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INTRODUCTION 

 
MPACT [1] is the deterministic neutron transport code 

in VERA. It calculates the neutron power distribution and the 
characteristic eigenvalue of the system. The transport 
problem is solved using the 2D/1D method, with the method 
of characteristics (MOC) solving 2D radial planes and 1D 
NEM-P3 for the axial calculation. To improve the efficiency 
of the calculation, the coarse-mesh finite difference (CMFD) 
solver is introduced to accelerate the higher order transport 
solution and to couple the 2D and 1D transport problems [1]. 
The CMFD solver is very effective in accelerating the 
transport solution, but improvements in other parts of the 
code, including MOC [2], subgroup, [3] and cross section 
processing, have led to CMFD taking up a significant portion 
of the runtime. An artificially diffusive CMFD solver has 
been implemented in MPACT which is unconditionally 
stable, unlike standard CMFD which is unstable for cells with 
large optical thickness [4]. This method was shown to 
converge as fast or faster than standard CMFD for all optical 
thicknesses. To further reduce runtime and cost of the CMFD 
solver and to improve the code’s efficiency, multigrid 
methodologies can be leveraged. Multigrid methods reduce 
the total work performed in the problem by moving some of 
the work to a set of equations with reduced dimensionality. 
In CMFD, the two main variables in which this coarsening 
can be accomplished are energy and space. Several CMFD 
solvers have been developed which use two energy levels in 
energy to reduce the work in the CMFD problem [5–6]. A 
multilevel in space and energy diffusion (MSED) solver was 
developed for MPACT which uses two levels in energy and 
a multigrid-in-space linear solver [7]. MSED has also been 
implemented as a solver for CMFD. Multilevel Using CMFD 
solvers with multiple grids in energy was shown to have 
advantages over using only two levels [8].  

This paper discusses several multilevel CMFD methods 
that were developed by reducing the dimensionality in energy 
and space and implemented in MPACT. These methods are 
(1) a multilevel-in-energy (MLE) CMFD solver with 
multiple energy grids [9], (2) a multilevel-in-space (MLS) 
CMFD solver with three spatial levels [10–12], and (3) a 
multilevel-in-space-and-energy (MLSE) CMFD solver that 
combines the MLE and MLS CMFD solvers [13]. These 
methods are described herein, and their performances are 
compared for reactor problems of interest. 

 
MULTILEVEL CMFD IN MPACT 

 
Conventional CMFD 

 
CMFD was originally developed for reducing the storage 

for nodal diffusion problems [14] but much later was found 
to be an excellent acceleration scheme for the fine mesh 
transport method that was used to generate the nodal 
diffusion parameters [15]. The CMFD equations consist of 
the balance equation and a generalized Fick’s Law equation: 

 !𝐽!,#,$𝐴!,$
$

+ Σ%,!,#𝜙&,#𝑉!

= ! )Σ$',!,#(→#

*

#′,-

+
𝜒#
𝑘.//

νΣ/,!,#(-𝜙!,#(𝑉! 		, 

(1) 

 
J!,#,$ = −𝐷3!,#,$4𝜙!,# − 𝜙!,#,$5 + 𝐷6!,#,$4𝜙!,# + 𝜙!,#,$5 (2) 
  

where 𝑗 is the CMFD cell index, 𝑔 is the group, 𝑠 is a surface 
of cell 𝑗, and 
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A correction term is introduced to the diffusion coefficient 
and defined such that it yields an exact closure preserving the 
net current between the transport and modified diffusion 
equations:  
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Upon convergence, the fine mesh transport solution and 
CMFD solutions will be the same. The CMFD equations are 
solved on a coarser mesh than the transport solution. The 
restriction from the transport to the CMFD problem is defined 
by a flux-volume homogenization. The coarse CMFD spatial 
cell is usually defined as a homogenized pin cell.  

Typically, there is one MOC plane for each axial CMFD 
node. The 2D radial MOC sweeps have a high dimensionality 
which makes them quite expensive, so it is advantageous to 
reduce the number of axial planes on which that problem is 
solved. The subplane method allows one MOC plane to be 
used to characterize multiple axial levels [16–17]. The 
CMFD problem is solved with the original axial resolution to 



 

 

preserve the accuracy of the solution. The subplane method 
is effective in reducing the number of MOC planes that need 
to be solved, but it also moves more of the work into the 
CMFD problem, making an efficient solver even more 
important. 

 
 

Multilevel-in-Energy (MLE) CMFD 
 
The MLE CMFD problem is defined by formulating the 

CMFD equations on a sequence of successively coarsening 
in energy grids. The first energy grid has the same energy 
group structure as the transport problem. The coarsest energy 
grid is defined to be two groups. The solver iterates through 
each CMFD level using a multigrid V-cycle structure, 
illustrated in Fig. 1. The cycle begins with restriction steps 
moving recursively from the finest energy level to coarser 
energy grids. Restriction from a parent grid to a coarser child 
grid is performed by averaging the cross sections and CMFD 
coefficients with a flux-weighted homogenization. Pre-sweep 
smoothing is performed on each level besides the coarsest 
one, by performing a fixed source sweep using the flux from 
the last sweep on that grid and the most recent eigenvalue. 
On the coarsest grid, the eigenvalue problem is solved on two 
groups using shifted power iterations. During the 
prolongation steps fixed source sweeps are solved as post-
sweep smoothing on every grid from the second coarsest to 
the finest. The fission source on each grid is calculated using 
the updated eigenvalue and prolongated flux from previous 
coarser grid. 

  
Fig. 1. Multigrid V-Cycle for three levels, FS – fixed source 
sweep, EV – eigenvalue iterations. 

 
Different numbers of levels and different groups on each 

level were investigated. It was found that three levels with a 
uniform constriction factor (i.e., (1 2⁄ 𝐺)- 86-⁄ , where 𝐺 is 
the original number of groups, and where 𝛤 is the number of 
energy levels) between each level has given the best and most 
consistent results for a variety of problems [13]. 

 
Multilevel-in-Space (MLS) CMFD 

 
An MLS CMFD solver has also been implemented with 

coarsening in space. This solver formulates the CMFD 

problem on three levels of spatial discretization. The first 
level is the original CMFD mesh with pin cell 
homogenization and full axial resolution. The second level 
collapses radially to quarter assemblies with the same axial 
mesh as the first level. The third and coarsest level is 
collapsed axially to MOC subplanes and radially to quarter 
assemblies. If subplanes are not employed, then this 
effectively becomes a two-level method with radial collapse 
only. Restriction in space is performed using a flux-volume 
homogenization CMFD-like operator. This hierarchy of 
levels is solved using the same V-cycle type algorithm 
illustrated in Fig. 1 above. 

 
Multilevel-in-Space-and-Energy (MLSE) CMFD 

 
Both the MLS and MLE CMFD solvers were found to 

be effective in reducing the work in the CMFD problem [13]. 
It is possible to combine these two strategies to create the 
multilevel-in-space-and-energy (MLSE) CMFD solver, 
which is even more efficient. This solver has three levels, 
with coarsening in space and energy between each level. The 
first level has the original pin and axial spatial mesh and the 
full energy group structure. The third grid is quarter assembly 
and subplane collapsed with two energy groups.  

 
RESULTS 

 
Numerical results are presented to demonstrate the 

efficiency of the various versions of CMFD solvers. The first 
problem is an AP1000-type reactor with Sanmen Unit 1 
Cycle 1 core layout. This problem was run using 1,136 
processors. Table I shows the number of transport outer 
iterations, the total time for each solver method, and the 
speedup compared to the standard CMFD solver for this 
problem. Typically, with the standard CMFD solver, the 
solution only takes 15–20 outer iterations to converge, but 
this challenging problem takes 55 iterations. Table I shows 
that the multilevel methods can reduce the number of outer 
iterations by more than half. This means that the multilevel 
CMFD solvers do a better job accelerating the transport 
problem than just CMFD. The MLE and MLS CMFD solvers 
more than double and triple the speed compared to standard 
CMFD. The combined MLSE CMFD has almost a 4× 
speedup.  

 
TABLE I. AP1000 problem runtime. 

Solver 
Outer 

iterations 
Total time 

[min] 
Total 

speedup 
CMFD 55 59.07 - 

MLE CMFD 33 26.00 2.27 
MLS CMFD 21 16.88 3.50 

MLSE CMFD 19 15.37 3.84 
 
The second problem is Consortium for Advanced 

Simulation of Light Water Reactors (CASL) Progression 
Problem 9 [18]. The problem consists of a Watts Bar Nuclear 



 

 

Unit 1 full core with Westinghouse 17×17-type fuel 
assemblies and Cycle 1 depletion. Problem 9 includes 
thermal hydraulic feedback and has 32 depletion states. Table 
II summarizes the outer iterations and runtime for Problem 9. 
Both MLE and MLS CMFD speed up the solver for this 
problem, and MLSE CMFD shows the fastest time. For this 
problem with feedback and depletion, the transport and 
CMFD solver do not make up as large a component of the 
runtime, so the change in total runtime is not as drastic. 
Figure 2 plots the total runtime on each depletion state, 
demonstrating that the ML CMFD solvers perform 
consistently well, even for states in which the standard 
CMFD solver takes considerably longer. 

 
 

TABLE II. Problem 9 runtime. 

Solver 
Outer 

iterations 
Total time 

[hr] 
Total 

speedup 
CMFD 876 59.07 - 

MLE CMFD 605 37.67 1.57 
MLS CMFD 525 35.62 1.66 

MLSE CMFD 514 34.68 1.70 
 

 
Fig. 2. Problem 9 runtime per state and core power over 

burnup. 
 
 

CONCLUSIONS 
 
Multilevel CMFD solvers were developed to improve 

the efficiency of the transport eigenvalue solver in MPACT 
by leveraging multilevel strategies to improve the efficiency 
of the CMFD solver and further accelerate the transport 
problem. The MLE CMFD solver used coarsening over 
groups to create two or more energy levels. MLS CMFD used 
a CMFD spatial collapse in the radial and axial dimensions 
on three levels. Each of these methods significantly speedup 
the CMFD solver. The MLSE CMFD solver combines these 
strategies to further improve their efficiently. All of these 
multilevel methods show increased speed compared to 
standard CMFD, but the MLSE CMFD solver shows the best 

performance for a variety of reactor physics problems. Work 
is being performed to make MLSE CMFD the default solver 
to provide MPACT and VERA users with the best 
performance possible. 

 
ACKNOWLEDGEMENTS 
 

This research used resources of the Compute and Data 
Environment for Science (CADES) at the Oak Ridge 
National Laboratory, which is supported by the Office of 
Science of the U.S. Department of Energy under Contract No. 
DE-AC05-00OR22725. 

 
REFERENCES  
 

1. B. S. Collins et al., “Stability and Accuracy of 3D 
Neutron Transport Simulations Using the 2D/1D 
Method in MPACT,” Journal of Computational 
Physics, 326, pp. 612–628 (2016). 

2. S. G. Stimpson, B. S. Collins, and B. Kochunas. 
“Improvement of Transport-Corrected Scattering 
Stability and Performance Using a Jacobi Inscatter 
Algorithm for 2D-MOC,” Annals of Nuclear 
Energy, 105, pp. 1–10 (2017).  

3. S. G. Stimpson, Y. Liu, B. S. Collins, and K. Clarno. 
“A Lumped Parameter MOC Approach and 
Multigroup Kernels Applied to Subgroup Self-
Shielding in MPACT,” Nuclear Engineering and 
Technology, 49, pp. 1240–1249 (2017). 

4. Zhu, Ang, et al. "An optimally diffusive Coarse 
Mesh Finite Difference method to accelerate 
neutron transport calculations." Annals of Nuclear 
Energy 95, pp:116-124(2016). 

5. J. I. Yoon, H. G. Joo, “Two-Level Coarse Mesh 
Finite Difference Formulation with Multigroup 
Source Expansion Nodal Kernels,” Journal of 
Nuclear Science and Technology, 45 (7), pp. 668–
682 (2008). 

6. Z. Zhong, T. J. Downar, Y. Xu, M.D. Dehart, K. T. 
Clarno, “ Implementation of two-level coarse mesh 
finite difference acceleration in an arbitrary 
geometry, two-dimensional discrete ordinates 
transport method,” Nuclear Science and 
Engineering, 158 (3), pp. 289-298. 

7. Yee, B.C., Kochunas, B. and Larsen, E.W., 2019. 
A Multilevel in Space and Energy Solver for 3-D 
Multigroup Diffusion and Coarse-Mesh Finite 
Difference Eigenvalue Problems. Nuclear Science 
and Engineering, 193(7), pp.722-745(2019) 

8. L. R. Cornejo, “Multilevel Methods with Multiple 
Grids in Energy for Multigroup Eigenvalue 
Transport Problems,” PhD Dissertation, North 
Carolina State University (2018). 

9. B. S. Collins and S. G. Stimpson. “Acceleration 
Method for Whole Core Reactor Simulations Using 

0
500
1000
1500
2000
2500
3000
3500
4000

0

50

100

150

200

250

0 5 10 15 20

Co
re

 P
ow

er
 [M

W
]

Ti
m

e 
Pe

r S
ta

te
 [m

in
]

Burnup [GWd/MT]

Power CMFD MLE CMFD

MLS CMFD MLSE CMFD



 

 

VERA.” Transaction of the American Nuclear 
Society, volume 118, pp. 929–932 (2018).  

10. S. G. Stimpson, A. Graham and B. Collins, 
“Enhancements to Subplane Capability in 
MPACT,” CASL-U-2018-1738-000, CASL, March 
27, 2019. 

11. S. G. Stimpson, A. M. Graham, and B. S. Collins, 
“Performance Improvements to the 2D/1D 
Subplane Method in MPACT,” M&C 2019, August 
25–29, Portland OR (2019). 

12. S. G. Stimpson, A. M. Graham, and B. S. Collins, 
“Subgrid Treatment of Spacer Grids in the 2D/1D 
Subplane Method in MPACT,” M&C 2019, August 
25–29, Portland OR (2019). 

13. L. R. Cornejo, B. S. Collins, and S. G. Stimpson, 
“Multilevel CMFD Acceleration Methods for 
Whole Core Reactor Simulation in VERA,” 
PHYSOR 2020, March 29–April 2, Cambridge UK 
(2020). 

14. K. S. Smith. “Nodal Method Storage Reduction by 
Nonlinear Iteration.” Trans. Am. Nucl. Soc., 44:265 
(1983). 

15. K. Smith and J. Rhodes, “Full-core, 2-D, LWR core 
calculations with CASMO-4E,” PHYSOR 2002, 
American Nuclear Society, Seoul, Korea (2002). 

16. A. M. Graham, “Subgrid Methods for Resolving 
Axial Heterogeneity in Planar Synthesis Solutions 
for the Boltzmann Transport Equation,” PhD 
Dissertation, University of Michigan (2017). 

17. A. Graham et al., “Subplane Collision Probabilities 
Method Applied to Control Rod Cusping in 2D/1D,” 
Ann. Nucl. Energy, 118, pp. 1–14 (2018). 

18. A. Godfrey, “VERA Core Physics Benchmark 
Progression Problem Specifications,” Revision 4, 
CASL-U-2012-0131-004, Revision 4, CASL, 
August 29, 2014. http://www.casl.gov/docs/CASL-
U-2012-0131-004.pdf 
 


