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2 I We are making integrated photonic waveguides for atom
interferometry

Measurement sequence
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3 I Neutral-atom photonic devices bring fieldable technology and ﬁ.i
new physics ,
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4 I Guided atom interferometry on chip would bring new

capabilities :
Sequence with deleterious rotation.
* 1-D atoms guide ensures atoms pass through each other Off axis motion reduces signal.
. Compact and potentially integrable was photonics and y L.
electrical systems m/2 pulse =,

* Parallel systems on same chip

. . . wait T .
* Strong light-atom interactions
* Low power Raman beams F
lab frame g
rotates by 6 - T
waveguide mode free space mode mm pulse and ! I
1 um scale 3 mm waist wait T T
- 2
1 um* area ~ 107 um? area no signal! |
Waveguide needs 107 less power for same intensity!




s | Trapped 38 Cs atoms with atom guide

\’o\ar'\laﬂon Amy
Commercial fiber o %
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(See S02.9 Friday 9:36 am for more details)
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P685nm = 25mW

* Two-color evanescent fields provide

repulsive/attractive forces to trap atoms.

Trap: 435 pK

Potential Energy [mK]
O

* 1-D dipole trap configuration with Cs magic-

02
wavelengths
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e Trap depth = 435 ukK
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* Trapped 38 Cs Atoms ' ' . | .
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¢ I Steps to making Al photonic platform

Waveguide overlaps with MOT

Waveguide for two color atoms trap ——  Atoms trapped on waveguide for Al

Waveguide power handling for deep trap

Use nanofiber as guide

435 pK deep trap for order 50 Cs atoms



7 | We have previously demonstrated from MOT on chip cut out

Si substrate
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s I Designing the photonic waveguide form the atom trap
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o | Ve fabricate a photonic waveguide chip for atom trapping

cutout for MOT

membrane

waveguide

937 nm
—
793 nm

Experimental sequence

Turn on 793nm & 937nm trap
Generate MOT around waveguide
Sub-doppler cool

Cs atoms cooled into the trap




Major problem is heat dissipation on deep traps

Propagation loss: Broke at 100 yW Well below the ~10 mW needed
1.0 to 4.5 dB/cm at A = 935nm 500 pm span

Expected 0.1 dB/cm from previous
alumina quality

SANDIA SEl  10.0kV X300 10ym WD 16.0mm
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The waveguides are poor heat sinks
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2 | Engineered structures to heat sink

chip
Add

= Si needle
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13 | Back of the envelop calculation:
atoms at a given power

dN

=t = o, — B2 —
= Ry exp(y Rord N 0
Ny =R/T=C Vloading (Uparrier— ksTumor)

calculate from nanofiber \

Loading volume Barrier height

1 U — kpT
v [ o L=l el
V(Utrap<Tmor) dt
Assumes:

steady state loading

low density of atoms trapped

decay set by fixed heating rate (big assumption)

same MOT and MOT-waveguide overlap as nanofiber

Estimating number of trapped
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14 I Conclusion: we are in a position to trap atoms and perform
guided Al on a photonic chip
= Waveguide fabricated for two color atoms trap
= Waveguide exceed power handling needed for trapping
= Chips designed to accommodate MOT formation on trap

= Ready to fabricate for testing with MOT
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18 I Mach-Zehnder Atom Interferometer sense acceleration

* Doppler sensitive Raman transitions impart a momentum of ~2AK onto  atom
* Three pulse sequence splits, redirects, and recombines atomic wavepackets
* Laser phase is imprinted onto the wavepacket resulting in precise measurement of

spatial phase shift between arms
* Sensitivity can be increased by

* Longer interrogation time T

* Large momentum kick Wl
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19 I Nano fiber trapping guides our development
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