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Noise induced hearing loss a real
concern for DoD
• Noise levels on a carrier decks can exceed 145

dB

• Dept. of Veteran Affairs claims on an

exponentially increasing trend

Community noise is also an issue:
• Locality actions to limit F-35 flights

• NASA High Speed project reinvigorating

development of supersonic transport

Motivation

Future Jet Noise

Reduction Techniques??
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Stuber et al. (2019):
• Reduced U, in shear layer

and along centerline 
beyond end of potential 
core

Henderson et al. (2016):
• Up to 8dB reductions along

thin side of jet
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Powers et al. (2013):
Fluid injections reduce noise from over
expanded jets by up to 5 dB OASPL 3
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Savarese et al. 2013
• Supersonic under-expanded jets
• Effect of NPR & flight stream velocity on BBSAN
• Simultaneous near-field pressure & 2

component LDV

Create "source map" by integrating over
region of interest

2 dn Where SI represents boundariesau, p = yu,p
in xinic, St

Sources appear upstream of
compression wave

(a) Qua) 111;1

Shock Noise Source Map
Space-frequency Coherence Maps yu,p
• Coherence between:

• u' at LDV probe point
• p' at points in nearfield array

Nearfield Microphone Array
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Characteristic
"banana" shape
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Jet Conditions 

Over Expanded Jet
• NPRjet = 2.6

• NPRD = 3.7

Heated Jet
• TTR = 2

To survey of nozzle exit

0.5

0

-0.5

Experimental Conditions
Noise Sources Present

Mach Waves
• mc 1.1
• Mach waves at shallow downstream angle

Broad band shock associated noise
• Radiates at sideline & upstream directions

Turbulent Mixing Noise
• Temporal evolution & directivity distinct

from Mach waves

TTR
2

Impinging Jets

192 kW Heater

Goal: 

Gain physical insight into different
noise components
• Examine differences in

• Directivity

• Frequency range

• Temporal evolution

2D space-time correlations of the

frequency filtered density near-field

VT Heated Jet Rig

Mixing Section

8" to 4" Contraction

20 x 20 Screens Interchangeable Nozzle

-0.5 0

xID
0.5 6
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Near-field Schlieren

Analysis Techniques

Visualize temporal & spatial
evolution of density waves

RAA(T) = (xi), yp, OA'(x, y, t + -/-)1

• Provides radial density gradient (La1))
r

• Resolved in time and space
(fs. = 110 kHz)

• Intensity is uncalibrated

Captures temporal & spatial
evolution of density waves

Physical Significance:
• Statistical structure of acoustically

important features
• T*: Time lag Causal relationships

Goal:
Gain physical insight into different noise
components
• Examine differences in

• Directivity

• Frequency range
• Temporal evolution

• Space-time correlations of frequency

filtered schlieren images

• What frequency range matters?

3.6
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W ylcH,.N I A Far-field Acoustics: Identify BBSAN
For St < O. 4 will be

dominated by Mach waves

Far-field Narrowband Spectra indicate presence of BBSAN

Presented Data:
100D arc 90 = 70°: 10°: 160°

Birds Eye View

Microphones

close to wall

1. Dominates angles upstream of 90 = 90°

2. Occurs at frequencies St > 0.4

Note: Waviness in spectra at low 90 due to
reflections from wall

Use St = 0.4 as cutoff frequency

Ground Micro • hone Array

Method follows SAE standard AIR 1672B
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For St > O. 4 BBSAN will be present
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Far-field Narrowband Spectra indicate presence of BBSAN

1. Dominates angles upstream of 190 = 90°
2. Occurs at frequencies St > 0.4

1. Filter Schlieren with cutoff frequency of

St = 0.4 using FFT filter

Autospectrum of point from schlieren image
2 

-12

—Low Pass
—High Pass
—Unfiltered

10-2 10-1 10°
Frequency, St

101

Separate Mach waves and BBSAN by frequency
filtering schlieren data

2. Perform Space-time correlations 3. Examine differences in filtered
on filtered schlieren data

Low Pass

3 4

space-time correlations
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Frequency filtering separates Mach waves and
turbulent mixing noise
• Low frequency: Mach waves
• High frequency: turbulence mixing noise

• Distinct from Mach waves

• Correlation structure inside shear layer at T* < 0

• Propagating acoustic wave in near-field for T* >

Mach Waves

0.5

1

Low Frequency: St < O. 4

Shear layer edge

4

0.5

Structures radiate with different
directivities
• Mach waves: 90 =-=-, 154°
• Turbulent mixing noise: 90 cz-, 134°

Results support observations of Liu et al. 2016

Differences in directivity between Mach wave radiation &

L-S mixing noise

High Frequency: St > O. 4

134°

_ 9 1

Pxy
1

Propagating acoustic wave

4

Structure inside shear layer x I) 11
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Mach wave directivity:

• Typically in high subsonic/supersonic jets
U,
— — 0.7
Ui

• Estimated Dominate Mach waves at:

Om = 71" — COS-1(1/Mc) = 160°

• Estimated directivity roughly agrees with

observed
• Note: Om increases with Ui (moves upstream)

0.5

Low Frequency: St < O. 4

L-S Turbulence Directivity:

• Structure in shear layer may represent acoustic
waves

• Shear layer will refract waves
• Estimate transmission angle using:

cos Ot =
ac>,

ai
cos Ot 

Ui
—> Ot = 126°

aoc, U = 0 Ot

ai = 0.3Ui

• Suggests structure inside shear layer represents acoustic wave
• Emphasizes directivity difference in Mach waves & turbulent

mixing noise

--2.1

1 4

2

1.5

1

0.5

High Frequency: St > O. 4 Pxy
— 1

134°

1 4

(15
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TECH. Filtered Space time Correlations

Mach wave directivity:

• Typically in high subsonic/supersonic jets
Uc
— = 0.7

• Estimated Dominate Mach waves at:

Om = TE — COS-1(1/ Mc) = 160°

• Estimated directivity roughly agrees with
observed

• Note: Om increases with Ui (moves upstream)

2

1.5

1

0.5

Low Frequency: St < O.

1

L-S Turbulence Directivity:

Structure in shear layer may represent acoustic
waves
Shear layer will refract waves
Estimate transmission angle using:

cos Ot =  ai
ctoo 

—> Ot = 126°
  Uti
cos

Suggests structure inside shear layer represents acoustic wave
Emphasizes directivity difference in Mach waves & turbulent
mixing noise

Upstream wave related

to BBSAN

2 3
x/D

4

1.5

0.5

High Frequency: St > O. 4 

•

T=1

2
x/D

Pxy

0 1

4

-0.5
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Correlation captures upstream propagating structure
• Upstream wave likely represents BBSAN

0.5

—0.7

4
I)

Are upstream correlation structure sensitive to axial
probe location ?
• Move probe point upstream by -0.5D

Pxy

-)N

0.5

0.7

2 3
x/D

Correlation strength of upstream wave dependent on probe location

Strength of upstream structure dependent on
relative location to shock cell

0 5

-0.5
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Choose probe points with locations
relative to shock cells

Use PIV to determine location of shock cells

Probe points that are:
• Points directly above shock tip (P1, P4)
• Points in between shock tips (P3, P6)
• Points just downstream of shock tips (P2, P5)

PIV measurements

411, 1•Nimr - -

••-mimPoleaw

Laser

*PIV taken by David Mayo

Optics

1. Take probe point coordinates in PIV

2. Space-time correlations of schlieren with same probe points locations

Probe points just upstream of shock cells will have stronger

BBSAN signature.
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Mean Axial Velocity
1.5
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1

Above Shock Tip

2

x/D

1

-r*=1

p4

4

■ 1

0 5

0

Directly After Shock Tip

Strength of upstream structure dependent on relative location
or probe point to shock structure

Probe points directly above
shock cell

Weak upstream correlation

2

p5

Between Shocks

p3

p6

Probe points downstream
shock cell

Stronger upstream correlation

Pxy

0 1 2 3
x/D

4 0 1 3 4 0 1
x/D
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Mean Axial Velocity
1.5 ■ I att,p = yu2,p dn Where SI represents boundaries

in xmic, St
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p2

P5

tr\

Sources appear upstream of
compression wave

- p3

- p6

,

Pxy

0.5

0

-0.5

Results similar to 'source
maps' from
Savarese et al. 2013
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Space time correlations of over-expanded jets with
thermal non-uniformity

Open Questions:

• How does NUC driven perturbations impact BBSAN?

• At what axial location do perturbations mix out?

Other Work

• Additional insight from PIV
0.5

0

-0.5

Heated Primary

Unheated
Secondary

Cold flow nozzle

To survey of nozzle exit
NUC Uniform

0.5

0

-0.5

TTR
2

•

•

1 .2
-0.5 0

x/D
0.5 -0.5 0

x/D
0.5 19
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• Frequency filtered space-time correlations indicate distinct features
• Mach waves dominating low frequencies
• BBSAN and turbulent mixing noise at high frequencies

444(.04c -reciveoP24

• Measured difference in Mach wave & turbulent mixing directivity
• Mach waves radiate close to angles predicted with u,
• Peak angle of turbulent mixing noise similar to angle predicted by shear
layer refraction

• Strength of BBSAN emission dependent on location relative to shock cell
• Stronger upstream correlation structures observed with probe points

directly downstream of shock cells
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