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Introduction — Need for Domestic Rare Earth
Element (REE) Sources

A domestic supply of REEs is needed for national security and economic
gains
In 2010, DOE identified Y, Nd, Eu, Tb and Dy as critical REEs crucial for military
applications, green energy, electronic industries

REEs are typically not found in concentrated ores and are difficult to extract
and separate

~100 million tons of coal ash was generated in 2018 which contains > 2x
current U.S. consumption of REEs
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In 2016, the US imported
100% of our REEs
(16,000 metric tons
mostly from China)



http://geology.com/articles/rare-earth-elements/

Infroduction - Why Coal Ash?

REEs have previously been leached from lignite coal (Laudal 2018) and coal

refuse (Honaker 2018).

But REE concentrations are typically higher in ash than in coal and refuse
(https://edx.netl.doe.gov/ree/?p=875)

Incentive for further investigation of REE extraction from coal ash
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https://edx.netl.doe.gov/ree/?p=875

Feedstock materials N=|NATONAL

Partnership with Electric Power Research Institute (EPRI) T TECHNOLOGY
LABORATORY
Coal, bottom ash, landfilled ash, ponded ash, fly ash samples obtained.
Fly ash particles are smallest
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Taggart et al. (2016) only obtained 15-45 wt% REE extracted from fly ash TECHNOLOGY
derived from bituminous lllinois and Appalachian coals using LABORATORY
concenfrated 15 M HNO,.

Minimal Recovery of REE from Bituminous Coals, Ash NATIONAL
T

. . . . . FA = Fly Ash
In this work, REE recovery from all bituminous coals is low (ranging from BA = Bottom Ash
1-15%) using less concentrated 2 M HCOOH or 2 M H,SO,. CO = Coal

LA = Landfilled Ash
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REE recovery from sub-bituminous coal and its ash byproducts TECHNOLOGY
ranged from 14-40% (vs 1-15% for bit coals) when using 2 M LABORATORY
H,SO, as exiraction agent.

Taggart et al. (2016) used 15 M HNO, to recover 50-90 wi% REE
from fly ash derived from sub-bituminous PRB coals.

Modest REE recovery from sub-bit coal with H,SO, NATIONAL
T
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Up to 66% REE recovery from sub-bit coal with HCOOH N=|NAToNAL

REE recovery from sub-bit fly ash jumps to 61-66% when using 2 M HCOOH as extraction TECHNOLOGY
agent (comparable to Taggart results with much more concentrated 15 M HNO,). T LABORATORY

REE recovery from sub-bit ponded, landfilled, and fly ashes are comparable.
Interestingly, HCOOH yields higher recovery from sub-bit ash than H,SO,.

On the other hand, REE recovery from sub-bit coal (HCOOH extraction) is much less than
that obtained using H,SO, as extractive agent.
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Ca content as a proxy for REE Extractability from

Coal and Coal Ash NATIONAL
T

Taggart et al. (2016) used 15 M HNO, to recover 50-90 wi% REE from fly ash TN o
derived from sub-bituminous PRB coails.

HCOOH extraction - Ca content rough proxy for REE extractability from
sub-bituminous-derived and bituminous-derived bottom ash.

Kolker et al (2016) note that sub-bituminous PRB coal contains REE-
associating Ca- and Fe-bearing aluminosilicates that may be more
extractable than unsubstituted Al-Si.
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Ca content as a proxy for REE Extractability from

Coal and Coal Ash NATIONAL
T

HCOOH extraction - Ca content rough proxy for REE extractability, but EE%IC-I)'\RIETLSI%Y
exiraction from ponded ash and fly ash (most particles < 50 microns) likel
quicker than exiraction from bottom ash (most particles < 100 microns).

Kolker et al (2016) note that sub-bituminous PRB coal contains REE-
associating Ca- and Fe-bearing aluminosilicates that may be more
extractable than unsubstituted Al-Si.
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Ca content as a proxy for REE Extractability from

Coal and Coal Ash

HCOOH extraction - Ca content rough proxy for REE extractability, but
may require longer extraction time to recover REE from relatively larger
bottom ash particles.

H,SO, extraction — REE extractability has weak correlation to Ca content.
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o
XRD - Fresh Fly Ash Fresh Fly ash | [[NJ= |NATLONAL
o T TECHNOLOGY
 Several Ca-rich crystalline LABORATORY
minerals are detected by °
XRD. ° ® Quartz - SiO,
® Periclase — MgO
 An amorphous phase of I o Lime — Ca0
unknown composition ® o ol o . e Merwinite — Ca;Mg(SiO,),
(indiccﬂed by the raised N__ﬁ,wvvj\ . o0 ° 'ﬂ oo © T .o| o Silicon standard
baseline) is also detected. Amorphous o Gehlenite — Ca,Al(AlSiO,)
10 30 50 70 © Anhydrite — CaSO,
o Mullite — 3A1,0,*2Si0,
(©)

Diopside — MgCaSi,O,

Raised baseline
signifies presence of
amorphous phase.
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Ca content as a proxy for REE Ex’rractablllty from Coadl

and Coal Ash Fresh Fly Ash N NATIONAL
XRD results suggest that the result T TECHNOLOGY

of H,SO, extraction is the LABORATORY
deposition of a layer of CaSO, or o
CaSO,*2H,0 (gypsum) on o
surface of fly ash particles.

This behavior prevents further REE ol e o
(©)

extraction and is why there is no M”

strong dependence between
REE exiraction, Ca content when o
H,SO, is extractive agent. 1
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o NATIONAL
XRD - Fresh Fly Ash resh Fiy ash | |N
. o T TECHNOLOGY
* MgO, CaO, Ca;Mg(SiO,),, LABORATORY
Ca,Al(AlSiO;), and CaSO, °
are extracted using ° ° SU?TZ—S% .
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Choice of Ash SRy
Questions to Answer
* What type of ash makes for the best feedstock for the acid

leaching?
* Fly Ash, Ponded Ash, Bottom Ash tested

Boiler |

Ash Pond

- Ponded Ash

NERGY 18




Which type of ash is best feedstock? N =|NATIONAL

T TECHNOLOGY

REE exiraction from ponded, fly ash quicker than from bottom ash. LABORATORY

Fly ash preferable to ponded ash - it can be used as is, without pre-grinding.
Leaching With Nitric Acid
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What acid is best suited to extraction of REEs?

Strong acids (HCI, HNO,) result in higher yield and faster
extaction kinetics than weak organic acid (acetic acid).

Leaching From Fly Ash
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High-Temperature Acetic Acid vs. Strong Acids

— |[NATIONAL
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- o . . . T TECHNOLOGY
Raising temperature to 70° C accelerates kinetics of acetic acid extraction, LABORATORY
but exiraction is still faster with strong acids at room temperature.

Leaching From Fly Ash
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High-Temperature Acetic Acid vs. Strong Acids

Raising temperature to 70° C accelerates kinetics of acetic acid extraction,
but exiraction is still faster with strong acids at room temperature.

Leaching From Fly Ash
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What is the effect of reaction temperature on recovery?
Extractability Index — Acetic Acid
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Conclusions and Future Work ”A"°”“
« High-Ca,Mg ash derived from sub-bituminous coal is much
more extractable than low-Ca,Mg ash derived from

bituminous coals.

« Organic acid extraction shows promising results
comparable to yield obtained with concentrated HNO.,.

- H,S0, not recommended as extractant for high-Ca content
ashes because CaSO, will precipitate.

« Other strong acids (HNO,, HCI) provide most rapid
extraction kinetics and also the highest REE 7% yield.

« Approximately 70% REE recovery after 30 minutes achieved
when 2M HCI, 1.2 M HNO, extraction agent used.

« Use of lower acid concentration (1 M) may increase
selectivity for REE during extraction.

I
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Feedstock materials

Sample ID
50185-FA
50184-FA
25428-FA
50185-BA
50184-BA
25428-BA
25428-CO
25428-PA
50185-LA
25410-BA
25410-CO
25410-PA
35469-FA
35468-FA
35469-BA
35468-BA
35468-LA
35469-CO
35468-CO
35469-PA
35468-PA

Type of Parent Coal
Sub-bituminous
Sub-bituminous
Sub-bituminous
Sub-bituminous
Sub-bituminous
Sub-bituminous
Sub-bituminous
Sub-bituminous

Sub-bituminous, bituminous
Sub-bituminous, bituminous
Sub-bituminous, bituminous
Sub-bituminous, bituminous
Bituminous
Bituminous
Bituminous
Bituminous
Bituminous
Bituminous
Bituminous
Bituminous

Bituminous

3, U.S. DEPARTMENT OF

JENERGY

Origin of Parent Coal
PRB
PRB
PRB
PRB
PRB
PRB
PRB
PRB
PRB,
PRB, Illinois Basin
PRB, Illinois Basin
PRB, Illinois Basin
Illinois Basin, CAPP, NAPP
Illinois Basin, CAPP, NAPP
Illinois Basin, CAPP, NAPP
Illinois Basin, CAPP, NAPP
Illinois Basin, CAPP, NAPP
Illinois Basin, CAPP, NAPP
Illinois Basin, CAPP, NAPP
lllinois Basin, CAPP, NAPP
lllinois Basin, CAPP, NAPP

dgo (Hm)
26.2
30.0
28.1
32.9
87.8
112
91.6
66.3
96.2
153
90.0
35.9
33.5
61.6
133
466
525
115
113
44.0
38.4

REE
210
306
262
108
247
196
20
223
277
238
18
213
271
279
283
265
256
30
20
281
278

REY
243
355
301
127
290
229
24
257
322
278
22
251
325
344
333
321
313
36
24
335
342

REY+Sc
265
384
327
136
313
250

26
276
345
302

25
273
358
379
364
354
340

39

26
364
372

N
T

NATIONAL

TECHNOLOGY
LABORATORY

28



Rare Earth Species in Solid Coal and Coal
Byproducts

1. Minerals (most common)
* Monazite — Rare Earth Phosphate
 Bastnasite — Rare Earth Fluorocarbonate
2. Colloidal Rare Earth Oxides/Hydroxides

3. lon-Adsorbing clays
4. Organically Associated (important in lignite)

‘," ;’.r.,__ﬁ U.S. DEPARTMENT OF
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Correlation between % Ash and % REE Exiracted

We considered 19 fly ash, ponded ash, landfilled ash, bottom ash derived
from sub-bituminous and bituminous coals, as well as the parent coals

Formic acid extraction tests reveal that REE % extracted is correlated with

overall ash % exiracted.

Matrix minerals in which the REE are trapped must be solubilized in order

to solubilize the REE.
Does coal type (bituminous vs. sub-bituminous) maiter?

=% U.S. DEPARTMENT OF
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Primary matrix minerals present - Sub-bituminous vs.
. . NATIONAL
Bituminous Ash N
TECHNOLOGY

Al, Si oxides often comprise more than 80% of bituminous ash (ref T LABORATORY
Dai 2014, Taggart 2016, Hower 2004 and Lin 2017) but only
around 60% of sub-bituminous ash (ref Taggart 2016).

REE in ashes derived from bituminous coals are primarily trapped
within Al-Si glass matrix (Stuckman et al., 2018, Thompson et al.,

Si Content (ppm)
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Primary matrix minerals present - Sub-bituminous
vs. Bituminous Ash
However, Group 2 Ca and Mg compositions are considerably

higher in sub-bituminous than bituminous ash (ref agreement
with Taggart 2016).

REEs in sub-bituminous coal may be trapped in either Al-Si or
Ca matrix (Stuckman 2018)
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Exiraction from Fly Ash — LREE vs. HREE N=|Harona

Ca extractability is very weak when H,SO, is extractive agent. T- %EN(EEI(N;I)LOGY

Extractability of Fe, Al is similar to that of Y, HREE (Tb, Dy, Ho, Er, Tm, Yb, Lu). LABORATORY

Results are consistent with conclusion (Stuckman et al., 2018) that the HREE are
more likely to be found in Fe-rich aluminosilicates. LREE = Light REE

HREE = Heavy REE
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m H2504
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Exiraction from Fly Ash — LREE vs. HREE N=|Harona

Sub-bituminous fly ash - HCOOH and H,SO, solubility values are comparable for T- %EN(EEICN;BLOGY

most major components (Na, Mg, Al, Si, K, Ti, and Fe). LABORATORY
However, Ca exiractability is much greater in HCOOH than H,SO,.
Extractability of Fe, Al is similar to that of Y, HREE (Tb, Dy, Ho, Er, Tm, Yb, Lu). LREE = Light REE

Results are consistent with conclusion (Stuckman et al., 2018) that the HREE are HREE = Heavv REE
more likely to be found in Fe-rich aluminosilicates, while LREE (La, Ce, Pr, Nd, Sm, y

Eu, Gd) are found in Ca-rich aluminosilicates.
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100 100
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Exiraction from Ponded Ash — LREE vs. HREE N =|NATONAL
T_ TECHNOLOGY

Sub-bituminous fly ash - HCOOH and H2SO4 solubilii)y values are comparable for LABORATORY
e).

most major components (Na, Mg, Al Si, K, Ti, and F
However, Ca solubility is much greater in HCOOH than H2SO4.
Extractability of Fe, Al is similar to that of Y, HREE (Tb, Dy, Ho, Er, Tm, Yb, Lu).

Results are consistent with conclusion (Stuckman 2018) that the HREE are more likely
to be found in Fe-rich aluminosilicates, while LREE are found in Ca-rich
aluminosilicates.

HREE may primarily be associated with amorphous phase.
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Exiraction from Bottom Ash — LREE vs. HREE N = |NATIONAL

T TECHNOLOGY

Sub-bituminous fly ash — Ca solubility is much greater in HCOOH than H,SO,. LABORATORY

Extractability of Fe, Al is similar to that of Y, HREE (Tb, Dy, Ho, Er, Tm, Yb, Lu).

Results are consistent with conclusion (Stuckman 2018) that the HREE are more
likely to be found in Fe-rich aluminosilicates, while LREE are found in Ca-rich

aluminosilicates.
HREE may primarily be associated with amorphous phase.
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Extraction of Co, Ga, Ge from Fly Ash =[enercy
Sub-bituminous fly ash - HCOOH and H,SO, solubility values are comparable T LABORATORY

for most major components (Na, Mg, Al, Si, K, Ti, and Fe).
However, Ca solubility is much greater in HCOOH than H2SO4.

Co, Ga, Ge solubility correlated with solubility of Mg, Al, K - likely they are not
associated with the Ca-bearing species in fly ash.
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Extraction of Co, Ga, Ge from Ponded Ash E'ﬁ‘Ek%'ﬁ'r“

Sub-bifuminous fly ash ~ HCOOH and H,SO, solubity values TL | Rs0ka1oRy
are comcf)arable or most major componen4fs (Na, Mg, Al, Si,

K, Ti, and Fe).
nosvucl)ever, Ca solubility is much greater in HCOOH than
2 4

Co, Ga, Ge solubility correlated with solubility of Mg, Al, K -
likely they are not associated with the Ca-bearing species

in ponded ash. 25428-PA 25428-PA
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Extraction of Co, Ga, Ge from Bottom Ash 'E'ﬁ‘E.'z%ﬁ'r“

TECHNOLOGY
Sub-bituminous fly ash - HCOOH and H,SO, solubility values are LABORATORY
codmpq)rable for most major componenfs (I\Alq, Mg, Al, Si, K, Ti,

and Fe).

However, Ca solubility is much greater in HCOOH than H2SOA4.

Co, Ga, Ge solubility correlated with solubility of Mg, Al, K - likely
they are not associated with the Ca-bearing species in bottom

ash.
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Kinetic Models For Extraction
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Leaching From Fly Ash, Acetic Acid

>
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* A, A,-related to initial reactant concentrations 0
k,, k,- apparent rate constants (k, being larger)
* R./IREE]..- theoretical maximum recovery/concentration
H e o He H H* H He o HY T Reer oW
H H Ash Matrix e H* REE™ H* "
H+
. H* REE™ ne
H* g H e REE
REE > REEé |:> H e
. REE R H* +
H H . H* REE™ H
H* H N '
He REE REE"™ H H* g
H H* H* o e H* H*
L L H* H* H

F#=%.  U.S. DEPARTMENT OF

& I W)

coce
......
...........
ee®
oo
0o
o

1000
Time (min)

500

1500 2000

40



