data acquired from on-turbine sensor
modules (Section III) were selected for use for algorithm
development: the first is a baseline set comprising sensor
data recorded over approximately 42 minutes of combined
operation, where the turbine was in operational mode, but
where no surrogate collisions were recorded and no objects
struck the blades; the second data set comprises an additional
25 multisensor stream recordings, each containing a confirmed
surrogate blade collision with a launched projectile.

The two data sets can be therefore described by two
categories, data that contain a blade collision and data that
do not, and further categorical classification is provided by
describing wind turbine operational behavior at the time of
recording. We have observed three coded categories of wind
turbine behavior: stopped, idle, and generating, as described in
detail in Section III. Briefly, a stopped turbine occurs during
instances with very low wind velocity, and the turbine blade
is not rotating; spinning occurs when the turbine is spinning
at its operational rate of rotation; and, idle operation occurs
with sufficient wind velocity for rotation, but insufficient for
generator operation. For developing the detection algorithm,
analysis was focused on the spinning mode data sets, which
present the greatest threat for avian collisions. Additionally,
only recordings from the sensor module mounted to the struck
blade were considered; recordings from the two nonstruck
blades during each surrogate collision are available for future
development, as are other operational modes.

C. Data Preprocessing

Prior to use in any collision detection algorithm training
or testing, the data was first subjected to review and pre-
processing. The first of these steps was a manual review of the
recordings and identification and labeling/annotation of each
surrogate collision based on recorded field notes. This labeling
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Fig. 9. High-pass frequency response of the digital filter used to remove DC
offset and baseline rotational artifacts from recorded IMU sensor signals.

process sets the ground truth for further algorithm evaluation;
for each recording, a window of time of approximately 2-3s,
depending on the collision and signal decay, was identified and
labeled as when the collision is determined to have occurred;
an example is shown in Fig. 13.

As an additional step, all recorded sensor signals were
filtered using a digital high-pass filter to remove sensor DC
offsets and low-frequency baseline sensor signal variation that
is solely associated with the rotation of the wind turbine
blades. The high-pass filter, plotted in Fig. 9, is designed to
have a flat gain and 0dB ripple through the passband, with a
3dB corner frequency placed at 5 Hz.

D. Naive Collision Detection Algorithm

The naive collision detection algorithm is designed to iden-
tify when the peak-to-peak amplitude in a frame exceeds a
threshold in the accelerometer data. The complete process is
illustrated in Fig. 10. First, all signals are filtered (Fig. 9),
after which they are windowed using a sliding window (0.5 s).
Within a window, the maximum and minimum amplitude
values are determined, and their difference is taken. This
process is repeated across all windows and for all sensor
axes. The maximum peak-to-peak amplitude differences from
each axis are combined via a weighted sum, and the sum is
compared against a preset threshold to determine if a collision
has likely occurred. Through tuning of the per-axis weighted
sum multipliers, this algorithm can detect most surrogate
projectile collisions, with a resulting trade-off to the precision
of the system, as quantified in Section V.

While straightforward, the naive detection algorithm is
limited to information encoded in the sensor signal amplitude
alone. Collisions can stimulate vibrations in the turbine blade
differently, depending where along the chord or span of the
blade the object struck; frequency domain analysis demon-
strates this effect and highlights the difficulty of a detection
algorithm base purely on time-domain amplitude thresholding
[14]. In addition, other wind-turbine-related events such as
blade pitching or nacelle yaw can induce vibrations that have
similar frame peak values to collision events.
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Fig. 10. Signal flow diagram illustrating a naive, amplitude-based collision
detection algorithm. Accelerometer signals are first digitally filtered, and then
windowed using a sliding window. The maximum peak-to-peak value in each
frame is calculated for each axis, and then all axes values are combined using
a weighted sum. This sum is compared to a preset threshold to determine if
a collision has occurred along the blade.

Visual analysis of the recorded wind turbine vibration
data can highlight some of the challenges in designing an
amplitude-based algorithm for collision detection. For exam-
ple, examining Fig. 11, which plots a filtered accelerometer
signal recording during a surrogate collision, the blade strike is
visible as the largest peak just before the 15s mark. However,
other perturbations in the accelerometer signal contain similar
distinctive spikes and peak-to-peak amplitudes; the perturba-
tions around 18, for example, are caused by an artifact from
turbine motion rather than a collision with the blade. In this
example, a threshold could be set such that the collision could
be uniquely identified, but the absolute signal level varies
greatly with collision position and attitude as an object strikes
the blade, limiting the value of amplitude-based thresholding.

E. Collision Detection Algorithm Using Supervised Learning

To address the challenges presented by the use of a naive
classifier, more sophisticated learning-based approaches can
introduce analysis of additional signal features and to sys-
tematically find a more robust separating boundary between
instances of time in which a collision occurs and does not
occur. Prior work has demonstrated the potential for using a
supervised machine-learning classifier to separate blade colli-
sions from turbine operations [15]. Building on this general
approach, we present the design, implementation, training, and
testing of two automated classifiers for detecting on-blade
collisions.

1) Classifier-Based Collision Detection Algorithm: A clas-
sifier is a machine-learning algorithm which attempts to sep-
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Fig. 11. Typical filtered accelerometer signal recorded from the installed

sensor module during a surrogate blade collision includes a collision, visible
at ~14 s, as well as a turbine motion artifact visible at ~18 s; such artifacts are
common due to motor locks and motors, making difficult accurate, automated
collision detection using naive amplitude-based thresholding approaches.

arate data into two more classes. Classification algorithms,
generally, represent supervised machine-learning approaches;
all data is labeled with a selected class prior to training, such
that the ground truth is known during training.

Selecting an appropriate classifier for detection wind turbine
blade collisions presents a unique challenge, as most classifi-
cation algorithms rely on training data that is balanced among
the classes, where each class should have approximately the
same number of training samples. However, natural collisions
with wind turbine blades are rare, and collecting sufficient
surrogate collisions to have a balance between collision and
non-collision data points is infeasible. In addition, even within
a surrogate collision recording, a majority of the recording is
non-collision data, as the collision itself is of short duration.

Given these considerations, this application requires a clas-
sifier that can handle a highly imbalanced data set. For this
work we chose to employ an AdaBoost ensemble classifier
[16]-[18]. An ensemble classifier comprises of numerous
small models, implemented as decision trees in this work.
Each of these smaller models attempt to classify each input
and provide a vote toward a selected class.

Implementing AdaBoost can further improve the perfor-
mance of an ensemble of classifiers. Boosting works by using
the error of each classifier to weight the training set and
sequentially train additional weak learning models; each of
the weak classifiers is then weighted based on its respective
error. When a sample is to be classified, every learner votes
and their weight is applied to the vote, and the outcome
of this voting determines the class of the sample. The Ad-
aBoost algorithm has been broadly demonstrated as effective
in classifying in scenarios with imbalanced data [19], [20].
The AdaBoost algorithm has also been demonstrated to be
resistant to overfitting [21], which occurs when a model is
trained such that it only reflects the data used in training and
generalizes poorly, which is also a concern when training with
smaller, unbalanced datasets.

A high-level illustration of the classifier-based collision
detection system is illustrated in Fig. 12, including filtering,
windowing, standardization, and the use of a trained AdaBoost
ensemble classifier. This approach was implemented using
Scikit-learn [22], and comparative results are provided in
Section V.
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Fig. 12. Signal flow overview of two-step classification process used for
classifying collisions with the wind turbine blades. An SVM-based anomaly
detector is used in both training and inference operations to improve AdaBoost
performance on an inherently imbalanced experimental data set.

2) Feature Selection: Classifiers are trained and tested
using calculated features of a given data sample, as opposed
to the data itself. Signal features typically comprise statistical
measures of each sample window, such as mean, standard
deviation, peak amplitude, and more complex quantitative
metrics. The selection of proper features is an essential step
in designing the collision detection algorithm and extending
the performance beyond that of the naive algorithm.

A strong feature set is one that maximizes information from
recorded signals while reducing the number of false positive
classifications. Feature selection was guided, in part by prior
work on wind turbine collision detection classification [15],
in part by direct observation of the signals, and in part by
machine-learning approaches applied to structural health mon-
itoring for wind turbines and wind turbine blades [23], [24].
For this work, 10 features are calculated for each of the ac-
celerometer and gyrometer axes, yielding a total of 60 features
from each sample for training and inference. Several of these
features represent conventional signal statistics, including root-
mean-square (RMS) value, peak value, standard deviation,
variance, kurtosis, and skewness. Additional features were
included that measure waveform parameters, identified as
previously useful for structural health monitoring on wind
turbines and effective in separating anomalous vibration data
from background noise [23]; these include energy, crest factor,
impulse factor, and RMS entropy estimator.

To generate features for classifier training, the signals were

first separated into overlapping 1.5s windows with a sliding
window time step of 0.5s; the width and step of the time
frame were chosen to balance sufficient width to produce rele-
vant statistical features, computational complexity, and system
latency from collision to notification. For this system, 1.5s
is long enough to yield relevant statistical features, but short
enough that collision data still stands out from background
noise. The 0.5s time step is small enough when combined
with the looping video buffer to capture the collision inside
the recording, rather than only at a frame edge. Each of these
sample windows was labeled to contain either a blade collision
or no collision. Features are calculated for all axes of the
accelerometer and gyrometer data.

3) Anomaly Detection System: As described, a blade colli-
sion is a sparse event during the operation of a wind turbine,
leading to an unbalanced training data set. While the AdaBoost
algorithm is able to train and generalize an inference model
despite this imbalance, other applications classifying sparse
signals have demonstrated the use of an anomaly detector to
down-sample the majority class, improving classifier perfor-
mance and a reduction in false positive errors [25]. Anomaly
detection is an unsupervised learning approach, where training
data is assumed to represent “normal” behavior, providing a
model that can then detect “abnormal” or anomalous data,
without requiring a labeled or balanced training set.

As implemented here, the sample windows are first pro-
cessed through an anomaly detection algorithm for prese-
lection. Then, the anomalous frames are then, fed into an
AdaBoost classifier to determine if they contain a blade colli-
sion. The overall process is described by Fig. 12 and further
illustrated in Fig. 14. This approach extends the work shown
in [1] by including a new, two-step classification process, as
well as through the inclusion of additional baseline recordings
in the training and testing data set to reflect more realistic wind
turbine operating conditions. By operating on only anomalous
frames, the system precision can be improved from our prior
results.

This work uses a one-class support vector machine (SVM)
as a tuned anomaly detector to both down-sample majority
frames for training the classifier, and for use as a preselec-
tion stage to boost classifier performance during inference
(Fig. 14). A one-class SVM is used here as an unsupervised
anomaly detection algorithm. It does this by iteratively deter-
mining a multi-dimensional boundary around the normal data,
and then evaluating if a new point is within the boundary of
normal observations; points outside this boundary are consid-
ered anomalous. For wind turbine operation, a majority of time
is within a normal set of operation, but blade collisions and
other acute vibration events can be filtered out as anomalous
to that normal operation. The one-class SVM was trained
on the set of data that does not contain collisions, and its
hyperparameters were then adjusted iteratively such that when
the collision data was put through the detector, nearly all
labeled collisions were flagged as anomalous.

Finally, the tuned one-class SVM was then used to filter
out normal frames and build a testing and training set of only
anomalous frames for the AdaBoost classifier to act on. The
full signal flow for the two-stage classification system is shown
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Fig. 13. Comparison of the output of the anomaly detector with the labeled
ground truth for accelerometer recording during a surrogate blade collision;
while imperfect, as part of a two-step algorithm, the anomaly detector down-
selects possible collision frames prior to final classification, decreasing overall
false positive rates.
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Fig. 14. Illustrated process flow for training and inference data set generation
and selection. The anomaly detector is trained on features extracted from the
complete set of sensor data windows, and the subset of frames identified
as anomalous are labeled with ground truth and randomly split for training,
testing, and inference validation.

in Fig. 14.

V. RESULTS AND DISCUSSION
A. Classifier Training and Tuning

For comparison, we provide side-by-side performance re-
sults from the naive algorithm, an AdaBoost classifier, and
the proposed two-step anomaly-based boosted classifier. All
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Fig. 15. Receiver operating characteristic curves comparing the performance
of the naive, algorithm, an AdaBoost classifier, and the two-step anomaly
classifier. The two-step anomaly classifier shows strong performance at low
false positive rate, with the inherent trade-off that some test collisions are not
classified as anomalous.

algorithms were implemented using the SciKit-Learn package
in Python [22]. The classifiers were trained using a combina-
tion of recordings with and without collisions, as described
in Section III. The full data set was then randomly split such
that 75% of the data was used for training and 25% of the
data was reserved for testing and evaluation. All results shown
from both classifier-based algorithms and the naive algorithm
are generated based on the reserved 25% of testing data. Both
classification model hyperparameters were tuned using a cross-
validated grid search over the training data, where the best
model was selected based on maximizing the cross-validated
average precision score.

B. Overview of Performance Metrics

The performance of the proposed two-step anomaly clas-
sification system for blade collision detection was evaluated
using two metrics. The first metric is a receiver operating
characteristic curve (ROC), shown in Fig. 15, which illustrates
the trade-offs between true positive rate, accuracy, and false
positive rate across tunable thresholds for a classification
system. Area under curve (AUC) is a measure of the overall
performance of a ROC, with a perfect system having an AUC
of 1.0, and random chance in a binary classification system
having an AUC of 0.5.

While ROC and AUC are useful for understanding how a
system performs at various thresholds, it does not take into
account any imbalance in the two classifier outcomes. For
wind turbine blade collision detection, for example, collisions
are rare, and a low false positive rate can still result in a large
absolute number of false positive notifications compared to
true collision strikes.
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Fig. 16. Precision recall curves comparing the performance of the naive
algorithm, an AdaBoost classifier, and the two-step anomaly-based classifier.
By focusing the inference on classifying only the anomalous frames, precision
is improved compared to both the conventional classifier and the naive
algorithm.

TABLE I
COMPARISON OF ROC AND PRC PERFORMANCE

Summary of Results
Collision Detection Method AUC | AP
Naive 0.85 0.42
AdaBoost CIf. 0.91 0.60
Anomaly CIf. 0.91 0.73

To help capture this imbalance during our evaluation, a
precision-recall curve (PRC) is also presented in Fig. 16,
including a measure of average precision (AP). A PRC curve
illustrates the trade-offs between precision, the likelihood that
a sample classified as a collision was a true collision, with
recall, the ratio of total collision events classified to the number
of collision events in the test data, across different thresholds.
For a system with a precision of 50% and a recall of 70%,
for example, the system is capable of detecting 70% of the
collision events, and when the system identifies a collision
event there is a 50% chance it was an actual collision.

C. Discussion of Results

The results from our evaluation are shown for the ROC,
Fig. 15, and for the PRC, Fig. 16, for each of the collision
detection algorithms. As demonstrated by the ROC results,
all three methods perform relatively well, with the naive
algorithm doing slightly worse at more stringent thresholds.
The proposed two-step anomaly classifier performs the best at
the stringent thresholds, but its performance is limited by the
anomaly detection algorithm failing to detect a few collision
frames in the initial testing dataset.

Analysis of the PRC results provides a clearer representation
of the performance difference among the three presented

collision detection approaches. The naive algorithm is limited
due to its poor precision, driven by a high false positive rate,
and thus performs poorly compared to the two learning-based
classification algorithms. By introducing anomaly detection
and transforming the broad classifier into a classifier of
anomalous data points using our two-step approach, we have
improved its selectivity and reduced the false positive rate,
boosting the average precision in this test data set to 0.73,
compared to 0.60 for the one-step AdaBoost classification-
based system without in-built anomaly detection.

VI. CONCLUSION

In this article, we demonstrate the design and implementa-
tion of an on-blade sensor system for automated detection of
blade collisions on wind turbines, with particular application
to monitoring wind energy impacts on wildlife. Through this
work, we have designed and deployed a multisensor system
on an operational wind turbine and recorded both baseline
vibration data and vibration during surrogate blade collisions.
Using this field data, preprocessed and randomly split into
training/testing data sets, we have developed, trained, and
tested a two-step machine-learning algorithm for automated
collision detection.

The presented two-step algorithm makes use of a initial
SVM-based anomaly detection stage, preselecting anomalous
frames from all frames of sensor data recorded by the installed
sensor module during normal wind turbine operation. The
anomalous frames are provided to an AdaBoost classifier
trained on all anomalous frames to provide automated blade
collision detection. This new two-step approach was trained
and tested using cross-validation, and then evaluated and com-
pared using the same data set with conventional classification
approaches, including AdaBoost-only and naive amplitude-
based threshold detection. Our two-step approach improves
upon both prior methods, with an average precision of 0.73
over the complete recorded data test set.

By developing and validating our automated blade collision
detection algorithm using field test data from an operational
wind turbine, we demonstrate real-world utility of this ap-
proach for future application to the monitoring and mitigation
of wind turbine impacts on wildlife. In addition to monitoring
blade collisions, the system and algorithmic approach may also
be extended for broader structural health monitoring (SHM)
of wind turbines, including ice accumulation on blades and
lighting strikes, as well as other non-turbine SHM applications
across multiple industries.
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