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2 We are making integrated photonic waveguides for atom
interferometry
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focused on
making the photonic device and
overcoming heat dissipation



3 Neutral-atom photonic devices bring fieldable technology and
new physics

Concept:
fully integrated atomic devices

Photonic device for

cold atom experiments
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Fifteen years of coldmatter on the atom chip: promise, realizations, and prospects, M
Keil et. la., JOURNAL OF MODERN OPTICS VOL. 63, NO. 18, 1840-1885 (2016)
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Advanced apparatus for the integration of nanophotonics and cold atoms,
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4 I Guided atom interferometry on chip would bring new
capabilities

• 1-D atoms guide ensures atoms pass through each other

• Compact and potentially integrable was photonics and
electrical systems

• Parallel systems on same chip

• Strong light-atom interactions

• Low power Raman beams

waveguide mode

1 um scale

- 1 um2 area

free space mode

3 mm waist

- 107 um2 area
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Sequence with deleterious rotation.
Off axis motion reduces signal.
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Waveguide needs 107 less power for same intensity!



5  Trapped 38 Cs atoms with atom guide
?okackiat,on 937nm

Commercial fiber

Core 0 - 5 pm

Cladding 0 - 125 pm

Waist length = lcm 0.6

Waist 0 - 430nm

(See S02.9 Friday 9:36 am for more details)

• Two-color evanescent fields provide

repulsive/attractive forces to trap atoms.

• 1-D dipole trap configuration with Cs magic-
wavelengths

• Trap depth = 435 µK

• Trapped 38 Cs Atoms
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6 I Steps to making Al photonic platform

Waveguide overlaps with MOT

Waveguide for two color atoms trap ,..

Waveguide power handling for deep trap

Use nanofiber as guide

435 pK deep trap for order 50 Cs atoms

Atoms trapped on waveguide for AI



7 We have previously demonstrated from MOT on chip cut out
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8 Designing the photonic waveguide form the atom trap

cross section:
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9 We fabricate a photonic waveguide chip for atom trapping

cutout for MOT

membrane

waveguide
937 nm

793 nm

Experimental sequence

Turn on 793nm & 937nm trap

Generate MOT around waveguide

Sub-doppler cool

Cs atoms cooled into the trap
ped



10 Major problem is heat dissipation on deep traps

Propagation loss:

1.0 to 4.5 dB/cm at X, = 935nm

Expected 0.1 dB/cm from previous
alumina quality

SANDIA SEI 10.0IN X300 1Opm WD 16.0mm



11 I The waveguides are poor heat sinks

AT = 
PopticalLpropagation

chip:

waveguide
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12 I Engineered structures to heat sink

Add

• Si needle

•Parabolic
membrane tapper
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13 Back of the envelop calculation: Estimating number of trapped
atoms at a given power

dN 
=

dt 
R0 exp(y

N max = RIF =

FN —

C Vloading(Ubarrier— kBTMOT)
A

I

calculate from nanofiber

R oc

Loading volume

f
V(Utrap<TMOT)

dV PMOT

\
Barrier height

1 Utrap — kBTMOT
— =
F dQ

dt
0
0 10 20 30 40

Assumes: Total power (57% 793 nm; 43% 937 nm) [mVV]
steady state loading

low density of atoms trapped

decay set by fixed heating rate (big assumption)

same MOT and VOT-waveguide overlap as nanofiber

Current devices



14 I Conclusion: we are in a position to trap atoms and perform
guided Al on a photonic chip

• Waveguide fabricated for two color atoms trap

• Waveguide exceed power handling needed for trapping

• Chips designed to accommodate MOT formation on trap

N Ready to fabricate for testing with MOT



15 Acknowledgements

AMO Team

William Kindell Adrian Orozco1,2 Jongmin Leel

Fabrication Team 

Katherine Musick1 Nicholas Karl1 Michael Gehl1

Grant Biedermann3 Yuan-Yu Jaul

Andrew Leenheer1 Andrew Starbuck1 Christina Dan&

1. Sandia National Laboratories
2. Center for Quantum Information and Control, University of New Mexico
3. Center for Quantum Research and Technology, University of Oklahoma

.017? 1—A•
ma1 Viptelfi‘14







18  Mach-Zehnder Atom Interferometer sense acceleration

• Doppler sensitive Raman transitions impart a momentum of —2 hk onto atom

• Three pulse sequence splits, redirects, and recombines atomic wavepackets

• Laser phase is imprinted onto the wavepacket resulting in precise measurement of
spatial-phase shift between arms

• Sensitivity can be increased by
• Longer interrogation time T
• Large momentum kick
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19 I Nano fiber trapping guides our development
937nm

Trap depth = 435 pK

685nm
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