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Smart Meters Enabling Voltage Monitoring and
Control: The Last-Mile Voltage Stability Issue

Nan Duan, Can Huang, Chih-Che Sun, and Liang Min

Abstract—This work investigates the voltage monitoring and
control feature for smart meters and identifies the impact of this
feature on both power distribution and communication systems.
Regarding the voltage monitoring, a co-simulation platform is
developed using GridLAB-D and ns-3 to analyze the impact of
adding voltage measurements to smart meter readings and assess
the mitigation strategies for reducing timeout errors and packet
drops of smart meter data. Regarding the voltage control, a
new voltage stability control scheme is developed, which applies
the voltage stability margin as the control objective, instead
of the traditional voltage magnitude. The proposed control
scheme makes use of existing advanced metering infrastructure
(AMI) and distributed energy resources (DERs), requiring small
marginal costs. It is indicated that integrating the voltage
monitoring and control feature, smart meters could enable the
voltage stability issues being solved at end-user sides, i.e., the
“last-mile” segment. It is also implied that the new feature could
support the coordination of the local and system-level voltage
controls using both customer-owned and utility-scale DERs.

Index Terms—smart meter, advanced metering infrastructure,
voltage measurement, voltage stability, co-simulation, distributed
energy resource, controllable load.

I. INTRODUCTION

SMART meters are an electronic device that performs
measurement of electric energy consumption and pro-

vides two-way communication between electricity suppliers
and customers for customer billing and system monitoring.
Compared with conventional electricity meters, smart meters
presents several advantages for both utilities and customers,
such as higher accuracy, lower cost, better visibility, and
greener energy consumption [1]–[3]. For those economic and
environmental benefits, an increasing number of smart meters
have been deployed around the world. For instance, in the
United States, it is reported that about 70 million smart meters
were installed from 2007 to 2016 [2], and a total of 90 million
smart meters will be invested by 2020, covering about 70%
of the electricity customers in the United States [3].

Recently, several review papers well summarized the func-
tions, applications, and technology trends of smart meters
[2]–[5], as shown in Fig. 1. They point out that it is ad-
vantageous to report energy consumption, together with real
power, reactive power, and voltage measurements, such that
smart meter data can be used for not only “load” billing
and motioning, but also “grid edge” situational awareness
[6]; and it is also beneficial to explore new applications
that extend the application scope from billing and monitoring
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Fig. 1. Smart meter measurements and applications: A brief review.

categories to control categories, enabling smart meters’ two-
way communication feature being fully utilized.

Voltage monitoring and control is one of the most likely
new applications. First, smart meters adopt voltage and cur-
rant transducers to measure energy consumption yielding an
inherent voltage monitoring capacity. Second, smart meters al-
low two-way communication, enabling sending and receiving
control commands in real-time or near real-time. Moreover,
the voltage monitoring and control application can provide a
new direction to address voltage stability issues. Traditionally,
we maintain voltage stability through controlling the power
system impedance at transmission sides [7]. While theoreti-
cally, we can also mitigate voltage instability at end-user sides
if end-users could provide sufficient real and reactive power
potentials with observability and controllability [8]. The latter
is becoming promising as nowadays increasing amounts of
distributed energy resources (DERs) and controllable loads are
available at the power grid edge. For example, the California
solar mandate, effective on January 1, 2020, requires new
construction homes to have a solar photovoltaic (PV) system as
an electricity source. Many DERs, such as PVs, can produce
both real and reactive power through controlling 4-quadrant
smart inverters [9]. Most controllable loads, such as heating,
ventilation, and air conditioning (HVAC), can reduce their
energy consumption adaptively according to demand response
programs [10]. Therefore, integrating the voltage monitoring
and control feature in smart meters will not only enhance
the situational awareness at the grid edge, such as DERs and
controllable loads, but also enable the voltage stability at the
end-user side, i.e., the “last-mile” segment.

However, there are challenges ahead. First, smart meters,
together with the communication network and meter data
management system, constitute the advanced metering in-
frastructure (AMI). For the historically passive nature of
power distribution systems, most utilities invested the AMI
communication network with limited bandwidth, and chose
to only record energy consumption in near real-time, such as
in every 15/30/60 min [5]. There is few research specifying
the impact of adding voltage measurements to smart meter
datasets, especially in the communication perspective [1]–[5].
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Second, even though several recent papers proposed voltage
stability control solutions using smart meter measurements and
DERs, their control objective focuses on the voltage magnitude
only. For example, in the Volt/Var optimization (VVO), the
control objective is to maintain the voltage magnitude within
a standard range (e.g., 0.9-1.05 p.u. according to ANSI C84.1
standard) [11], [12]. In reality, the voltage magnitude is not
a reliable indicator for voltage stability issues [13]. Excessive
studies show that only controlling the voltage magnitude could
lead to voltage collapse and even system-level faults [13]–[15].
For instance, Fig. 2 shows the PV curves at two locations
in a feeder. The voltage magnitude threshold 0.9 p.u. cannot
alert power system operators about the small stability margin
appearing at location B. Without proper mitigation actions,
potential voltage collapse could happen at location B.

Moreover, in the literature, most voltage stability control
schemes via DERs are designed from the utility perspective,
deploying utility-scale DERs for voltage regulation [16]. In
practice, utility-scale DERs are only available at limited lo-
cations, and they are in need of considerable costs to enable
the voltage regulation capability, such as the hardware and
software investment [17]. To this end, several papers proposed
the voltage control schemes using customer-owned DERs
for their wider availability and lower cost [18]–[20]. Those
schemes normally measure the voltage with DERs themselves
and control the voltage in a distributed manner. Nowadays,
there is no existing communication infrastructure between the
customer-owned DERs and utility control center [21]. It is still
a demanding task to investigate new efficient voltage control
schemes by customer-owned DERs, but enabling utility’s
visibility and controllability at the grid edge.

To tackle the challenges above, this work investigates the
new voltage monitoring and control feature for smart meters,
and identifies the impact of this feature on both power distri-
bution and communication systems. Specifically:

In terms of the voltage monitoring, the risk-benefit analysis
for adding voltage measurements to smart meter outputs is
presented, and the risk mitigation strategies along with the
co-simulation validation using GridLAB-D and ns-3 are pro-
posed. It is found that adding voltage measurements to smart
meter readings has small impact on the AMI communication
network, and the mitigation strategies can efficiently reduce
timeout errors and packet drops for smart meter data.

In terms of the voltage control, a new voltage stability
control scheme is developed, which applies the voltage stabil-
ity margin as the control objective, instead of the traditional
voltage magnitude. The proposed control scheme makes use
of existing AMI and DERs, requiring small marginal costs.
In particular, the proposed control scheme enables the voltage
stability issues being solved at the grid edge, i.e. the “last-
mile” segment, and also enhances the utility’s observability
and controllability at the grid edge.

Further, through integrating the voltage monitoring and
control feature, the smart meter can provide additional values
to utilities and customers. The co-simulation results imply
that this new feature could support the coordination of the
local and system-level voltage controls using both customer-
owned and utility-scale DERs. This is the first work that

Fig. 2. Real power transfer margins at locations with different PV curves.

considers voltage monitoring and control collectively for smart
meter investment. The results can help the power engineering
community supplement smart meter applications and shape the
next-generation smart meters.

The remainder of this paper is organized as follows: Section
II discusses the voltage monitoring issues and the correspond-
ing mitigation strategies; Sections III describes the proposed
voltage stability control schemes; and Sections IV and V
validate the proposed solutions with the co-simulation platform
and case studies. Finally, Section VI draws conclusions and
discusses future work.

II. VOLTAGE MONITORING

As aforementioned, smart meters have the inherent capacity
for voltage monitoring. The voltage measurements can support
various distribution-level applications, such as outage mon-
itoring, voltage stability assessment, and VVO. Regardless,
many utilities still choose to disable the voltage measurement
channel in their smart meters. For example, according to the
U.S. Department of Energy report, 32% of surveyed power
utilities did not support voltage monitoring in their AMI [22].

A major reason is that adding new measurements to smart
meter datasets will increase the payload size, which may lead
to timeout errors and even package drops in terms of the
limited bandwidth of AMI networks. This analysis is also true
for low-rate wireless personal area networks (LR-WPANs),
which are defined as AMI communication networks in IEEE
802.15.4 standard. Actually, many emerging technologies can
reduce the risk caused by the increased payload size.

The risk can be mitigated through re-routing communica-
tion paths of smart meters. Since most AMI networks are
configured as a meshed network, some meters may play a
role as communication hubs to forward meter reading mes-
sages from downstream meters to the head end (i.e., cell
relay). The increased packet size may prolong the processing
time and cause the timeout error for other messages in the
queue. Thus, re-planning the communication paths to avoid
tremendous messages run into the same meter can improve the
communication performance. Note that this method requires
the AMI network with flexibility, which means that a meter
should have multiple choices for selecting a parent/child node.

In addition, the risk can also be mitigated through re-
configuring message sending patterns. Depending on the data
usage, we can adjust the sending patterns or sending properties
to reduce the network traffic. For example, enlarging the
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sending time window and randomizing sending time for each
node, increasing the sending time interval, decreasing the
resolution of the data, etc.

This study assumes the data exchange between a smart
meter and its local inverter is facilitated by a home area
network (HAN). Although the inverters inherently measure
their terminal voltage, it is still advantageous to employ smart
meters to measure voltage. First, we can make use of the
existing AMI system to enable the communications between
the smart meter and the utility control center. Second, we can
extend our approach from the inverter to other actuators (e.g.,
controllable loads) for voltage instability mitigation. Due to
the limited space, the HAN is not thoroughly discussed in this
study. It can be a follow-up research direction to this study.

III. VOLTAGE CONTROL

The voltage stability issue is one of the most fundamental
problems in power engineering. It is traditionally formulated
for bulk power systems, and its solutions have evolved from
model-based control schemes to measurement-based control
schemes [13]. In power distribution systems, the model-based
control scheme is challenging since accurate and complete
distribution models, especially end-user load composition
models, are hard to obtain. Thus, this paper focuses on the
measurement-based control scheme at the grid edge.
A. Control Objective

The traditional measurement-based control schemes are
targeted at maintaining the voltage magnitude in a standard
range. In contrast, the proposed control scheme is aimed at
achieving the maximum voltage stability margin.

Originally, the voltage stability margin concept is proposed
for the voltage stability in bulk power systems [23], [24]. It re-
quires reactive power compensation equipment to be installed
in bulk power systems with considerable cost and complexity
[25]. Comparing to the voltage magnitude, the voltage stability
margin presents to be a more reliable indicator for voltage
stability. This is because the nature of voltage stability issues is
the power flow solution reaching the nose point of PV curves,
and the real power transfer margin, rather than the voltage
magnitude, can better reflect the actual distance between the
operation points of power flows and voltage collapses.

The proposed control scheme applies the voltage stability
margin concept for voltage stability at the grid edge, making
use of the existing real and reactive power resources at end-
user sides, without installing new power equipment. The
voltage stability margin can be estimated in the following way.

First, adopting Thevenin Equivalent (TE) theory to model
electricity end-users as split-phase loads. In power distribution
systems, each end-user is connected to a service transformer
through a split-phase circuit. As shown in Fig. 3, a customer
load is connected to a center tapped transformer, where |V1| =
|V2| and V1 and V2 have a phase difference of 180 degree.

Assuming smart meters support voltage monitoring, the split
phase voltage measurements V1, V2 and current measurements
Is1, Is2, Is12 can be obtained from smart meters. The load
apparent power SL can be calculated as

SL = (V1 − VN )I∗s1 + (VN − V2)I∗s2 + (V1 − V2)I∗s12 (1)

Fig. 3. Electricity end-user circuits: (a) Split-phase load circuits, (b) Thevenin
equivalent circuits.

As V2 = −V1 and VN = 0, we rewrite (1) as

SL = V1I
∗ (2)

I = Is1 + Is2 + 2Is12 (3)

If following other standards rather than the split-phase
standard in the U.S., the formulation of the apparent load can
be slightly modified. For example, in the single-phase standard
[26], (1)-(3) can be simplified to (2) with the line-to-neutral
voltage and the current flowing through the hot wire.

Next, according to TE theory, a power system can be
represented by Thevenin voltage and impedance as shown in
Fig. 3. Technically, Thevenin voltage ET = ET,re + jET,im

and Thevenin impedance ZT = RT + jXT can be estimated
through Kalman Filter (KF) using voltage measurements V1 =
V1,re+jV1,im, current measurements I = Ire+jIim, and their
measurement errors e in the following way.

z = Hx + e (4)

z =
[
V1,re V1,im

]T
(5)

H =

[
1 0 −Ire Iim
0 1 −Iim −Ire

]
(6)

x =
[
ET,re ET,im RT XT

]T
(7)

The voltage and impedance in x can be estimated at each
discrete time step t, which can be expressed as

Pt = (I−KtHt)Pt−1 (8)

Kt = PtH
T
t R

−1
t (9)

xt = xt−1 + Kt(zt −Htxt−1) (10)

where R is the covariance matrix of the measurement error.
Note that the KF algorithm above needs the voltage-phasor

measurement. This can be implemented through integrating
a phasor estimation algorithm in a smart meter [27]. For
instance, a hardware implementation study is proposed in [28],
which deploys a low-cost computation unit (average cost $13)
in a smart meter to achieve the phasor estimation goal.

Theoretically, when Thevenin impedance ZT equals to the
load apparent impedance ZL, we can achieve the maximum
real power transfer from the service transformer to the house-
hold [29]. Therefore, the maximum real power transfer can be
calculated as

Pmax =
|ET |2|YT |cosφ

2[1 + cos(φ+ β)]
(11)
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where φ is the load apparent power phase angle, cosφ is the
load power factor, YT is the Thevenin admittance (i.e. 1/ZT ),
and β is the angle of YT .

As a result, the real power transfer margin can be deter-
mined by the maximum real power transfer Pmax and the
load real power PL as

Pmargin = Pmax − PL (12)

Here, the real power transfer margin is selected as an
indicator to execute voltage stability control schemes. It can
indicate the maximum real power that can be transferred to an
electricity end-user without causing voltage instability (i.e.,
voltage stability margin).

To further assess the voltage stability at the grid edge (e.g.,
the risk of end-users suffering voltage instability), an index is
proposed as follows

η =
1

Nt

Nt−1∑
t=0

PL,t

Pmax,t
(13)

The index η is represented by a ratio between the real
power load and the maximum real power transfer limit from
a service transformer to an end-user, in an assessment period
comprising Nt meter readings. The index η smaller than “1”
reflects a sufficient real power transfer margin. The smaller η
refers to the larger voltage stability margin. In practice, the
maximum real power transfer limit could fluctuate as it is
estimated using measurement data. To this end, the average
value over an assessment period is recommended.

B. Voltage Stability Control Scheme

Real power control and reactive power compensation are
two common methods for voltage stability issues. This work
focuses on the later since DERs and four-quadrant inverters
are becoming increasingly available in distribution networks.

Here, a reactive power support approach is proposed for
voltage stability control at the grid edge, when the stability
index is estimated to be larger than an allowed threshold. With
properly calculated reactive power support, the power flow
solution at an end-user could be moved away from the voltage
stability boundary [30]. The proposed approach is different
from the other end-user level reactive power controls that aim
at minimizing network loss and improving power quality [31],
[32]. Instead of using local net reactive power and voltage
deviation as control objectives, the proposed approach controls
the real power transfer margin.

To achieve the maximum real power transfer, we need to
work out the maximum real power margin and the correspond-
ing reactive power support from end-users. This can be defined
as an optimization problem that seeks the power factor of net
load φ of an end-user that maximizes the objective Pmargin.
Here, φ is selected as the optimization variable because other
variables in (11) are estimated from TE. Those variables
depend on the system parameters external to the interested
end-user. Thus, they can not be influenced by the end-user.

Typically, the maximum real power margin can be calcu-
lated using the partial derivative of Pmargin with respect to
the load apparent power phase angle φ

∂Pmargin

∂φ
=
|ET |2|YT |

2

sinβ − sinφ
[1 + cos(φ+ β)]2

(14)

Then the maximum Pmargin can be achieved when
∂Pmargin/∂φ = 0, in which φ = β is a solution.

With a rooftop PV installation, PL + jQL can be reinter-
preted as the apparent netload of an end-user. The value of φ
can be adjusted by leveraging the four-quadrant control mode
of solar inverters. Within the inverter capacity Scap, in order
to achieve the maximum Pmargin, the required reactive power
support QPV can be calculated as

QPV =

{
QL − (PL − PPV )tanβ, |PPV + jQPV | ≤ Scap

(S2
cap − P 2

PV )1/2, Otherwise
(15)

Note that the inverter control logic is designed under the
assumption that the end-user level solar inverters do not par-
ticipate in the centralized VVO aiming at minimizing voltage
violations in distribution systems. Hence, they do not receive
commands from centralized controllers. Unlike VVO-based
voltage regulation approaches [33] that only minimize voltage
magnitude violation which could be deceptive regarding the
distance from the actual stability boundary, the proposed
approach controls the real power transfer margin. If not based
on the stability boundary, voltage magnitude control could
result in over-optimistic voltage stability assessment, which
could potentially lead to voltage collapses. Due to the limited
space, the interaction between the traditional VVO commands
and the proposed controls will be studied in future work.

C. Voltage Stability Proactive Control Scheme

The real power transfer margin estimated in real time
may not reflect the fast changing load condition of end-
users. Similarly, the power factor control signal based on
previous estimation may be outdated. In this case, forecast
models would enable look-ahead stability margin estimation
and proactive control on behind-the-meter DERs. An autore-
gressive integrated moving average (ARIMA) model is used in
[34] to model the end-user electricity usage. The same forecast
model structure can be applied to measurements {Mt : t ∈ T},
where T is the time index set. For this application, seven
forecast models are fitted for V1,re, V1,im, Is1,re + Is12,re,
Is1,im + Is12,im,Is2,re + Is12,re, Is2,im + Is12,im, PPV . Those
direct measurements are chosen is because they directly re-
flect the end-user behavior statistically. On the other hand,
estimated quantities such as Pmargin and β have a mixture
of influences from the local end-user behavior, neighbouring
end-user behavior, and Kalman filter, and thus are difficult to
be fitted to low-order ARIMA models. Comparing with other
complex surrogate models, ARIMA models have advantages
on the low computation complexity and small size. These
features very fit smart meter applications because of smart
meters’ constraints on limited computing power and memory
space. The ARIMA model details can be found in Appendix.



5

IV. CO-SIMULATION DEVELOPMENT

To simulate the proposed voltage monitoring, control, and
communication via smart meters in a scalable way, a co-
simulation platform is developed. An illustrative diagram of
the co-simulation platform is shown in Fig. 4.

The co-simulation platform couples the proposed models
and algorithms implemented in Python with the triplex meter
objects in GridLAB-D [35] and ns-3 [36]. The coupling
mechanism is handled through the hierarchical engine for
large-scale infrastructure co-simulation (HELICS) [37]. The
voltage and current measurements are defined as publica-
tions subscribed by the real power transfer margin estimation
algorithm. When the predictive estimation and control are
enabled, solar inverter’s real power output is published to the
solar forecast algorithm. The inverter objects in GridLAB-D
subscribe to power factor commands from the inverter control
algorithm. The predictive module is implemented using Python
package statsmodels [38]. All the software dependencies are
managed using Spack [39], an open-source flexible package
manager.

The co-simulation platform can simulate both the power dis-
tribution system (including the distribution substation, feeder,
transformer, and house), the AMI communication network
(involving the data center, cell relay, and smart meter), and
their interactions. Here, IEEE 13-node feeder with 629 houses
as shown in Fig. 5 is selected as the test system. The mapping
of the nodes and houses and the mapping of the nodes, cell
relays, and smart meters are summarized in TABLE I and
TABLE II, respectively. In particular, each house is connected
to a 4.16kV node through a 4.16kV/240V transformer and
a triplex meter. Each customer load comprises cooling and
heating, water heater, and ZIP loads (representing lighting).

TABLE I
MAPPING OF NODES AND HOUSES

Node Phase-number of houses Node Phase-number of houses
632 A-2, B-6, C-10 652 A-41
671 A-62, B-59, C-71 634 A-1, B-4, C-5
675 A-73, B-112, C-70 692 A-52, B-10, C-5
645 B-21 646 B-18
611 C-7

TABLE II
MAPPING OF CELL RELAYS, SMART METERS, AND DISTRIBUTION NODES

Cell relay ID Smart meter ID Node
0 0 - 17 632
1 18 - 58 652
2 59 - 250 671
3 251 - 260 634
4 261 - 515 675
5 516 - 582 692
6 583 - 603 645
7 604 - 621 646
8 622 - 628 611

The schedule of cooling, heating, water tank, and lighting
set points are randomized across all customers. The customer
loads are modeled with the house object in GridLAB-D.

Fig. 4. Co-simulation platform for voltage monitoring, control, and commu-
nication via GridLAB-D, ns-3, and HELICS.

Fig. 5. Co-simulation test system: IEEE 13-node feeder with 629 houses.

V. CASE STUDIES

In this section, a set of case studies is carried on the HELICS
co-simulation platform and IEEE 13-node feeder test system
to verify the performances of the proposed methods.

A. Voltage Monitoring Impact on AMI Network

To study the impact of adding voltage measurements to
smart meter messages, a fictitious AMI communication net-
work is simulated by ns-3 simulator.

TABLE III
TEST RESULTS OF THE PROPOSED MITIGATION STRATEGIES

Sending time window (sec) Packet loss rate of full system (%)
10 (base case) 8.24

11 6.05
12 4.54
13 3.93
14 3.39
15 2.82
16 2.44
17 2.20
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Fig. 6. AMI network performances w/ and w/o voltage readings.

In this fictitious network, following up TABLE II, 629 smart
meters are connected to nine cell relays, and the nine cell
relays are configured on nine responding distribution nodes,
respectively. In the simulation, a 15-minute reading interval
is selected for smart meter setting, since this time interval
is increasingly deployed by utilities and the shorter time
interval is favorable for advanced applications, such as demand
response programs [22].

First, we test the AMI network performances without and
with voltage measurements. The simulation results are shown
in Fig. 6. It is observed that in most cell relays, the packet loss
rates increase slightly after enabling the voltage monitoring
feature. Cell relays 2 and 4 suffer greater impact due to
their connecting with more smart meters with more complex
connectivity. Note that the network complexity is measured by
the average tree depth of a cell relay, which means the average
message hops traveling from each meter to a cell relay.

As discussed in Section II, the impact can be mitigated
through re-configuring message sending patterns. To this end,
we test the AMI network performances under different mes-
sage sending patterns. In the base case, all the smart meters
are required to send the messages within 10 sec right after
the scheduled data polling in every 15 minutes, and in the
other cases, the smart meters are required with incremental
sending time windows. The test results are shown in TABLE
III. It is observed that when the sending time window increases
slightly, the packet loss rate for the total nine cell relays
is improved significantly. In particular, when the sending
time window increases to 17 sec, the total package loss rate
decreases to 2.2%, which is very close to the rate 2.0%
(i.e. Total Loss Rate W/o VM in Fig. 6). Therefore, the test
results suggest that adding voltage measurements to smart
meter readings has small impact on the AMI network, and the
emerging mitigation strategies can efficiently reduce timeout
errors and packet drops for smart meter data.

B. Stability Margin Estimation

Next, we test the proposed stability margin estimation algo-
rithm. Each house’s real power transfer margin is estimated by
the voltage and current measurements collected from the local
triplex meter. Due to the limited space, the estimation results
for a phase-A house at node 652, a phase-B house at node 645
and a phase-C house at node 671 are selected and shown in
Fig. 7. It is observed that the margin between the maximum
real power transfer and the actual real power consumed by the
customers becomes very small multiple times a day. There are
also several interesting findings as explained below.

Fig. 7(a) shows that the node-652 voltage decreases signifi-
cantly below 115V around 4PM when most loads in the feeder
reach their peaks. This is partially because node 652 is at the
edge of the feeder (i.e. far away from the substation). Also, the
current measurements in Fig. 7(a) suggest that the dominant
load component for this household is cooling/heating which
periodically activates to maintain the indoor temperature. The
estimated real power transfer margin reflects this characteristic
and fluctuates drastically through the day.

Fig. 7(b) describes a load profile with a different character-
istic. From the current measurements, it can be observed that
the ZIP load component (i.e. lighting) in this household takes
a bigger percentage than the household in Fig. 7(a). Hence,
the total load has a relatively large base value defined by the
lighting load and fluctuations due to cooling/heating loads.
Also, this household load is well maintained below the real
power transfer limit except at 12PM, when the cooling/heating
systems operate more frequently.

In addition, 7(c) also demonstrates a different load profile
with a unique pattern. From the current measurements, mul-
tiple spikes can be found through the day. This household
has a higher percentage of water heater load. The water
heater operation will lead to temporary spikes in current
measurements.

Those different load profiles contribute to the diversity of
customer behaviors in a real power grid. For such diverse
load profiles, aggregated real power transfer margin estimation
is unable to capture all the granular indications of voltage
instability. In this case, the proposed approach is helpful for
filling this situational awareness gap.

C. Voltage Stability Control

With the actionable information provided by the stability
margin estimation algorithm, the proposed pin-pointed inverter
based voltage stability control scheme can be implemented.
When the real power transfer margin is smaller than a pre-
defined threshold, the proposed control scheme calculates the
most effective Var support value to maximize the real power
transfer limit. The Var support is then actuated though a power
factor setpoint command sent to the inverter.

Fig. 8 shows the baseline voltage stability indices at 629
houses in different seasons. In spring and fall, the voltage
stability indices at most houses are below 0.5, while in
summer and winter, when the HVAC and water heaters are
heavily used, the indices shift to large values. Note that the
index is calculated with the TE algorithm and KF estimation,
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Fig. 7. Estimation results: (a) Phase A house at downstream of node 652 (b) Phase B house at downstream of node 645 (c) Phase C house at downstream
of node 671. The four rows show the margin between the maximum real power transfer and the actual real power consumed by the customer, the margin
between the estimated TE impedance and the load impedance, the voltage measurements, the current measurements, respectively.

which are subject to numerical limitations and estimation
errors, respectively. Thus, the index larger than “1” does not
necessarily imply instability, rather, it indicates the stability
margin is smaller than the desired value and mitigation actions
are required.

Fig. 9 shows the improved voltage stability index ∆η after
applying the proposed voltage control scheme, as well as the
numbers of the control signals sent from the meters to the
inverters. It is observed that indices at most end-user sides
are improved, where the maximum ∆η is 0.072 at meter 548
and the minimum ∆η is -0.05 at meter 368. After comparing
the power factor control commands sent to meter 548 (most
improved) and 368 (least improved) as shown in Fig. 10, we
find an interesting result that although meter 368 sends much
more control commands than meter 548, it is still unable to
improve its voltage stability index. This phenomenon may
implicate the limitation of local measurement-based voltage
stability control. The coordination of local control and system-
level control may achieve better results.

Fig. 8. Histogram of stability indices of 629 houses in different seasons.

Fig. 9. Voltage stability control results: (a) Stability index improvement ∆η
for all 629 houses; (b) Number of control signals sent to inverters.

Fig. 10. Inverter power factor control signals for house 548 and 368.

D. Proactive Control

For the proposed proactive control, the prediction produced
by the serialized ARIMA models are shown in Fig. 11. Here,
the measurements from previous two days are used as the
training data. A grid search approach is applied offline to
identify the best-performance model orders. After the ARIMA
models are trained, they are serialized with the Python Pickle
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Fig. 11. Time series prediction using best-performance ARIMA models.

module. It is found that for measurements with a well-defined
trend, such as voltage and inverter real power outputs, the
ARIMA models produce better prediction comparing to the
fast changing current measurements. Although the magnitudes
of current measurement are not well captured, the models can
still capture the cooling/heating systems’ start/stop cadences
throughout a 24-hour window. Without the predictive function-
ality, due to the outdated reactive power support commands,
the average improvement of voltage stability index ∆η of all
629 houses is 0.0054. With the predictive functionality, it is
improved to 0.0096. The advantage of the predictive approach
can be better demonstrated if a FIDVR event is propagated
from the bulk power grid, which requires co-simulation of
both transmission and distribution systems [40].

E. Location Prioritization

In practice, transmitting voltage readings to the utility data
center allows the utility to apply high-level control logic as

an adjustment to local control logic. This is useful especially
when there are high-level constraints that are challenging to
be implemented locally.

For example, if the utility is constrained by user enrollment
for reactive power support programs, it has to prioritize a
certain number of locations for reactive power generation. In
this case study, the centralized algorithm collects all voltage
readings and ranks the calculated stability indices for all
locations. If only a particular number of locations are allowed
for reactive power generation, the utility selects the least
stable locations to send control commands. The scenarios
for prioritizing 100 and 200 locations are studied. The total
reactive power generation at all nodes are shown in Fig. 12.
It shows that as the number of prioritized locations increases,
more reactive power is generated across all nodes.

The proposed approach also provides the flexibility to apply
finer granularity changes at the end-user level. The different
reactive power generation at houses downstream of node 675
phase B (the node and phase with the most customers) with
different prioritization scenarios are shown in Fig. 13. It shows
that when the number of locations allowed for reactive power
generation changes, the contribution from each house also
changes based on how unstable they are comparing to not
only the houses under the same node but also those under
other nodes in the network. This enables different levels of
flexibility for reactive power support comparing to using a
small number of utility-scale DERs.

Fig. 12. Reactive power generation at the node level with different prioriti-
zation scenarios.

F. Computational Cost Analysis

The fast execution is critical for online applications. The
execution time in TABLE IV suggests that both the real power
transfer margin estimation and the reactive power support
calculation can be completed within 1 ms. The ARIMA
prediction takes relatively longer time but still around 79.9 ms.
In this work, those algorithms are run on a laptop instead of
a single-board computer. While considering those algorithms
are only executed in a smart meter in every 15 minutes, the
computational complexity should not be a limitation for their
online applications.

VI. CONCLUSION

This work investigates the new voltage monitoring and
control feature for smart meters, and identifies the impact of
this feature on both power distribution and communication
systems. Regarding the voltage monitoring, the risk-benefit
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Fig. 13. Reactive power generation at the house level with different prioritization scenarios.

TABLE IV
AVERAGE TIME PERFORMANCE

Functionality Average time (ms)
Voltage stability margin calculation 0.5

Var support calculation 0.2
ARIMA predition 79.9

analysis for adding voltage measurements to smart meter
outputs is presented, and the risk mitigation strategies along
with the co-simulation validation using GridLAB-D and ns-3
are proposed. It is found that adding voltage measurements to
smart meter readings has small impact on the AMI commu-
nication network, and the mitigation strategies can efficiently
reduce timeout errors and packet drops for smart meter data.
Regarding the voltage control, a new voltage stability con-
trol scheme is developed, which applies the voltage stability
margin as the control objective, instead of the traditional
voltage magnitude. The proposed control scheme makes use
of existing AMI and DERs, requiring small marginal costs.

Through integrating the voltage monitoring and control
feature, smart meters can provide additional values to utilities
and customers. To be specified, it is indicated that the feature
could solve the voltage stability issues at end-user sides, i.e.,
the “last-mile” segment. It is also implied that the feature could
support the coordination of the local and system-level voltage
controls using both customer-owned and utility-scale DERS.
This is the first work that considers voltage monitoring and
control collectively for smart meters. The results can help
the power engineering community supplement smart meter
applications and shape the next-generation smart meters.

The future work could include investigating the interaction
between residential-level margin-based reactive power support
and utility-level VVO operations. Identifying the potential
benefits of other optional smart meter measurements is also
an interesting research topic.

APPENDIX
ARIMA MODEL

An ARIMA(p, d, q) model for {Mt : t ∈ T} can be defined
by three terms, including differentiation Od, autoregression γ,
and moving average θ [41]:

γ(Bp)OdMt = θ(Bq)Zt (16)

BnMt = Mt−n (17)

γ(Bp) = 1− γ1B − ...− γpBp (18)

θ(Bq) = 1 + θ1B + ...+ θqB
q (19)

OdMt = Mt −Mt−d (20)

Zt ∼ N(0, σ2
Z) (21)

where p, d, q are the orders of auto-regression, differentiation
and moving average terms respectively; Bn is the n-th order
backshift operator; Zt is white noise.

The offline training of an ARIMA model should be carried
out periodically constrained by the memory of a smart meter.
With locally stored historical data, the smart meter can update
its ARIMA model before the historical data are removed for
new recordings. Although smart meters have limited memory
space (e.g., CENTRON meter has 256KB RAM and 512KB
flash [42]), the implementation of the technology would po-
tentially require connecting a single-board computer (e.g.,
BeagleBone Black with 512MB DDR3 RAM [43]) to the
meter. The training task should be a local computing task with
minimum communication traffic. The communication traffic
this process could potentially generate is the command for
resetting the training period, which will come from the utility.
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Czech Republic, Sep. 2012, pp. 136–140.

[42] “CENTRON GPRS SmartMeter data sheet,” Itron, Liberty Lake, Wash-
ington.

[43] “BeagleBone Black open-source Linux computer unleashes innovation,”
White Paper, Texas Instruments, Aug. 2018.

Nan Duan (S’14–M’18–SM’20) received his B.S. in automation from Beijing
University of Technology, Beijing, China, M.Eng. in control engineering
from Beihang University, Beijing, China and Ph.D. in electrical engineering
from the University of Tennessee, Knoxville, TN, USA, in 2010, 2013 and
2018, respectively. He is currently a power systems engineer with Lawrence
Livermore National Laboratory, CA, USA. His research interests include
power system modeling, high-performance computing, machine learning, and
synchrophasor applications.

Can Huang (S’13–M’16–SM’18) received the B.S.E.E degree from Hohai
University, Nanjing, China, in 2008, the M.S.E.E. degree from Southeast
University, Nanjing, China, in 2011, and the Ph.D. degree in electrical
engineering from the University of Tennessee, Knoxville, TN, USA, in 2016.
Now he is a research staff with Lawrence Livermore National Laboratory,
Livermore, CA, USA. His current research interests include smart sensors,
data analytics, and machine learning for energy and power systems, cyber-
physical systems, and Internet of Things.

Chih-Che Sun (S’15-M’20) received the Ph.D. degree in electrical engineer-
ing from the Washington State University, Pullman, WA, USA, in 2019. He
is currently a postdoctoral research staff with Lawrence Livermore National
Laboratory, Livermore, CA, USA. His current research interests include cyber-
physical systems (CPS) security, and their modeling and simulation.

Liang Min (S’05–M’07–SM’12) received the B.S. and M.S. degrees from
Tianjin University, Tianjin, China, in 2001 and 2004, respectively, and the
Ph.D. degree from Texas A&M University, College Station, TX, USA, in
2007, all in electrical engineering. He is currently the managing director with
the Bits & Watts initiative at Stanford University, CA, USA. His current
research interests include the simulation and analysis of national critical
infrastructure with a particular focus on energy infrastructure.


