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Autonomous Sensor System for 
Wind Turbine Blade Collision Detection 

Kyle Clocker, Graduate Student Member, IEEE, Congcong Hu, Jason Roadman, 
Roberto Albertani, and Matthew L. Johnston, Senior Member, IEEE 

Abstract—This paper presents an automated blade collision 
detection system for use on wind turbines, toward the goal of sup-
porting monitoring and quantitative assessment of wind energy 
impacts on wildlife. A wireless, multisensor module mounted at 
the blade root measures surface vibrations, and a blade-mounted 
camera provides image capture of colliding objects. Using sensor 
data recorded during field testing of the system on an operational 
wind turbine, we present the development, training, and testing 
of automated detection algorithms for collision detection using 
machine-learning approaches. In particular, we compare the 
use of a new two-step, anomaly-based classification algorithm 
with conventional adaptive boosting and amplitude-based detec-
tion techniques, where the two-step approach improves average 
precision for the experimental data set. This integrated sensor 
and classification systems demonstrates a new approach for 
automated, on-blade collision detection for wind turbines, with 
broad utility across structural health monitoring applications. 

Index Terms—Autonomous sensors, wind energy, sensor sys-
tems at the edge 

I. INTRODUCTION 

Wind turbines serve an increasing proportion of total energy 
generation, with expanded onshore and offshore installations 
proceeding worldwide [2], [3]. Continued construction, ex-
pansion, and operation of wind energy installations must be 
managed in conjunction with effects on local and migratory 
wildlife, specifically bird and bat species that may be af-
fected by wind turbine collisions [4]–[6]. Ongoing efforts 
to measure and mitigate wind turbine impacts on wildlife 
include improved preconstruction siting and postconstruction 
monitoring, development of wildlife deterrent technologies 
and real-time curtailment strategies, and improved quantitative 
assessment of wildlife mortality due to wind turbines [7]–[10]. 
Current automated monitoring solutions leverage cameras on 
the ground [11] or mounted on the wind turbine tower for 
recognition of nearby birds [12], and can include audible deter-
rents or automated curtailment of turbine operation. However, 
these approaches cannot provide physical verification of blade 
strikes or images of colliding objects, both of which are critical 
for quantitative assessment of wildlife impacts. An alternative 
approach is the use of blade-mounted vibration sensors [13], 
which have been demonstrated for recording surface vibrations 
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Fig. 1. Overview of a collision detection and imaging system for wind 
turbine blades. multisensor modules are mounted at the root of each blade 
to measure vibration, providing input to classification processes used in 
automated collision detection and image capture of colliding objects. 

but to date lack the integrated signal processing and automated 
collision detection required for long-term monitoring. 

Toward the goal of long-term, automated blade strike mon-
itoring, we have developed an intelligent, multisensor system 
designed for installation on a wind turbine blade to provide 
real-time collision detection along with image capture of col-
liding objects. The sensor system comprises an accelerometer, 
gyrometer, and contact microphone to measure vibrations from 
the blade surface near the hub, and a camera focused down-
blade enables video and still image recording along the blade 
length. Our approach combines physical sensors with trained 
classification algorithms for automated collision detection. 

In this paper, we present an overview of the integrated 
blade-mounted hardware system, sensor signal processing 
and feature extraction, development of automated collision 
detection algorithms using machine-learning approaches, and 
training and validation using experimental data. The approach 
is demonstrated using data recorded from multiple blades of 
an operational wind turbine during field testing of the sensor 
system. Provided data analysis includes the comparative as-
sessment of multiple classification algorithms, including naive 
threshold-based classification and two variants of a boosted 
ensemble classifier, with and without anomaly detection. 

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of the multisensor system de-
signed for real-time, on-blade collision detection monitoring; 
Section III describes experimental procedures used for data 
collection on an operational 1.5-MW wind turbine and summa-
rizes recorded data sets; Section IV describes the development, 
training, validation, and comparison of automated collision 
detection classifiers; and Section V concludes the paper. 
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II. SENSOR SYSTEM OVERVIEW 

A high-level overview of the automated collision detection 
system is provided in Fig. 1. A multisensor module is mounted 
at the root of each wind turbine blade to continuously record 
local vibrations along multiple axes using accelerometers, 
gyrometers, and a contact microphone, and a complementary 
metal-oxide semiconductor (CMOS) imager aligned along the 
leading edge of the blade towards the tip, is used to capture 
images of colliding objects. Sensor data can be used for 
automated collision detection using a trained classifier to 
trigger recording of the most recent buffered image frames, 
used for offline analysis, such as species identification. 

The primary sensor system is designed for mounting on 
the surface of each wind turbine blade at the root, near 
the central hub, where surface vibrations are recorded by 
multiple transducers. Vibration sensors include a commercial 
MEMS inertial measurement unit (IMU), comprising three-
axis accelerometer and three-axis gyrometer, along with a 
piezoelectric contact microphone coupled to a custom analog 
front-end (AFE) input circuit for signal conditioning. A custom 
printed circuit board (PCB) is used for implementing the 
AFE, power conditioning for all root module components, 
IMU interfacing, and a stand-alone microcontroller providing 
analog-to-digital conversion of the contact microphone signal, 
as well as all control and digital data flow among sensors. 

The system is managed locally by a commercial single 
board computer (SBC), which interfaces with the custom PCB 
and with a CMOS imager module; the sensor interface PCB is 
designed as a daughter board to the SBC to minimize volume. 
The SBC (Raspberry Pi 3B+) is also used for nonvolatile 
sensor data logging from the microcontroller, wireless commu-
nication, and continuously buffering the CMOS imager data 
stream to save recordings of detected collisions when triggered 
by the collision detection algorithm. 

Each of three identical wireless sensor systems was mounted 
in a weather-proof enclosure and validated in a laboratory 
setting prior to use in the field. 

III. SYSTEM DEPLOYMENT AND DATA COLLECTION 

The collision detection system was deployed for multi-day 
field testing in July 2019 on an operational wind turbine at 
the National Wind Technology Center, located at the National 
Renewable Energy Laboratory’s Flatirons Campus in Boulder, 

Fig. 2. A multisensor module designed for use on wind turbine blades 
incorporates a custom printed circuit board (PCB) for data capture from 
inertial measurement unit and blade-mounted contact microphone, a single-
board computer for recording and wireless communication, and a CMOS 
image sensor for imaging along the length of the wind turbine blade. 
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Fig. 3. A) A collision detection module is mounted at the root of the wind 
turbine blade, near the hub, alongside a blade-mounted contact microphone; 
the integrated CMOS imager field of view is aligned toward the blade tip; 
and, B) one module is mounted on each of three blades on a GE 1.5-MW 
wind turbine for data collection and system validation. 

CO. This section details the installation and experimental 
data collection performed using the developed sensor system, 
including validation, background vibration recording across 
multiple operating conditions, and recording during surrogate 
blade collisions. 

A. System Installation 

Sensors were installed on the DOE 1.5 turbine, a GE 1.5-
MW three bladed wind turbine, with a rotor diameter of 
approximately 77 m and a hub height of 80 m. The mounting 
location for each sensor module was approximately 1.5 m 
distal to the connection point of the blade to the central hub. A 
photograph of an installed sensor module is shown in Fig. 3, 
where each module was installed with its camera view aligned 
parallel to the leading edge of the blade and focused toward 
the blade tip. The IMU coordinate system is annotated for use 
throughout the paper. As shown, the contact microphone was 
installed next to the root module with direct contact to the 
blade. A small dome was placed over the contact microphone 
for wind protection. Sensors were affixed using two-sided 
adhesive (3M VHB), which provides secure but reversible 
attachment for multiday testing. 

A rail-mounted DC power supply was installed in the rotor 
hub, on the rotational side of the slip ring. DC power lines 
(24 V) run from this supply to each root module on the blades. 
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Fig. 4. Surrogate projectiles, such as tennis balls, were launched into the 
swept blade path of the operating wind turbine in order to simulate an avian 
collision with the turbine blades. Projectiles were launched from a compressed 
air cannon located on a nearby vertical personnel lift. 

For sensor module communication and coordination, a wire-
less access point/router was installed in the internal nacelle 
housing. Each of the root modules connected to the access 
point over WiFi. The access point data connection routed to 
the base of the tower via an Ethernet-over-fiber connection for 
remote access and control of each of the installed on-blade 
sensor modules. 

B. Baseline Data Collection during Turbine Operation 

For data collection and system validation, the sensor mod-
ules were installed on a GE 1.5-MW wind turbine, as described 
previously. Each module was installed at the root of a wind 
turbine blade, with the camera facing toward the tip, as shown 
in Fig. 3. All modules were connected to a local, up-turbine 
wireless network and accessible from the ground using a fiber-
optic data connection through the turbine tower. 

For initial validation and to provide baseline noise measure-
ments, data were recorded from all on-blade sensor modules 
in parallel for a variety of turbine operating conditions: this 
includes both generating and idle rotations (blades rotating 
with and without the generator engaged); individual blade 
pitching (rotation about the blade spar axis); and, nacelle 
rotations (yaw of the nacelle for orientating the turbine blades 
into the wind). Data were retrieved remotely for review to 
validate successful sensor module installation and operation 
prior to projectile testing, including operation of the IMU and 
contact microphone sensors on each turbine blade, as well as 
video streams recorded by each on-blade CMOS image sensor. 

C. Data Collection Using Surrogate Turbine Blade Collisions 

To simulate blade strikes by avian or bat species in a 
nonlethal manner, surrogate projectiles were launched into 
the path of the rotating turbine blades. Projectile materials, 
for these tests tennis balls and small-diameter potatoes, were 
directed at the wind turbine from a compressed air cannon 
located on an adjacent vertical personnel lift, approximately 
30 m above the ground; this experimental test setup is shown 
in Fig. 4. For safety, the personnel lift was parked in a location 
that made it impossible for operators to accidentally extend the 

Fig. 5. Images from on-blade CMOS imager located within the root module. 
Image A. demonstrates the field of view of the on-blade imager. Image B. is a 
still frame from an automated recording capture triggered by the root module. 
The surrogate projectile, a potato, is highlighted by the green box annotation. 

basket into the rotor of the operating turbine. Test projectiles 
were loosed either as individual units or in small batches into 
the rotational plane of the wind turbine, allowing a collision 
to occur where the blade strikes the projectile, simulating an 
avian collision along the leading edge of the turbine blade. 
Sensor data were recorded by all on-blade modules throughout 
the testing. In addition to recorded sensor data, additional 
parameters were recorded, including which blade was struck, 
approximate blade position at impact, where on the blade 
impact occurred, current wind turbine operating mode, and 
projectile type. 

D. Automated Camera Capture of Surrogate Blade Collisions 

Each blade root sensor module contains a CMOS image 
sensor aligned to view the blade area distal to the hub, toward 
the blade tip. The function of this compact camera is to 
have automated image capture of detected on-blade collisions, 
which can be later reviewed for collision verification and 
species identification. The image sensor interfaces with the 
SBC, which provides a constant, 5 s looping video buffer. If a 
collision is detected, the 2.5 s buffered frames prior to the col-
lision are automatically saved, along with the 2.5 s of frames 
following the collision detection; buffer and window sizes are 
adjustable. Example images provide in Fig. 5 demonstrate the 
image sensor field of view of along the blade length, and an 
automatically recorded image of a surrogate collision. 

E. Overview of Collected Data 

The complete set of recorded on-turbine sensor data was 
collected, saved, and used to develop a collision detection 
algorithm (Section IV). Here we summarize the data set 
generated during field testing of the integrated sensor system. 

1) Wind Turbine Operational Modes: The data collected 
can be categorically labeled by three different wind turbine 
operational modes used during testing: stopped, idle spinning, 
and spinning with generator engaged. A stopped turbine occurs 
during instances with very low wind velocity, and the turbine 
blade is not rotating; this can be observed as a near-zero slope 
in y- and z-axis accelerometer data. Idle operation occurs 
when there exists sufficient wind velocity for rotation, but 
insufficient wind velocity and aerodynamic torque for the 
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Fig. 6. Typical transient data recorded from a blade-mounted contact 
microphone using the installed sensor module. 

generator to engage and start producing power. Spinning with 
generation occurs when the turbine is rotating at sufficient rate 
of rotation to produce power and can be characterized by a sine 
wave signal in the accelerometer y- and z-axes. All operational 
mode data sets are useful for baseline noise analysis, and 
possibly for future applications to structural health monitoring; 
however, for developing blade collision detection algorithms, 
analysis was focused on the spinning-mode data sets, which 
represent the greatest threat for avian collisions. 

2) Contact Microphone Data: Each sensor module contact 
microphone records vibrations on the blade surface near the 
blade root. These data were sampled at 2 kS/s with a 10-bit 
sample depth, and an example of typical data recorded during 
a surrogate blade strike is shown in Fig. 6. Collisions can 
be visually identified as a decaying spike in the recording. 
However, other turbine motions can present similar spikes, ap-
pearing as artifacts in the contact microphone data, precluding 
the implementation of a simple, single-sensor, amplitude-based 
detection algorithm for reliable classification. 

3) Accelerometer Data: The on-blade accelerometer mea-
sures acceleration on the root module unit in each of the x-, 
y-, and z-axis directions, as pictured in Fig. 3; these data were 
recorded at 200 S/s with a 16-bit sample depth; a typical three-
axis recording during blade rotation is shown in Fig. 7. During 
operation, the primary observable feature on each axis is a sine 
wave, with a base frequency of the wind turbine operational 
rate of rotation, representing the blades rotation and change of 
position relative to gravity. This primarily presents in the y-
and z-axis recordings, but due both to box alignment on the 
blade surface and to relative blade pitch of the wind turbine, 
the peaks and offsets of these periodic signals vary among 
recordings and from unit to unit. Collisions can be identified as 
abrupt perturbations from the baseline rotational sine wave. As 
with the contact microphone, other turbine motions unrelated 
to collisions can also cause abrupt changes to blade position 
and can provide similar changes in the accelerometer signals. 

4) Gyrometer Data: The three-axis gyrometer measures 
rotation of installed sensor module about each of the x, y, 
and z axes Fig. 3, and it shares the same axes orientation and 
sample rate of 200 S/s as the accelerometer; a typical recording 
during wind turbine operation is shown in Fig. 8. During wind 
turbine operation, each axis is relatively constant, with larger 
changes happening as the wind turbine rotates to match wind 
direction, or as directed blade movements, such as pitching; 
these can be identified through characteristic changes to the 

Fig. 7. Typical transient data recorded from the three-axis accelerometer 
integrated into the installed sensor module. 

Fig. 8. Typical transient data recorded from the three-axis gyrometer 
integrated into the installed sensor module. 

y-, and z-axis rotation measurements. Blade collisions can be 
visually identified as transient spikes superimposed on top of 
the gyrometer baseline. 

IV. AUTOMATED COLLISION DETECTION METHODOLOGY 

In this section, we present our methodology for developing 
and evaluating wind turbine blade collision detection algo-
rithms using recorded wind turbine vibration data, gathered as 
described in Section III. The goal of the collision detection 
algorithm is to provide an automated system-level trigger 
that saves a looped video buffer from the on-blade camera, 
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recording image frames shortly before and after the detected 
collision; these images and data can be reviewed later to 
determine the collision source, magnitude, and species. 

A. Overview of Collision Detection Methodology 

To achieve high-precision automated collision detection, we 
utilized on-turbine sensor recordings to train and test multiple 
algorithms, with a goal of improving algorithm sensitivity 
while reducing the false positive rate. 

Specifics of classifier development, training, and testing are 
described here in more detail. Following a brief description 
of data sets and preprocessing, we first start by describing the 
naive detection algorithm for amplitude-based collision detec-
tion, which was running on installed sensor modules during 
field testing. To further improve sensitivity and precision, we 
then describe a conventional machine-learning approach using 
an adaptive boost, AdaBoost, classifier. Finally, we present 
a custom, two-step classification approach using an anomaly 
detector, further improving the precision of the detection 
algorithm. 

B. Data Sets 

Two broad sets of data acquired from on-turbine sensor 
modules (Section III) were selected for use for algorithm 
development: the first is a baseline set comprising sensor 
data recorded over approximately 42 minutes of combined 
operation, where the turbine was in operational mode, but 
where no surrogate collisions were recorded and no objects 
struck the blades; the second data set comprises an additional 
25 multisensor stream recordings, each containing a confirmed 
surrogate blade collision with a launched projectile. 

The two data sets can be therefore described by two 
categories, data that contain a blade collision and data that 
do not, and further categorical classification is provided by 
describing wind turbine operational behavior at the time of 
recording. We have observed three coded categories of wind 
turbine behavior: stopped, idle, and generating, as described in 
detail in Section III. Briefly, a stopped turbine occurs during 
instances with very low wind velocity, and the turbine blade 
is not rotating; spinning occurs when the turbine is spinning 
at its operational rate of rotation; and, idle operation occurs 
with sufficient wind velocity for rotation, but insufficient for 
generator operation. For developing the detection algorithm, 
analysis was focused on the spinning mode data sets, which 
present the greatest threat for avian collisions. Additionally, 
only recordings from the sensor module mounted to the struck 
blade were considered; recordings from the two nonstruck 
blades during each surrogate collision are available for future 
development, as are other operational modes. 

C. Data Preprocessing 

Prior to use in any collision detection algorithm training 
or testing, the data was first subjected to review and pre-
processing. The first of these steps was a manual review of the 
recordings and identification and labeling/annotation of each 
surrogate collision based on recorded field notes. This labeling 

Fig. 9. High-pass frequency response of the digital filter used to remove DC 
offset and baseline rotational artifacts from recorded IMU sensor signals. 

process sets the ground truth for further algorithm evaluation; 
for each recording, a window of time of approximately 2-3 s, 
depending on the collision and signal decay, was identified and 
labeled as when the collision is determined to have occurred; 
an example is shown in Fig. 13. 

As an additional step, all recorded sensor signals were 
filtered using a digital high-pass filter to remove sensor DC 
offsets and low-frequency baseline sensor signal variation that 
is solely associated with the rotation of the wind turbine 
blades. The high-pass filter, plotted in Fig. 9, is designed to 
have a flat gain and 0 dB ripple through the passband, with a 
3 dB corner frequency placed at 5 Hz. 

D. Naive Collision Detection Algorithm 

The naive collision detection algorithm is designed to iden-
tify when the peak-to-peak amplitude in a frame exceeds a 
threshold in the accelerometer data. The complete process is 
illustrated in Fig. 10. First, all signals are filtered (Fig. 9), 
after which they are windowed using a sliding window (0.5 s). 
Within a window, the maximum and minimum amplitude 
values are determined, and their difference is taken. This 
process is repeated across all windows and for all sensor 
axes. The maximum peak-to-peak amplitude differences from 
each axis are combined via a weighted sum, and the sum is 
compared against a preset threshold to determine if a collision 
has likely occurred. Through tuning of the per-axis weighted 
sum multipliers, this algorithm can detect most surrogate 
projectile collisions, with a resulting trade-off to the precision 
of the system, as quantified in Section V. 

While straightforward, the naive detection algorithm is 
limited to information encoded in the sensor signal amplitude 
alone. Collisions can stimulate vibrations in the turbine blade 
differently, depending where along the chord or span of the 
blade the object struck; frequency domain analysis demon-
strates this effect and highlights the difficulty of a detection 
algorithm base purely on time-domain amplitude thresholding 
[14]. In addition, other wind-turbine-related events such as 
blade pitching or nacelle yaw can induce vibrations that have 
similar frame peak values to collision events. 
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Fig. 10. Signal flow diagram illustrating a naive, amplitude-based collision 
detection algorithm. Accelerometer signals are first digitally filtered, and then 
windowed using a sliding window. The maximum peak-to-peak value in each 
frame is calculated for each axis, and then all axes values are combined using 
a weighted sum. This sum is compared to a preset threshold to determine if 
a collision has occurred along the blade. 

Visual analysis of the recorded wind turbine vibration 
data can highlight some of the challenges in designing an 
amplitude-based algorithm for collision detection. For exam-
ple, examining Fig. 11, which plots a filtered accelerometer 
signal recording during a surrogate collision, the blade strike is 
visible as the largest peak just before the 15 s mark. However, 
other perturbations in the accelerometer signal contain similar 
distinctive spikes and peak-to-peak amplitudes; the perturba-
tions around 18 s, for example, are caused by an artifact from 
turbine motion rather than a collision with the blade. In this 
example, a threshold could be set such that the collision could 
be uniquely identified, but the absolute signal level varies 
greatly with collision position and attitude as an object strikes 
the blade, limiting the value of amplitude-based thresholding. 

E. Collision Detection Algorithm Using Supervised Learning 

To address the challenges presented by the use of a naive 
classifier, more sophisticated learning-based approaches can 
introduce analysis of additional signal features and to sys-
tematically find a more robust separating boundary between 
instances of time in which a collision occurs and does not 
occur. Prior work has demonstrated the potential for using a 
supervised machine-learning classifier to separate blade colli-
sions from turbine operations [15]. Building on this general 
approach, we present the design, implementation, training, and 
testing of two automated classifiers for detecting on-blade 
collisions. 

1) Classifier-Based Collision Detection Algorithm: A clas-
sifier is a machine-learning algorithm which attempts to sep-

Fig. 11. Typical filtered accelerometer signal recorded from the installed 
sensor module during a surrogate blade collision includes a collision, visible 
at ∼14 s, as well as a turbine motion artifact visible at ∼18 s; such artifacts are 
common due to motor locks and motors, making difficult accurate, automated 
collision detection using naive amplitude-based thresholding approaches. 

arate data into two more classes. Classification algorithms, 
generally, represent supervised machine-learning approaches; 
all data is labeled with a selected class prior to training, such 
that the ground truth is known during training. 

Selecting an appropriate classifier for detection wind turbine 
blade collisions presents a unique challenge, as most classifi-
cation algorithms rely on training data that is balanced among 
the classes, where each class should have approximately the 
same number of training samples. However, natural collisions 
with wind turbine blades are rare, and collecting sufficient 
surrogate collisions to have a balance between collision and 
non-collision data points is infeasible. In addition, even within 
a surrogate collision recording, a majority of the recording is 
non-collision data, as the collision itself is of short duration. 

Given these considerations, this application requires a clas-
sifier that can handle a highly imbalanced data set. For this 
work we chose to employ an AdaBoost ensemble classifier 
[16]–[18]. An ensemble classifier comprises of numerous 
small models, implemented as decision trees in this work. 
Each of these smaller models attempt to classify each input 
and provide a vote toward a selected class. 

Implementing AdaBoost can further improve the perfor-
mance of an ensemble of classifiers. Boosting works by using 
the error of each classifier to weight the training set and 
sequentially train additional weak learning models; each of 
the weak classifiers is then weighted based on its respective 
error. When a sample is to be classified, every learner votes 
and their weight is applied to the vote, and the outcome 
of this voting determines the class of the sample. The Ad-
aBoost algorithm has been broadly demonstrated as effective 
in classifying in scenarios with imbalanced data [19], [20]. 
The AdaBoost algorithm has also been demonstrated to be 
resistant to overfitting [21], which occurs when a model is 
trained such that it only reflects the data used in training and 
generalizes poorly, which is also a concern when training with 
smaller, unbalanced datasets. 

A high-level illustration of the classifier-based collision 
detection system is illustrated in Fig. 12, including filtering, 
windowing, standardization, and the use of a trained AdaBoost 
ensemble classifier. This approach was implemented using 
Scikit-learn [22], and comparative results are provided in 
Section V. 
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Fig. 12. Signal flow overview of two-step classification process used for 
classifying collisions with the wind turbine blades. An SVM-based anomaly 
detector is used in both training and inference operations to improve AdaBoost 
performance on an inherently imbalanced experimental data set. 

2) Feature Selection: Classifiers are trained and tested 
using calculated features of a given data sample, as opposed 
to the data itself. Signal features typically comprise statistical 
measures of each sample window, such as mean, standard 
deviation, peak amplitude, and more complex quantitative 
metrics. The selection of proper features is an essential step 
in designing the collision detection algorithm and extending 
the performance beyond that of the naive algorithm. 

A strong feature set is one that maximizes information from 
recorded signals while reducing the number of false positive 
classifications. Feature selection was guided, in part by prior 
work on wind turbine collision detection classification [15], 
in part by direct observation of the signals, and in part by 
machine-learning approaches applied to structural health mon-
itoring for wind turbines and wind turbine blades [23], [24]. 
For this work, 10 features are calculated for each of the ac-
celerometer and gyrometer axes, yielding a total of 60 features 
from each sample for training and inference. Several of these 
features represent conventional signal statistics, including root-
mean-square (RMS) value, peak value, standard deviation, 
variance, kurtosis, and skewness. Additional features were 
included that measure waveform parameters, identified as 
previously useful for structural health monitoring on wind 
turbines and effective in separating anomalous vibration data 
from background noise [23]; these include energy, crest factor, 
impulse factor, and RMS entropy estimator. 

To generate features for classifier training, the signals were 

first separated into overlapping 1.5 s windows with a sliding 
window time step of 0.5 s; the width and step of the time 
frame were chosen to balance sufficient width to produce rele-
vant statistical features, computational complexity, and system 
latency from collision to notification. For this system, 1.5 s 
is long enough to yield relevant statistical features, but short 
enough that collision data still stands out from background 
noise. The 0.5 s time step is small enough when combined 
with the looping video buffer to capture the collision inside 
the recording, rather than only at a frame edge. Each of these 
sample windows was labeled to contain either a blade collision 
or no collision. Features are calculated for all axes of the 
accelerometer and gyrometer data. 

3) Anomaly Detection System: As described, a blade colli-
sion is a sparse event during the operation of a wind turbine, 
leading to an unbalanced training data set. While the AdaBoost 
algorithm is able to train and generalize an inference model 
despite this imbalance, other applications classifying sparse 
signals have demonstrated the use of an anomaly detector to 
down-sample the majority class, improving classifier perfor-
mance and a reduction in false positive errors [25]. Anomaly 
detection is an unsupervised learning approach, where training 
data is assumed to represent ”normal” behavior, providing a 
model that can then detect ”abnormal” or anomalous data, 
without requiring a labeled or balanced training set. 

As implemented here, the sample windows are first pro-
cessed through an anomaly detection algorithm for prese-
lection. Then, the anomalous frames are then, fed into an 
AdaBoost classifier to determine if they contain a blade colli-
sion. The overall process is described by Fig. 12 and further 
illustrated in Fig. 14. This approach extends the work shown 
in [1] by including a new, two-step classification process, as 
well as through the inclusion of additional baseline recordings 
in the training and testing data set to reflect more realistic wind 
turbine operating conditions. By operating on only anomalous 
frames, the system precision can be improved from our prior 
results. 

This work uses a one-class support vector machine (SVM) 
as a tuned anomaly detector to both down-sample majority 
frames for training the classifier, and for use as a preselec-
tion stage to boost classifier performance during inference 
(Fig. 14). A one-class SVM is used here as an unsupervised 
anomaly detection algorithm. It does this by iteratively deter-
mining a multi-dimensional boundary around the normal data, 
and then evaluating if a new point is within the boundary of 
normal observations; points outside this boundary are consid-
ered anomalous. For wind turbine operation, a majority of time 
is within a normal set of operation, but blade collisions and 
other acute vibration events can be filtered out as anomalous 
to that normal operation. The one-class SVM was trained 
on the set of data that does not contain collisions, and its 
hyperparameters were then adjusted iteratively such that when 
the collision data was put through the detector, nearly all 
labeled collisions were flagged as anomalous. 

Finally, the tuned one-class SVM was then used to filter 
out normal frames and build a testing and training set of only 
anomalous frames for the AdaBoost classifier to act on. The 
full signal flow for the two-stage classification system is shown 
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Fig. 13. Comparison of the output of the anomaly detector with the labeled 
ground truth for accelerometer recording during a surrogate blade collision; 
while imperfect, as part of a two-step algorithm, the anomaly detector down-
selects possible collision frames prior to final classification, decreasing overall 
false positive rates. 

High-Pass
Filter

Sliding
Window

Feature
Calculation

Standardize

Anomaly
Detection

Test/Train/Inference

Frame
Labels

Fig. 14. Illustrated process flow for training and inference data set generation 
and selection. The anomaly detector is trained on features extracted from the 
complete set of sensor data windows, and the subset of frames identified 
as anomalous are labeled with ground truth and randomly split for training, 
testing, and inference validation. 

in Fig. 14. 

V. RESULTS AND DISCUSSION 

A. Classifier Training and Tuning 

For comparison, we provide side-by-side performance re-
sults from the naive algorithm, an AdaBoost classifier, and 
the proposed two-step anomaly-based boosted classifier. All 

Fig. 15. Receiver operating characteristic curves comparing the performance 
of the naive, algorithm, an AdaBoost classifier, and the two-step anomaly 
classifier. The two-step anomaly classifier shows strong performance at low 
false positive rate, with the inherent trade-off that some test collisions are not 
classified as anomalous. 

algorithms were implemented using the SciKit-Learn package 
in Python [22]. The classifiers were trained using a combina-
tion of recordings with and without collisions, as described 
in Section III. The full data set was then randomly split such 
that 75% of the data was used for training and 25% of the 
data was reserved for testing and evaluation. All results shown 
from both classifier-based algorithms and the naive algorithm 
are generated based on the reserved 25% of testing data. Both 
classification model hyperparameters were tuned using a cross-
validated grid search over the training data, where the best 
model was selected based on maximizing the cross-validated 
average precision score. 

B. Overview of Performance Metrics 

The performance of the proposed two-step anomaly clas-
sification system for blade collision detection was evaluated 
using two metrics. The first metric is a receiver operating 
characteristic curve (ROC), shown in Fig. 15, which illustrates 
the trade-offs between true positive rate, accuracy, and false 
positive rate across tunable thresholds for a classification 
system. Area under curve (AUC) is a measure of the overall 
performance of a ROC, with a perfect system having an AUC 
of 1.0, and random chance in a binary classification system 
having an AUC of 0.5. 

While ROC and AUC are useful for understanding how a 
system performs at various thresholds, it does not take into 
account any imbalance in the two classifier outcomes. For 
wind turbine blade collision detection, for example, collisions 
are rare, and a low false positive rate can still result in a large 
absolute number of false positive notifications compared to 
true collision strikes. 
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Fig. 16. Precision recall curves comparing the performance of the naive 
algorithm, an AdaBoost classifier, and the two-step anomaly-based classifier. 
By focusing the inference on classifying only the anomalous frames, precision 
is improved compared to both the conventional classifier and the naive 
algorithm. 

TABLE I 
COMPARISON OF ROC AND PRC PERFORMANCE 

Summary of Results 
Collision Detection Method AUC AP 
Naive 
AdaBoost Clf. 
Anomaly Clf. 

0.85 
0.91 
0.91 

0.42 
0.60 
0.73 

To help capture this imbalance during our evaluation, a 
precision-recall curve (PRC) is also presented in Fig. 16, 
including a measure of average precision (AP). A PRC curve 
illustrates the trade-offs between precision, the likelihood that 
a sample classified as a collision was a true collision, with 
recall, the ratio of total collision events classified to the number 
of collision events in the test data, across different thresholds. 
For a system with a precision of 50% and a recall of 70%, 
for example, the system is capable of detecting 70% of the 
collision events, and when the system identifies a collision 
event there is a 50% chance it was an actual collision. 

C. Discussion of Results 

The results from our evaluation are shown for the ROC, 
Fig. 15, and for the PRC, Fig. 16, for each of the collision 
detection algorithms. As demonstrated by the ROC results, 
all three methods perform relatively well, with the naive 
algorithm doing slightly worse at more stringent thresholds. 
The proposed two-step anomaly classifier performs the best at 
the stringent thresholds, but its performance is limited by the 
anomaly detection algorithm failing to detect a few collision 
frames in the initial testing dataset. 

Analysis of the PRC results provides a clearer representation 
of the performance difference among the three presented 

collision detection approaches. The naive algorithm is limited 
due to its poor precision, driven by a high false positive rate, 
and thus performs poorly compared to the two learning-based 
classification algorithms. By introducing anomaly detection 
and transforming the broad classifier into a classifier of 
anomalous data points using our two-step approach, we have 
improved its selectivity and reduced the false positive rate, 
boosting the average precision in this test data set to 0.73, 
compared to 0.60 for the one-step AdaBoost classification-
based system without in-built anomaly detection. 

VI. CONCLUSION 

In this article, we demonstrate the design and implementa-
tion of an on-blade sensor system for automated detection of 
blade collisions on wind turbines, with particular application 
to monitoring wind energy impacts on wildlife. Through this 
work, we have designed and deployed a multisensor system 
on an operational wind turbine and recorded both baseline 
vibration data and vibration during surrogate blade collisions. 
Using this field data, preprocessed and randomly split into 
training/testing data sets, we have developed, trained, and 
tested a two-step machine-learning algorithm for automated 
collision detection. 

The presented two-step algorithm makes use of a initial 
SVM-based anomaly detection stage, preselecting anomalous 
frames from all frames of sensor data recorded by the installed 
sensor module during normal wind turbine operation. The 
anomalous frames are provided to an AdaBoost classifier 
trained on all anomalous frames to provide automated blade 
collision detection. This new two-step approach was trained 
and tested using cross-validation, and then evaluated and com-
pared using the same data set with conventional classification 
approaches, including AdaBoost-only and naive amplitude-
based threshold detection. Our two-step approach improves 
upon both prior methods, with an average precision of 0.73 
over the complete recorded data test set. 

By developing and validating our automated blade collision 
detection algorithm using field test data from an operational 
wind turbine, we demonstrate real-world utility of this ap-
proach for future application to the monitoring and mitigation 
of wind turbine impacts on wildlife. In addition to monitoring 
blade collisions, the system and algorithmic approach may also 
be extended for broader structural health monitoring (SHM) 
of wind turbines, including ice accumulation on blades and 
lighting strikes, as well as other non-turbine SHM applications 
across multiple industries. 
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