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INTRODUCTION

MPACT [1] is the deterministic neutron transport code
in VERA. It calculates the neutron power distribution and the
characteristic eigenvalue of the system. The transport
problem is solved using the 2D/1D method, with the method
of characteristics (MOC) solving 2D radial planes and 1D
NEM-P; for the axial calculation. To improve the efficiency
of the calculation, the coarse-mesh finite difference (CMFD)
solver is introduced to accelerate the higher order transport
solution and to couple the 2D and 1D transport problems [1].
The CMFD solver is very effective in accelerating the
transport solution, but improvements in other parts of the
code, including MOC [2], subgroup, [3] and cross section
processing, have led to CMFD taking up a significant portion
of the runtime. An artificially diffusive CMFD solver has
been implemented in MPACT which is unconditionally
stable, unlike standard CMFD which is unstable for cells with
large optical thickness [4]. This method was shown to
converge as fast or faster than standard CMFD for all optical
thicknesses. To further reduce runtime and cost of the CMFD
solver and to improve the code’s efficiency, multigrid
methodologies can be leveraged. Multigrid methods reduce
the total work performed in the problem by moving some of
the work to a set of equations with reduced dimensionality.
In CMFD, the two main variables in which this coarsening
can be accomplished are energy and space. Several CMFD
solvers have been developed which use two energy levels in
energy to reduce the work in the CMFD problem [5—6]. A
multilevel in space and energy diffusion (MSED) solver was
developed for MPACT which uses two levels in energy and
a multigrid-in-space linear solver [7]. MSED has also been
implemented as a solver for CMFD. Multilevel Using CMFD
solvers with multiple grids in energy was shown to have
advantages over using only two levels [8].

This paper discusses several multilevel CMFD methods
that were developed by reducing the dimensionality in energy
and space and implemented in MPACT. These methods are
(1) a multilevel-in-energy (MLE) CMFD solver with
multiple energy grids [9], (2) a multilevel-in-space (MLS)
CMFD solver with three spatial levels [10-12], and (3) a
multilevel-in-space-and-energy (MLSE) CMFD solver that
combines the MLE and MLS CMFD solvers [13]. These
methods are described herein, and their performances are
compared for reactor problems of interest.

MULTILEVEL CMFD IN MPACT

Conventional CMFD

CMFD was originally developed for reducing the storage
for nodal diffusion problems [14] but much later was found
to be an excellent acceleration scheme for the fine mesh
transport method that was used to generate the nodal
diffusion parameters [15]. The CMFD equations consist of
the balance equation and a generalized Fick’s Law equation:
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A correction term is introduced to the diffusion coefficient
and defined such that it yields an exact closure preserving the
net current between the transport and modified diffusion
equations:
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Upon convergence, the fine mesh transport solution and
CMFD solutions will be the same. The CMFD equations are
solved on a coarser mesh than the transport solution. The
restriction from the transport to the CMFD problem is defined
by a flux-volume homogenization. The coarse CMFD spatial
cell is usually defined as a homogenized pin cell.

Typically, there is one MOC plane for each axial CMFD
node. The 2D radial MOC sweeps have a high dimensionality
which makes them quite expensive, so it is advantageous to
reduce the number of axial planes on which that problem is
solved. The subplane method allows one MOC plane to be
used to characterize multiple axial levels [16-17]. The
CMFD problem is solved with the original axial resolution to
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preserve the accuracy of the solution. The subplane method
is effective in reducing the number of MOC planes that need
to be solved, but it also moves more of the work into the
CMFD problem, making an efficient solver even more
important.

Multilevel-in-Energy (MLE) CMFD

The MLE CMFD problem is defined by formulating the
CMFD equations on a sequence of successively coarsening
in energy grids. The first energy grid has the same energy
group structure as the transport problem. The coarsest energy
grid is defined to be two groups. The solver iterates through
each CMFD level using a multigrid V-cycle structure,
illustrated in Fig. 1. The cycle begins with restriction steps
moving recursively from the finest energy level to coarser
energy grids. Restriction from a parent grid to a coarser child
grid is performed by averaging the cross sections and CMFD
coefficients with a flux-weighted homogenization. Pre-sweep
smoothing is performed on each level besides the coarsest
one, by performing a fixed source sweep using the flux from
the last sweep on that grid and the most recent eigenvalue.
On the coarsest grid, the eigenvalue problem is solved on two
groups using shifted power iterations. During the
prolongation steps fixed source sweeps are solved as post-
sweep smoothing on every grid from the second coarsest to
the finest. The fission source on each grid is calculated using
the updated eigenvalue and prolongated flux from previous
coarser grid.

Level 1

Fig. 1. Multigrid V-Cycle for three levels, FS — fixed source
sweep, EV — eigenvalue iterations.

Different numbers of levels and different groups on each
level were investigated. It was found that three levels with a
uniform constriction factor (i.e., (1/2 G)YT"1, where G is
the original number of groups, and where I is the number of
energy levels) between each level has given the best and most
consistent results for a variety of problems [13].

Multilevel-in-Space (MLS) CMFD

An MLS CMFD solver has also been implemented with
coarsening in space. This solver formulates the CMFD

problem on three levels of spatial discretization. The first
level is the original CMFD mesh with pin cell
homogenization and full axial resolution. The second level
collapses radially to quarter assemblies with the same axial
mesh as the first level. The third and coarsest level is
collapsed axially to MOC subplanes and radially to quarter
assemblies. If subplanes are not employed, then this
effectively becomes a two-level method with radial collapse
only. Restriction in space is performed using a flux-volume
homogenization CMFD-like operator. This hierarchy of
levels is solved using the same V-cycle type algorithm
illustrated in Fig. 1 above.

Multilevel-in-Space-and-Energy (MLSE) CMFD

Both the MLS and MLE CMFD solvers were found to
be effective in reducing the work in the CMFD problem [13].
It is possible to combine these two strategies to create the
multilevel-in-space-and-energy (MLSE) CMFD solver,
which is even more efficient. This solver has three levels,
with coarsening in space and energy between each level. The
first level has the original pin and axial spatial mesh and the
full energy group structure. The third grid is quarter assembly
and subplane collapsed with two energy groups.

RESULTS

Numerical results are presented to demonstrate the
efficiency of the various versions of CMFD solvers. The first
problem is an AP1000-type reactor with Sanmen Unit 1
Cycle 1 core layout. This problem was run using 1,136
processors. Table I shows the number of transport outer
iterations, the total time for each solver method, and the
speedup compared to the standard CMFD solver for this
problem. Typically, with the standard CMFD solver, the
solution only takes 15-20 outer iterations to converge, but
this challenging problem takes 55 iterations. Table I shows
that the multilevel methods can reduce the number of outer
iterations by more than half. This means that the multilevel
CMFD solvers do a better job accelerating the transport
problem than just CMFD. The MLE and MLS CMFD solvers
more than double and triple the speed compared to standard
CMFD. The combined MLSE CMFD has almost a 4x
speedup.

TABLE I. AP1000 problem runtime.

Outer Total time Total
Solver iterations [min] speedup
CMFD 55 59.07 -
MLE CMFD 33 26.00 2.27
MLS CMFD 21 16.88 3.50
MLSE CMFD 19 15.37 3.84

The second problem is Consortium for Advanced
Simulation of Light Water Reactors (CASL) Progression
Problem 9 [18]. The problem consists of a Watts Bar Nuclear



Unit 1 full core with Westinghouse 17x17-type fuel
assemblies and Cycle 1 depletion. Problem 9 includes
thermal hydraulic feedback and has 32 depletion states. Table
II summarizes the outer iterations and runtime for Problem 9.
Both MLE and MLS CMFD speed up the solver for this
problem, and MLSE CMFD shows the fastest time. For this
problem with feedback and depletion, the transport and
CMFD solver do not make up as large a component of the
runtime, so the change in total runtime is not as drastic.
Figure 2 plots the total runtime on each depletion state,
demonstrating that the ML CMFD solvers perform
consistently well, even for states in which the standard
CMFD solver takes considerably longer.

TABLE II. Problem 9 runtime.

Outer Total time Total
Solver iterations [hr] speedup
CMFD 876 59.07 -
MLE CMFD 605 37.67 1.57
MLS CMFD 525 35.62 1.66
MLSE CMFD 514 34.68 1.70
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Fig. 2. Problem 9 runtime per state and core power over
burnup.

CONCLUSIONS

Multilevel CMFD solvers were developed to improve
the efficiency of the transport eigenvalue solver in MPACT
by leveraging multilevel strategies to improve the efficiency
of the CMFD solver and further accelerate the transport
problem. The MLE CMFD solver used coarsening over
groups to create two or more energy levels. MLS CMFD used
a CMFD spatial collapse in the radial and axial dimensions
on three levels. Each of these methods significantly speedup
the CMFD solver. The MLSE CMFD solver combines these
strategies to further improve their efficiently. All of these
multilevel methods show increased speed compared to
standard CMFD, but the MLSE CMFD solver shows the best
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performance for a variety of reactor physics problems. Work
is being performed to make MLSE CMFD the default solver
to providle MPACT and VERA users with the best
performance possible.
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