This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 5499C

Garbled circuits for enabling privacy preserving safeguards

Mitchell Negus!, Rachel Slaybaugh!, and David Farley?

University of California, Berkeley
2Sandia National Laboratories*

July 2020

Abstract

International safeguards rely on mutual cooperation between an international inspector and a
State facility. However, only safeguards data agreed upon through the joint Comprehensive
Safeguards Agreement (CSA) is necessarily made available to the IAEA. On one hand, the
inspector desires as much information as is needed to be assured that material is not diverted,
or that such a diversion is detected in a timely manner. On the other, the State facility aims
to minimize operational disruptions and prevent the exposure of any information that it deems
private or proprietary. These separate concerns can be at odds, but recent developments in
the field of secure multi-party computation may offer a solution. Secure multi-party compu-
tation allows multiple parties to evaluate functions together, learning the answer to a given
question without exposing the private inputs of any party. For safeguards, an inspector and a
facility could corroborate evidence of compliance without the facility ever needing to share any
data beyond its current commitments. Garbled circuits, a class of multi-party computation
algorithms, can facilitate this interaction. As a demonstration, garbled circuits are applied
to time series data sets and correctly identify irregular patterns without ever accessing the
data directly. This result suggests that garbled circuits can also be used to detect anomalous
safeguards events—or ideally their absence—without access to the original data streams.

1 Introduction

International nuclear safeguards are the primary key mechanism for preventing the prolif-
eration of nuclear weapons and nuclear weapons technology. These safeguards—most often
established by a Comprehensive Safeguards Agreement (CSA) concluded between the Inter-
national Atomic Energy Agency (IAEA) and a member State—provide for the monitoring of
all peaceful nuclear material in the possession of the member[1]. While the safeguards prac-
tices outlined in these CSAs share many of the same foundational principals, procedures, and
technical implementations, each CSA is negotiated on a case-by-case basis. The agreements
are crafted to balance the reasonable objectives of both parties. For the IAEA, this objective

**Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

is to prevent the diversion of nuclear material to unauthorized, or worse, malicious entities
[1]. States likely share this objective, but must also consider the security and privacy of their
data. A prudent state may be reluctant to share any data that is not explicitly required under
its CSA, even if it might be useful in identifying material diversions or could corroborate a
narrative of smooth and compliant operation.

Modern data-analytics present a myriad of opportunities for expanding nuclear safeguards
capabilities [2, 3, 4]. When applied to increasingly prevalent digital instrumentation and
sensor networks, pattern recognition and anomaly detection algorithms could facilitate near-
instantaneous alerts of abnormal circumstances, including the potential diversion of nuclear
material. However, for data sources that are not already covered by a safeguards agreement, it
would be within the rights of a State to refuse to provide collected information to inspectors.
To improve the chances that a State is willing to share such supplemental information, inspec-
tors could leverage advancements in the field of secure multiparty computation (MPC). MPC
allows two or more parties to jointly perform a calculation using inputs from both parties,
learn the common output, but never learn the input from any other party [5]. In this scenario,
a State or facility could provide some safeguards relevant data stream, the inspector could
provide criteria supporting normal operation, and together the two parties jointly determine
if the facility was operating as expected. To demonstrate this technique, this work applies
multiparty computation to time series data, identifying abnormal events while never exposing
the time series to the evaluator.

Garbled circuits were chosen as the specific subclass of MPC used to evaluate the time
series data. The underlying concepts were postulated by Andrew Yao in the mid-1980s to
extend privacy-preserving computation to arbitrary functions [6, 7, 8]. Then, by framing
a calculation as a boolean circuit of logic gates, any computable function can be evaluated
securely. Generally, the process entails two parties, a circuit generator and a circuit evaluator,
executing an interactive procedure.

2 The Garbled Circuit Protocol

The protocol begins with both parties agreeing on the function to compute, and then developing
a virtual logic circuit (like the one shown in Figure 1) that properly evaluates the selected
function. In the most basic case, this circuit will consist of some number of virtual boolean
gates (NOT, AND, OR, NAND, NOR, XOR, XNOR) connected by virtual wires [8, 5]. The
input wires to this circuit represent the inputs of the two parties to the function, with some
subset of the wires corresponding to the input of one party and the remainder corresponding
to the input of the other. Given the values on those combined inputs, the circuit solves the
function with an answer represented on the circuit’s output wires. To protect the privacy of
each party, the circuit undergoes a process called ”garbling”.
The following description of the garbling process adopts the following definitions:

e k denotes the circuit security parameter, a number of bits that defining the computational
size of the problem

e cp represents a uniform random selection from a given set

e {0,1}" gives a string of bits (ones and zeros) of length n; if n is omitted, it is assumed
to be 1

A {>¢ B A<B

) »—A=B

H)

? {>° A>B

Figure 1: A simple logic circuit for comparing two bits, A and B. The value on each output wire on
the right will be either 0 if the statement is false, or 1 if the statement is true.

(a) (b)
X y v X y Z
0 0 0 29 : 6£d0 £y : c4d4 £? : ed56
0 1 0 £9 : 6fd0 £} 1 32f1 £? : ed56
! 0 0 £l : 131b 9 : cadd £ : ed56
: . ! £l : 131b £1 ;3211 2! : bd67

Figure 2: (2a) The truth table for a logical AND gate. (2b) The truth table for an AND gate, with
random labels assigned. Sample 16-bit hexadecimal labels are given as an example.

o Ey5(x), Do g(x) represent two-key symmetric encryption and decryption functions, such
that Ey g (Dap(2)) =« and o, B are the two encryption keys

2.0.1 Circuit Generator

The circuit generator begins the garbling process by privately assigning random labels to each
potential value on every wire in the circuit. For some wire = with potential values 0 and 1,
these labels would be two security-parameter-length strings of random bits (mathematically
these are (% €r {0,1}*, where b, € {0,1} is the bit value on wire x). Starting with the input
wires, the circuit generator then creates the truth table for each gate in the circuit. Figure 2a
shows the truth table for an AND gate.

The circuit generator then replaces each wire value in the truth table with the corresponding
random wire label. Figure 2b gives a circuit with replaced labels. To hide the mapping between
wire values and wire labels, the circuit generator encrypts each output value in the truth table
using the input values on the same row. For a gate with two wire inputs, this would be

_ b.
Couby = B gty (EZ) ’

resulting in four outputs e, p,, one for each combination of b,,b, € {0,1}. Finally, these
encrypted tokens are shuffled randomly to remove all correlation with the initial truth table.

After garbling the circuit in this way, the circuit generator passes the encrypted tables of
tokens to the circuit evaluator. Along with the shuffled tables, the generator also passes the
evaluator the label corresponding to any circuit input wire constituting part of the generator’s
circuit input. Since wire labels are uniformly random bit strings, the evaluator cannot identify
whether a label represents an input value of 0 or 1. The generator’s private inputs remain
secure.

2.0.2 Circuit Evaluator

The circuit evaluator begins by receiving the garbled circuit and random input labels from
the generator. From the evaluator’s perspective, these labels and tables are just meaningless
random information. Since the generator sent only their own labels (not knowing the labels
corresponding to values on the evaluator’s input wires), the evaluator must request its labels
from the generator. The evaluator cannot do this directly without exposing their own input
value to the generator, and instead engages the generator in an oblvious transfer (OT) protocol.
In this process, the evaluator learns exactly one wire label (e.g. Kgy for b € {0,1}) while the
generator never learns the evaluator’s selection (either b, = 0 or b, = 1). Once the evaluator
concludes the OT protocol and possesses the complete set of wire input labels, they may begin
evaluating the circuit.

For each gate in topological order, the evaluator uses the input wires and table of encrypted
tokens to determine the random label on the gate’s output wire. Given any two wire labels
¢, and ¢y, the evaluator can succssfully decrypt one (and only one) entry in the shuffled table
of tokens. For example, reversing the process for the example gate with two input wires, the
evaluator computes

fgz — Dfl;clﬂgy (6bx7by) .

Note that in this example, the evaluator does not actually know b, or b, unless wire = or
y is one of the evaluator’s input wires to the circuit. All decrypted wire labels still appear to
be random strings of bits, with no correlation to the value that they represent. Since only one
(shuffled) table entry is decrypted, the evaluator cannot discern anything about the original
unshuffled table. the Every wire label that is decrypted can then be used to decrypt tables
for subsequent gates. This process continues until the evaluator possesses the labels for each
output wire of the circuit.

At this point, the two parties may come together to determine the output of the solved
function. The generator applies the mapping between output labels and output values to the
labels determined by the evaluator to reveal the ouput bits produced by the circuit.

3 Time Series Analysis

As mentioned in previous work [INMM 2019], this demonstration project ultimately intends to
apply garbled circuits to safeguards-relevant data. This could include datasets such as those
from the MINOS testbed. To prepare for a successful demonstration with safeguards data, this
project first focused on building garbled circuits that could be applied to arbitrary time series
data streams. This general algorithm can be extended to handle the intricacies of operating
on safeguards-relevant data as needed.
Drawing on experience of project collaborators in performing time series anomaly detection[9],

a procedure was developed to perform the discord discovery anomaly detection algorithm using

Cardiogram

ECG Signal [uV]
&
g

0 10 20 30 40 50 60
Time [s]

Figure 3: A 60 second time series sample of an electrocardiogram. A heartbeat anomaly is visually
apparent near the 40 second mark.

garbled circuits.

The discord discovery algorithm identifies anomalous events by searching the time series for
a subsequence (a subset of consecutive data points) that is the most different from any other
subsequence. The subsequence that is most different is, by definition, the most anomalous
subsequence. Uniqueness can be characterized using a distance metric, most often chosen
to be the Euclidean distance between subsequences. A sample discord discovery procedure
would select an appropriate subsequence length (chosen based on a priori knowledge or a
best guess regarding the length of a potential anomaly), then loop through each time series
subsequence. For each subsequence, the distance to every other subsequence is calculated, and
the minimum calculated distance is stored. The most unique subsequence would then be given
by the subsequence with the largest minimum distance to every other subsequence.

The discord discovery method offers a robust and consistent procedure, and is therefore
straightforward to implement using garbled circuits. The algorithm has been shown to suc-
cessfully identify anomalies in electrocardiogram (ECG) time series [9], and so ECG datasets
were therefore the dataset of choice for testing a privacy-preserving implementation of the
algorithm. ECG data was acquired from the publicly available Beth Israel Deaconess dataset
[10, 11].

4 The CypherCircuit Package

With the final project objective being to demonstrate the viability of MPC as a nuclear safe-
guards tool, the garbled circuit implementation must be both highly efficient and clearly writ-
ten. While several garbled circuit frameworks and implementations exist [12, 13, 14, 15, 16, 17],
none met the criteria to the extent necessary. Many are state-of-the-art research codes and
are intended for cryptographic experts to showcase optimization advancements, are still in-
development, or are built on proprietary foundations. The former characteristic is unlikely to
be well suited for convincing safeguards administrators that the technique is secure, inhibiting
adoption of the method. At the same time, while the latter may be reasonable for use in
production, it is less suitable for this demonstration. As a solution, the CypherCircuit Python
package is being developed to implement garbled circuits for arbitrary functions—including
time series discord discovery—with code transparency, accessibility, and intuitiveness as prior-
ities.

The CypherCircuit package allows users to build circuits from elementary components—
namely Gate objects connected by Wire objects. Utilizing the object-oriented nature of Python,
all gate types (Not, And, Or, Xor, etc.) are provided as straightforward descendants of the base

Gate class. These components are added as members of a circuit, accessed altogether through
a CircuitBoard unit. To simplify operation for a user, a standard set of more complex
components (e.g. circuit adders, comparators, multipliers) are provided in one of the packages
modules, while a set of pre-built circuits are provided in another.

Once the desired circuit has been constructed (e.g. by a user acting as the circuit generator),
each CircuitBoard can be garbled, a process in which labels are assigned, truth tables are
generated, and truth table rows are encrypted. The circuit generator can then encode the
circuit using a binary input vector before passing the circuit components to a circuit evaluator.
The evaluator executes the analogous method for decoding the circuit, solving for the output.

While a user is most likely to elect to exchange information between parties over a network
(an option which is faster and requires less storage space), the framework also provides the
option for all exchanged information to be written to files for the sake of transparency. These
files can be inspected by a curious, if not skeptical, party to ensure that no sensitive information
was revealed in the process.

4.1 CypherCircuit Application to Time Series Data

After the basic functionality was completed, the CypherCircuit package was tasked with de-
tecting anomalous events in a patient’s ECG. A time series interval of 60 seconds was selected
from one patient in the complete BIDMC Congestive Heart Failure database, with 250 voltages
recorded per second. Each consecutive set of 15 data points from the original time series was
averaged together to produce a time series with 1,000 points, in order to reduce the overall
size of the data set while preserving key features.

To complete the analysis, a circuit was built to calculate the square of the Euclidean
distance between any two n-dimensional vectors. Each n-length subsequence of the time series
could be considered an n-dimensional vector, with each subsequence point representing the
vector’s component in one dimension. Following the procedure for discord discovery, each
subsequence pair was assigned an equivalent circuit. Evaluating each circuit yielded a collection
of distance values which could then be compared. The minimum squared distance between
each subsequence and all other subsequences was identified. Since the square root function is
monotonic, the minimum squared distance is equivalent to the true minimum distance. The
square root function is not necessary and may be omitted to reduce runtime.

As can be seen in Figure 4, the algorithm correctly identified the anomalous subsequence.
The highlighted region indicates the anomaly identified by the algorithm. In total, each circuit
consisted of 25,567 wires and 30,953 logic gates. With optimizations, 14,718 (48%) of these
gates were “free” and did not need to be evaluated. The evaluation time for each circuit
was approximately 8 minutes per subsequence, and when performed for the nearly 100,000
subsequence pairs in the time series, took a total time of about 2 days on a standard laptop
computer.

5 Conclusion

This demonstration suggests that time series anomaly detection using garbled circuits is pos-
sible. To be practical however, significant gains in efficiency must be realized. A time series
analysis taking several minutes to process seconds of data is unlikely to be adopted. How-
ever, while the CypherCircuit package already takes advantage of several known optimizations
(e.g. FreeXOR optimization [18] and an intelligent evaluation scheme to avoid garbling gates

Anomaly detected using garbled circuit discord discovery

@
2
I3 3

ECG Signal [uV]
&
8

-1000

-1500

0 10 20 30 40 50 60
Time [s]

Figure 4: The result of the discord discovery method applied to the cardiogram, when operated using
garbled circuits. The highlighted region is the algorithmically selected anomaly. The evaluator identified
the time at which the anomaly occurred without ever receiving access to the ECG time series.

with publicly known output values) there are still significant enhancement opportunities avail-
able. Notably, the code could leverage algorithmic improvements such as row-reduction [19]
or powerful arithmetic logic circuits [20], implement structural upgrades to enable faster code
execution using Cython or other optimized Python libraries, or simply be modified to run
utilizing parallel processing.

Though efficiency gains are necessary, this successful demonstration suggests that garbled
circuits should be constructed to operate on nuclear safeguards specific time series data. While
these data sets may include some two-dimensional time series data streams, like the cardiogram,
time series consisting of radiation spectra represent a three-dimensional (energy, count, time)
data stream. Data of this type will likely require a more sophisticated treatment.

More generally, the CypherCircuit package is designed to be flexible, and can be applied to
any potential safeguards challenge where privacy-preserving computation may be useful. This
scope is not limited to time series analysis. The garbled circuit technique could be used, for
instance, to detect inconsistencies in two sets of independently collected records. Even outside
of safeguards-specific applications, multiparty computation may be of use to the nuclear non-
proliferation community. Research has already explored using physical zero-knowledge proofs
to perform secure warhead verification, and similar endeavors could return to using digital
cryptography for those applications. In short, MPC presents a valuable tool for the nuclear
safeguards and non-proliferation community going forward. In a modern, complex world with
increasing international tension, systems like MPC which obviate trust requirements between
parties may actually become a preferred solution for building international cooperation.

References

[1] TAEA Safeguards Glossary, 2002.

[2] J. Kornell, et al. Informational sensing for nonproliferation. SAND2016-5573C, Sandia
National Laboratories, 2016.

[3] Z. N. Gastelum and Shead T. M. Preliminary application of neural networksto support
assessmentof ground-based imagery for international safeguards analysis. SAND2017-
4857C, Sandia National Laboratories, 2017.

[4]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

K. J. Dayman, et al. Transformative Data Analytics Capabilities for Nuclear Forensics
and Safeguards. In Proceedings of the 60th Annual Meeting of the Institute of Nuclear
Materials Management, July 2019.

D. Beaver, et al. The Round Complexity of Secure Protocols. In Proceedings of the Twenty-
Second Annual ACM Symposium on Theory of Computing, STOC 90, page 503513, New
York, NY, USA, 1990. ACM.

A. C. Yao. Protocols for secure computations. In 23rd Annual Symposium on Foundations
of Computer Science (sfcs 1982), pages 160-164, 1982.

A. C. Yao. How to Generate and Exchange Secrets. In 27th Annual Symposium on
Foundations of Computer Science, pages 162-167. IEEE, October 1986.

O. Goldreich, et al. How to Play ANY Mental Game. In Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing, STOC 87, page 218229, New York,
NY, USA, 1987. Association for Computing Machinery.

E. Keogh, et al. HOT SAX: Efficiently Finding the Most Unusual Time Series Subse-
quence. In The Fifth IEEE International Conference on Data Mining, 2005.

Baim D. S., et al. Survival of patients with severe congestive heart failure treated with
oral milrinone. J. American College of Cardiology, pages 661-670, March 1986.

A. Goldberger, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new
research resource for complex physiologic signals. Circulation, 101(23):215-220, 2000.

A. Ben-David, et al. Fairplaymp - a system for secure multi-party computation. In
Proceedings of the ACM Conference on Computer and Communications Security, pages
257-266, 01 2008.

D. Bogdanov, et al. Sharemind: A Framework for Fast Privacy-Preserving Computations.
In S. Jajodia and J. Lopez, editors, Computer Security - ESORICS 2008, pages 192206,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

E. M. Songhori, et al. Tinygarble: Highly compressed and scalable sequential garbled
circuits. In 2015 IEEE Symposium on Security and Privacy, pages 411-428, 2015.

D. Demmler, et al. ABY - A Framework for Efficient Mixed-Protocol Secure Two-Party
Computation. In ENCRYPTO, 01 2015.

E. M. Songhori, et al. Arm2gc: Succinct garbled processor for secure computation. In
Proceedings of the 56th Annual Design Automation Conference 2019, DAC 19, New York,
NY, USA, 2019. ACM.

Keller M. MP-SPDZ: A versatile framework for multi-party computation. Cryptology
ePrint Archive, Report 2020/521, 2020. https://eprint.iacr.org/2020/521.

V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor gates and applications.
In L. Aceto, et al., editors, Automata, Languages and Programming, pages 486—498, Berlin,
Heidelberg”, 2008. Springer Berlin Heidelberg.

[19] M. Naor, et al. Privacy preserving auctions and mechanism design. In Proceedings of the
1st ACM Conference on FElectronic Commerce, EC 99, pages 129-139, New York, NY,
USA, 1999. Association for Computing Machinery.

[20] M. Ball, et al. Garbling gadgets for boolean and arithmetic circuits. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 16,
pages 565-577, New York, NY, USA, 2016. Association for Computing Machinery.

