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Abstract 

Initialized Earth System predictions are made by starting a numerical prediction model in 

a state as consistent as possible to observations and running it forward in time for up to ten 

years. Skillful predictions at time slices from subseasonal to seasonal (S2S), seasonal to 

interannual (S2I) and seasonal to decadal (S2D) offer information useful for various 

stakeholders, from agriculture to water resource management, and human and 

infrastructure safety. In this Review, we examine the processes influencing predictability, 

and discuss estimates of skill across S2S, S2I and S2D timescales. There are encouraging 

signs that skillful predictions can be made: at S2S timescales, there has been some skill in 

predicting the Madden-Julian Oscillation and North Atlantic Oscillation; at S2I in 

predicting the El Niño-Southern Oscillation; and at S2D, in predicting variability in North 

Atlantic sea surface temperatures.   However, challenges remain, and future work must 

prioritize reducing model error, more effectively communicating forecasts to users, and 

increasing process and mechanistic understanding that could increase predictive skill and, 

in turn, confidence. As numerical models progress towards Earth System models, 

initialized predictions are expanding to include prediction of sea-ice, air pollution, 

terrestrial and ocean biochemistry which can bring clear benefit to society and various 

stakeholders.
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[H1] Introduction

In recent decades there has been an increasing desire for climatic information on timescales from 

weeks, to months, to seasons and years. Such information offers clear benefits to society and 

various stakeholders alike. For instance, prediction of the hydroclimate could allow for better 

water resource management and improved agricultural maintenance, while temperature and wind 

predictions could provide critical information for infrastructure planning and expected energy 

consumption. To obtain this climatic information, initialized predictions on various near-term 

timescales must be used.

Initialized Earth System prediction describes a suite of climate model simulations wherein the 

starting conditions are set as close to observations as possible and the model run forward for up 

to 10 years (1). Internally-generated, naturally-occurring variability is therefore considered a key 

aspect of these time-evolving climate predictions (2). They differ from unititialized simulations – 

or climate change projections – where internal variability is removed through ensemble 

averaging and focus is instead given to quantifying the effects of external forcing such as 

anthropogenic greenhouse gases (3,4).

Given the duration of simulations, initialized predictions span various timescales (Fig. 1a): 

subseasonal-to-seasonal (S2S; ~2 weeks to 2 months) (5, 6); seasonal-to-interannual (S2I; 2 to 12 

months) (7); and seasonal-to-decadal (S2D; 3 months to 10 years) (1,2). In each case, efforts 

have focused on climate phenomena that also operate on similar timescales. For example, S2S 

research has concentrated on the Madden-Julian Oscillation (MJO) and sudden stratospheric 

warmings (SSW); S2I on the El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation 

(NAO), Indian Ocean Dipole (IOD), Southern Annular Mode (SAM) and Quasi-Biennial 
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Oscillation (QBO); and S2D on slowly evolving oceanic processes such as Pacific Decadal 

Variability (PDV) and Atlantic Multidecadal Variability (AMV). 

Distinct communities have therefore formed to coordinate research and perform initialized 

predictions at each timescale. Efforts such as the S2S Prediction Project and Database (5) and the 

Subseasonal Experiment (SubX (6)) emerged for S2S; the North American Multi-Model 

Ensemble [PR, hyperlink to: https://www.cpc.ncep.noaa.gov/products/NMME/] (NMME (7) and 

the Copernicus Climate Change Service [PR, hyperlink to: https://climate.copernicus.eu/] (C3S) 

for S2I; and sets of hindcasts and predictions as part of the Coupled Model Intercomparison 

Project phase 5 (1,2) (CMIP5) and CMIP6 (8) for S2D. 

While these communities are often separate, however, all rely on similar methodologies (Table 

1, Supplementary Tables 1-3). Thus, there is potential for “seamless prediction” (9), whereby 

one framework can be used to address prediction across all timescales, with skill increasingly 

associated with external forcing as simulations progress (10) (Fig. 1b). Yet in practice, 

community differences with regards to initialization frequency, for example, make seamless 

prediction challenging (1,2).

In this Review, we bring together research on initialized predictions on timescales of weeks to 

years. We begin by outlining current methodologies for initialized predictions, incorporating 

discussion of the process, ensemble size, verification and prediction skill. We subsequently 

outline prediction at S2S, S2I and S2D timescales, before discussing priorities for future research 

that will increase the feasibility for seamless prediction.                         

 

[H1] Making Predictions 
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S2I research using initialized prediction has been taking place since the late 1980s (11). In 

contrast, it was not until 20 years later that initialized S2D climate predictions began, in turn, 

initiating a rapid acceleration of research from which operational systems are now routinely 

produced (12). We begin by describing the process of initialized prediction, focusing on the 

methodological aspects involving forecast verification and measures of prediction skill (the level 

of agreement between an initialized prediction and the observed state it is meant to predict). 

[H2] Process of initialized prediction

Predictions for S2S, S2I and S2D timescales, ranging from weeks to years, use numerical models 

with components of (at least) atmosphere, ocean, land and sea ice that are started from a 

particular observed state. The process of bringing the model components into close 

correspondence to that observed state is termed initialization, and predictions that are started 

from such observed states initialized predictions.  There are currently many activities taking 

place in the S2S, S2I and S2D communities with regards to initialized prediction, with key 

differences amongst centers regarding how models are used (Table 1, Supplementary Tables 1-

3).

One key difference between the subseasonal and longer timescale systems is the origin of the 

model. Many S2S (and some S2I) prediction systems originate in the numerical weather 

prediction (NWP) community. As such, they tend to have the highest horizontal resolution in the 

atmosphere, largely ~ 0.25-0.5° (Table 1). Atmospheric initialization in these NWP-derived 

models uses data assimilation, such as 3D variational assimilation (as in the CMA model). 

Moreover, to produce the initial perturbations for ensemble generation, they sometimes use data 
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assimilation with an Ensemble Kalman Filter (14) (as in the ECCC model) or singular vectors 

(15) (as in the JMA model). In comparison, most S2I, and all but one S2D, prediction systems 

are based on climate or Earth System Models (ESMs) previously used for IPCC climate 

projections. In these cases, the majority of models have a horizontal resolution of ~0.5-1° (Table 

1). 

In addition to differences in the models and their resolution across prediction timescales, 

contrasts are also evident in the components that are initialized and the degree of coupling 

between Earth System components. In S2S predictions, for example, coupling between the 

atmosphere, ocean, land and sea ice is not considered crucial (Fig. 1a). As such, only a small 

number of models initialize the ocean and employ atmosphere-ocean coupling, but the majority 

initialize land surface conditions (Supplementary Table 1). For S2D predictions, however, 

oceanic processes are vital, and as a result, all models initialize the ocean and have at least partial 

coupling with the atmosphere and sea ice; only a fraction initialize the atmosphere and land 

surface (Supplementary Table 3). As S2I falls in the time window where predictability comes 

from all Earth System components (Fig. 1a), care is typically taken to initialize each of them. 

Atmospheric initialization is often achieved by interpolating an existing analysis to the model 

grid and generating an ensemble spread using the random field perturbation method (16) (as in 

CESM1 for S2S), the lagged ensemble method (17) (as in CCSM3), or nudging to reanalyses in 

coupled mode (19)  (as in the CCCma model). A variety of approaches have also been used to 

initialize the ocean state, including a hindcast spin-up in an ocean forced by observed 

atmospheric conditions (20), nudging the ocean model to some observed ocean state (21), or 

using full ocean data assimilation (22). Land variables are initialized either by assimilation of 

land observations (23) or by running an offline land-only model that is forced with observed 
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atmospheric conditions (24). The initialization strategy also differs between the shorter and 

longer-term prediction models. All S2S and S2I prediction models use full fields (such as sea 

surface temperate, SST). By contrast, about half of the S2D modes use anomaly initialization, 

meaning an initial condition is constructed by adding observed (or reanalysis) anomalies to the 

model’s climatology in order to minimize initialization shock and model drift (25, 26, 27).

As individual model components are often initialized in different ways, there is frequently no 

coupling between initial conditions for various parts of the Earth System, thereby creating an 

imbalance in the initial state of the model. New methodologies, such as weakly coupled and 

strongly coupled data assimilation, offer promising approaches to reduce initialization shock and 

imbalance in the model (28). In the weakly coupled approach, the assimilation is applied to each 

of the components of the coupled model independently, whereas interaction between the 

components is provided by the coupled forecasting system (28). In the strongly coupled method, 

however, assimilation is applied to the full Earth System state simultaneously, treating the 

coupled system as one single integrated system (28). 

There are currently very few modeling centers that have been able to apply seamless prediction 

owing to numerous practical aspects (including initialization method, initialization frequency, 

number of ensemble members, among others). The most seamless system is currently operated 

by the UK Met Office which is providing S2S, S2I, and S2D forecasts operationally, using 

almost identical configurations of the model for all prediction systems (29). NCAR, although not 

an operational center, is also using the same models, CESM1 and CESM2, to generate S2S, S2I 

and S2D hindcasts (and predictions for research purposes) using the same modeling framework, 

although at this time initialization details vary among the three prediction systems.
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[H2] Ensemble size 

Ensemble size is an important aspect determining predictive skill and reliability. In most 

prediction systems, ensemble sizes typically range between 10 and 50 (Table 1). There is 

potential of increasing the number of ensembles by combining those from multiple systems (30) 

or time-lagged ensembles (31), or using other techniques such as subsampling (32, 33) to 

improve the ensemble properties. Typically, the more ensemble members, the higher the 

anomaly correlation coefficient (ACC), a measure of prediction skill. For example, at S2S 

timescales, ACC of global surface air temperature over land is ~0.29 when using only 4 CESM1 

hindcast ensemble members (34), increasing to ~0.33 for 8 members, and ~0.36 for 16 members 

(Fig. 2a).   

Very large ensembles are also advantageous for improving seasonal prediction skill of the NAO 

(35), including at S2D timescales (36, 33). For example, ACC values are ~ 0.6 for an average of 

years 2 to 8 when using 40 ensemble members (Fig. 2b) (37). Further increases in multi-year 

NAO skill with ACC of 0.8 are possible with a lagged ensemble of 676 members (33) as a result 

of the modelled signal to noise ratio being too small. 

Yet, there are consequences in terms of computing costs when using more ensemble members. 

For instance, an S2S reforecast could run 16 years (SubX) * 4 members * 2 months long * 

weekly start dates for ~600 model years; an S2I example could run 30 years *9 members*1 year 

long* 4 start dates per year for ~1000 model years; and an S2D example (DCPP) could run 60 

years*10 members *10 years long for ~6000 model years. 
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[H2] Verification using observations

A key element of initialized prediction is having a solid understanding of the climate phenomena 

that are being predicted. Analyses of observations in comparison to the model simulations are 

thus required. On S2S and S2I timescales, the observational record provides a good source of 

data to verify initialized hindcasts. For example, observations cover roughly 30 ENSO events 

and as many as 300 MJO cycles. However, these data have their limitations. For instance, 3D 

observations of the atmosphere and ocean are desired for prediction verification, for 

understanding of processes and mechanisms, and for initialization of the predictions in the first 

place (38). Yet such 3D gridded data are limited to the period of the satellite record (dating from 

the late-1970s) and to reanalyses that assimilate all available observations. Moreover, while 

several ENSO (and similar timescale) events have been observed, these can exhibit different 

expressions (39) and undergo large decadal-to-millennial variations (40, 41, 42), requiring a long 

observational record to perform robust analyses. 

Researchers in the field of initialized Earth System prediction on S2D timescales often cite the 

short observational record as a factor inhibiting understanding. For example, with reliable 

observations limited to the latter half of the 20th century (43), only ~3 PDV or AMV transitions 

have occurred by which to compare to predictions. While some observations are available earlier 

in the 20th century, these are sparse and reanalyses are highly uncertain, making consistent 

comparisons of prediction skill between the pre- and post- satellite era difficult. Added to that, 

subsurface ocean observations and critical state atmospheric variables (such as surface winds) 

are crucial to understanding slow variations in the climate system (44), but such observations 

also have a very short duration. Moreover, it is also difficult to objectively separate forced 

(natural and anthropogenic) and internal decadal-to-multidecadal climate variability, adding 
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further challenges for S2D prediction verification and triggering debate of best practices for 

signal separation (45, 46, 47, 48). 

Nevertheless, efforts are underway to improve methodological approaches and data provisions 

for prediction verification. The crucial need for better observations of the full depth of the ocean 

have started to be addressed by Argo floats, first for the upper 2000m (49) but with plans to be 

expanded to the full ocean depth (50). 

Proxy-based reconstructions are also increasingly available, shedding light on processes 

associated with interannual and decadal timescales of variability (51) beyond that possible by 

instrumental observations.  Indeed, the particular limitations of instrumental data length and 

coverage for verification of S2D predictions have pointed to paleoclimate reconstructions -- 

using trees, corals and speleothems -- to extend observations and provide further realizations of 

decadal variability (52; 40; 53; 54; 55; 42; 56) (Fig. 3). Additionally, such records can provide 

insights into the physical mechanisms associated with that variability, including westerly wind 

anomalies (51), upwelling, gyre circulation (57) and links among major modes of variability 

(58). Together with further advances in paleoclimate research – including paleoclimate synthesis 

(59, 60, 61, 62), paleo data assimilation techniques (63, 64, 65), and development and expansion 

of proxy system models and toolboxes (66, 67) – paleoclimate data will not only help with the 

verification of climate model simulations, particularly on the S2D timescale, but also will 

provide context for initialized predictions by providing insights into the timescales of variability 

beyond the instrumental record.
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[H2] Bias correction and prediction skill

To account for model drifts and biases, the skill of initialized predictions is typically evaluated in 

terms of forecast time-dependent anomalies that are departures from some measure of mean 

climate. However, a prediction will drift rapidly from the initial observed state towards its own 

climatology owing to model error. These drifts start almost immediately in a prediction, and by 

lead year 1, are already considerable (Fig. 4). 

The calculation of anomalies and correction of model biases are addressed together, typically by 

calculating and removing the model climatology. For S2S predictions, the common methodology 

is to calculate a lead time dependent model climatology from a set of hindcasts and to compute 

anomalies from this climatology. However, such a procedure is complicated owing to the 

inhomogeneous nature of current subseasonal prediction systems (6, 68). The climatology for 

S2I predictions is similarly accomplished by averaging over all years of the hindcast for a 

particular start time and lead or target time (68), thereby assuming stationarity of biases and 

drifts in the predictions. 

For S2D predictions, model drift is acute and is addressed by multiple approaches for computing 

anomalies (Fig. 4). One method is to calculate the model climatology of drifts from hindcasts 

over a prediction period of interest (for example, the average of lead years 3 to 7), and subtract 

that climatology from each 3 to 7 year prediction (69); this approach works well for short 

timescale predictions where externally-forced trends are less of a factor, but can be problematic 

for longer timescales. An alternative method is to compute a mean time-evolving drift from a set 

of hindcasts, subtract that mean drift from a prediction, and compute anomalies as differences 

from the drift-adjusted prediction and time period (such as the previous 15 year average) 
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immediately prior to the prediction (70). This alternative approach better reduces the effects of 

an externally-forced trend, but raises the issue of how big a role the recent observed period 

should play in prediction verification. When long-term trends in the hindcasts differ from 

observations, a further method is to correct biases in the trends in addition to those in the mean 

model climatology over the hindcast period (71), though such an approach can yield an 

overestimation of the skill of the system.

Models can also underestimate the magnitude of predictable signals relative to unpredictable 

internal variability, especially on seasonal and longer timescales in the extra-tropical north 

Atlantic sector (33). This underestimation leads to the counterintuitive implication that models 

are better at predicting the real climate variability than they are at predicting themselves, a 

phenomenon termed the “signal to noise paradox”, when observed signal to noise ratios are 

larger than in models (72). Given that such features also occur in uninitialized climate 

simulations of the historical period (73; 74), and potentially in modelled responses to volcanoes 

and solar variations (72), they are not believed to arise from initialization itself. As a result of the 

signal to noise paradox, it is necessary to take the mean of a very large ensemble to extract the 

predictable signal and then adjust its variance (33). 

Although discrepancies between signal to noise measures in models and observations highlight 

an important model deficiency, it also implies an optimistic potential to use adjusted climate 

model outputs to predict the observed system (36, 33).  Additionally, there has been a growing 

interest in the influence of decadal variability on the predictability and skill of seasonal forecasts 

(75). Sometimes the impact of this variability can obscure the gradual skill improvements that 

are found from advancing the science and modelling (76).
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Clearly a major challenge for initialized prediction on any timescale is the mean drift of the 

model away from its initialized state to its preferred systematic error state (Fig. 4). All the efforts 

at bias adjustment and drift correction arise from this fundamental characteristic of model error, 

but improvements in initialized prediction require increased understanding of the processes and 

mechanisms at work in the climate system in order to reduce model error. 

 

[H1] S2S initialized predictions

All initialized predictions start with a particular observed state that could contribute to some 

combination of externally forced and internally generated variability.  However, owing to the 

relatively short timescales, subseasonal (S2S) predictability is largely an initial value problem in 

which the atmosphere, ocean, land and sea-ice contribute to prediction skill through their 

memory of the initial state, and not external forcing (Fig. 1)). Considerable resources are 

therefore allocated to initialization of atmosphere and land, including generation of ensemble 

spread. Ocean initialization and coupling are additionally important, especially in tropical 

regions where sources of predictability can come from modes of variability such as the MJO (77; 

6), as well as the stratosphere, both of which are now discussed. 

 

[H2] Modes of variability

The MJO is recognized as one of the leading sources of S2S predictability (78) owing to the  

strong interaction between the tropics and extratropics on subseasonal timescales (79). For 

example, forecast models involved in SubX and the Subseasonal-to-Seasonal Project can predict 
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the MJO skillfully up to 4 weeks (5, 80, 81). Furthermore, skill has been shown in predicting the 

MJO in a multi-model framework consisting of six SubX models for week three predictions 

averaged over days 15-21 (6) (Fig. 5), whereby most reproduce the eastward propagation of 

outgoing longwave radiation anomalies. Some models, however, have difficulty in simulating the 

propagation of the MJO across the Maritime Continent (eastward of 120oE), the so-called 

Maritime Continent “barrier” (78). MJO-related Rossby wave propagation into the extratropics 

also provides predictability for extreme events such as storm tracks (82), atmospheric rivers (83) 

and tornadoes (84). 

 S2S predictability is also influenced by the NAO (itself influenced by ENSO (85)), sea-ice and 

the stratosphere (86), which has bearing on extremes in large regions of Europe and North 

America. Using the NCEP Climate Forecast System version 2 (CFSv2) and the Met Office 

Global Seasonal forecast System 5 (GloSea5), it has been suggested that the NAO exhibits 

predictability out to at least several months ahead (87, 88, 35). Indeed, all SubX models 

demonstrate significant NAO skill at week 3, specifically an ACC of ~ 0.27 to 0.5 (ref 6). 

Similarly, the SAM is a source of predictability and prediction skill of rainfall, temperature and 

heat extremes over Australia (89, 90). Although SAM predictability is typically low beyond ~ 

two weeks, there is the potential to make seasonal predictions (91) because of its association with 

ENSO (92) and the influence of the stratosphere (81, 93).

Consideration of these modes offer ‘windows of opportunity’ in S2S prediction, where in certain 

situations, there could be better predictability owing to active periods of the MJO or certain 

large-scale atmospheric regimes, for example (94). 
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[H2] Initial state

Given that the land surface varies more slowly than the atmosphere, it provides a source of 

predictability for temperature and precipitation on S2S timescales, the greatest contribution 

coming from soil moisture (95). This predictability is most pronounced during boreal spring and 

summer when synoptic systems have a smaller influence on soil moisture variability. The 

contribution of soil moisture anomalies to subseasonal predictability also varies regionally, with 

the largest contribution in areas of strong land-atmosphere interactions (96). As such, the land-

surface is initialized in most current operational subseasonal prediction systems and all research 

subseasonal systems (Supplementary Table 1, 2). In doing so, improved skill for S2S 

predictions of temperature and precipitation have been observed, although model errors impact 

the full realization of this skill (97, 98, 95). 

The coupling of the atmosphere to the ocean and sea-ice are further thought to be important for 

predictability at lead times longer than two weeks, and accordingly, ocean-sea ice-atmosphere 

coupled models are routinely used in operational S2S initialized predictions. For Arctic sea ice, 

there is rising demand for reliable projections up to months ahead owing to increased human 

activities. Currently the best subseasonal models show skillful forecasts of more than 1.5 months 

ahead (99). Yet, many current operational forecast models lack skill even on timescales of a 

week (100).  Hence, there is more work to be done to improve the S2S forecast skill of Arctic 

sea-ice variables, though many systems are capable of predicting sea ice extent on seasonal time 

scales, at least in some regions and seasons (101, 102, 103, 104). 

Sea-ice conditions (such as the location of the sea-ice edge) can have significant feedbacks with 

the atmosphere and thus impact the forecast of the coupled system in initialized predictions 
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(105).  For example, the largest midlatitude forecast skill improvements have occurred owing to 

improved Arctic predictions over eastern Europe, northern Asia and North America relating to 

sea ice reductions and anomalous anticyclonic circulation (106). 

[H2] Stratosphere

The largest recognized influence of the stratosphere on the troposphere comes from extreme 

states of the stratospheric polar vortex, particularly SSWs. SSWs are followed by tropospheric 

circulation anomalies that can last up to 60 days and resemble the negative phase of the NAO ( 

107, 108). S2S forecasts initialized near the onset of an SSW thus show increased skill for mid- 

to high-latitude surface climate (109), and seasonal predictability of the NAO is dependent on 

the presence of SSWs in ensemble predictions (110). While SSWs are not as common in the 

Southern Hemisphere, weakening and warming of the stratospheric polar vortex is predictable a 

season in advance, and through connections with a negative SAM, can offer some predictability 

of hot and dry extremes over Australia (81, 93).

The QBO can further influence the troposphere on S2S timescales. Specifically, phase changes 

in the QBO modify the strength of the stratospheric polar vortex (111), in turn affecting the 

subtropical jet and storm tracks (112, 113)., and strength of the MJO (114, 115). For example, 

the phase of the QBO in the initial state   influences the prediction skill of the MJO, with higher 

skill during easterly-QBO boreal winters compared to westerly-QBO winters and improved skill 

for lead times of 1-10 days (116).  The prediction skill of the QBO itself is very high on the S2S 

timescales with ACC of 0.85 to 1.0 on a one month timescale (93).
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[H1] S2I initialized predictions

S2I initialized predictions are relatively mature compared to S2S and S2D, as evidenced by the 

number of national operational meteorological services that maintain state-of-the-art initialized 

S2I prediction systems (7; 117). Primary sources and mechanisms of S2I predictability consist of 

slowly evolving boundary conditions of SST, land-surface conditions (moisture, snow cover), 

sea-ice variations (118) and stratospheric state. Additional predictability might be gained from 

atmospheric composition, not typically represented in S2I models. Each of these factors are now 

discussed.

[H2] ENSO

The largest source of S2I predictability is associated with ENSO. ENSO provides skill in 

predicting rainfall across the tropics (119) and surface climate across the globe given their 

teleconnections (120). This predictability skill is primarily derived from subsurface ocean 

processes (121). Specifically, given that winds and SST in the deep tropical Pacific are largely in 

equilibrium, and the sub-surface temperature or thermocline variations are in dis-equilibrium, 

capturing the latter in the initial state of ESMs offers predictability (121).

However, ENSO events exhibit a large diversity in spatial patterns, with the location of 

maximum SST anomalies ranging from the central Pacific to the far-eastern Pacific (39; 122). 

ENSO diversity raises predictability issues in terms of precursor mechanisms such as Pacific 
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Meridional Modes (123; 124; 125; 126; 127), forecast skill (128, 129), teleconnections (130), 

multi-year events (131) and interpretation in the paleo-record (132)--many of which remain 

unresolved.

Overall, current state-of-the-art prediction systems are able to predict SSTs in the eastern Pacific 

up to 6-9 months in advance with modest skill, especially for forecasts initialized in June and 

verifying in the following boreal winter. Yet, current prediction systems consistently struggle to 

predict through the boreal spring season, that is, the so-called spring prediction barrier. The rapid 

onset or initiation of canonical, eastern Pacific, ENSO events also remains a challenge to predict, 

largely because onset often requires stochastic triggers such as westerly wind bursts (133, 134). 

Indeed, inclusion of westerly wind bursts (or other triggers) as stochastic parameterizations has 

been found to improve model simulations of ENSO (135) and forecast skill (136). Prediction of 

different ENSO types appears to be limited to about one month (137), and owing to the models’ 

systematic tendency to produce more warming in the east, strong eastern Pacific events are 

generally better predicted (that is, exhibit better forecast skill) than central Pacific events (7). 

 

[H2] Other modes of variability 

Tropical Atlantic SST anomalies are also predictable on S2I time-scales. SST anomaly 

variability in this region is broadly categorized into two spatial patterns. The first is often 

referred to as the “Atlantic Niño” and involves many of the feedback mechanisms noted for 

ENSO (138), but is shorter lived and weaker. In comparison to ENSO, however, Atlantic Niño 

are less studied and also less predictable (139;140). The second pattern of variability is referred 
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to the Atlantic Meridional Mode (87). It is estimated that the Atlantic Meridional Mode is 

predictable one to two seasons in advance, with the mechanisms for predictability largely 

stemming from near surface air-sea interactions (thermocline variability is of secondary 

importance). However, even with some indications of successful predictions in certain 

circumstances including interactions with the tropical Pacific (138), as with all timescales of 

initialized predictions, persistent regional systematic errors with current initialized Earth 

prediction systems continue to be a factor in limiting predictive abilities of tropical Atlantic S2I 

variability (141; 142).

Much like the Atlantic, Indian Ocean SST anomaly variability is weaker and less predictable 

than the Pacific, but is important for regional teleconnections and impacts. Indian Ocean SST 

variability has three distinct patterns of interest: the IOD, that can be triggered by ENSO but can 

also emerge independently (58; 143); a basin-wide pattern that is an ENSO teleconnection (144); 

and a meridional mode pattern that depends on near surface air-sea interactions similar to that in 

the Atlantic (145).  Earth System prediction models typically struggle to predict the connection 

between ENSO and the IOD, the northward propagation of the meridional mode, and the 

persistence of the IOD, except in large amplitude cases (146). The IOD also can affect processes 

on the S2S timescale (147), including the MJO.  There are also other possible sources of S2I 

predictive skill involving the NAO (148) and Atlantic Ocean state which appears to drive aspects 

of summer European rainfall (149). 

 

[H2] Land Surface Processes
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Slowly varying S2I soil moisture anomalies influence prediction skill of precipitation and 

temperature (150). Currently, the memory resulting from large soil moisture anomalies in the 

initial conditions is believed to last ~2-3 months (151), but there are case-by-case examples 

where predictability can be considerably longer under conditions where soil moisture anomalies 

persist for more than one season, particularly for surface temperature. Indeed, some seasonal 

temperature predictability has been confirmed to arise from soil moisture, but the realization of 

skill is severely hampered by model biases (152; 153). Thus, reducing model error in the land 

surface components could considerably improve forecast skill, as seen in a large sample of 

initialized Earth System prediction experiments (17). 

[H2] Stratosphere

Improved surface prediction resulting from stratosphere-related processes has been demonstrated 

on the seasonal timescale:  having a higher vertical resolution in the stratosphere in a GCM 

captures SSWs earlier compared to the standard model configuration and has a positive influence 

on the simulations of European surface climate (154). Southern Hemisphere SSWs also affect 

predictions of Australian extremes (81; 93). The QBO, discussed earlier with respect to S2S 

predictability, has also been shown to lead to enhanced predictability on seasonal timescales 

(155; 156), is predictable out to several years ahead (157), and can also involve the MJO (116).

[H2] Atmospheric composition and other possible sources of predictive skill
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There are additional sources and mechanisms for S2I predictability that are not particularly well 

modeled in S2I prediction. For example, slowly evolving greenhouse gases such as carbon 

dioxide and methane are known to be a source of forecast skill owing to their role as external 

forcing agents (158). However, an approximate time-history of carbon dioxide, methane and 

chlorofluorocarbons is typically specified and not predicted, thus limiting the potential to capture 

S2I variability or regional effects. Moreover, dust and aerosol concentrations are known to affect 

human health, but these changes in atmospheric composition are usually not included in 

prediction systems. 

[H1] S2D initialized predictions 

There is a high level of interest in, and expectations of, initialized Earth System predictions on 

timescales beyond S2S and S2I. For example, even with their limitations, there is evidence of 

skill in predicting surface temperature over and above that of simple persistence (Fig. 6a,b), and 

also  precipitation and sea level pressure when using large multi-model ensembles, albeit with 

less skill (36) . These skillful multi-year predictions of precipitation over land indicate potential 

benefit to communities, as demonstrated with summer drought indicators in major European 

agricultural regions being predictable on multi-year timescales (159). Here we review the 

evidence for processes and mechanisms acting on the S2D timescale that could contribute to the 

skill of initialized predictions (12; 36 ).

[H2] Modes of decadal SST variability 
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Processes and mechanisms have been identified that could provide skill for fundamental 

quantities like SST in initialized predictions. Attention has been focused on AMV (160), but 

predictions of PDV (160; 161) -- which are often described in terms of the Interdecadal Pacific 

Oscillation (IPO) (162) over the Pacific basin and the Pacific Decadal Oscillation (163; 164) 

over the North Pacific -- are also of interest. Other modes of variability associated with decadal 

timescales include the Meridional Modes (165) and the North Pacific Gyre Oscillation (166).  

Basin-wide warming and cooling patterns of SSTs and upper ocean heat content (0-400 m 

averaged temperature) have also been shown to characterize decadal-timescale variability in the 

Indian Ocean (167, 168; 169), as have decadal variations of the IOD (56, 170). Decadal 

variability in the Indian Ocean could influence warming events near the Australian west coast 

(171; 172). Furthermore, a rapid rise in Indian Ocean subsurface heat content in the 2000s in 

observations and model simulations is associated with a redistribution of heat from the Pacific to 

the Indian Ocean and has been suggested to account for a large portion of the global ocean heat 

gain during that period (173, 174). IPO variability could thus be affecting Indian Ocean 

variability, transmitted through both the atmospheric and oceanic bridges (175). These low-

frequency connections have been implicated in modulating interannual variability associated 

with the IOD  on decadal timescales (176, 172). 

One issue that remains to be resolved for S2D related to prediction skill is whether there are 

well-defined timescales of variability that are distinct from the background of climatic noise; that 

is, if there are modes of large-scale variability that might display a statistically significant 

spectral peak in the decadal-to-multidecadal range and that could be predicted. Such signals 

could offer the best prospect for long-term predictability, but on this timescale, there is more of a 

broad-band spectral peak. For example, CMIP5 control simulations showed patterns and multi-
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decadal timescales of variability in the Pacific associated with the IPO that resemble 

observations but with lower amplitude (177). Moreover, analysis of three generations of climate 

models (CMIP3, CMIP5 and CMIP6) shows progressive improvement of climate models’ 

simulations of PDV (178). However, there was no convincing evidence across these state-of-the-

art coupled models for distinct oscillatory signals, other than on the interannual (3-7 year) ENSO 

timescales (179). These observations suggest, as noted previously, that low frequency variability 

on interdecadal timescales is characterized by broadband rather than oscillatory behavior.

 

 

[H2] Global temperatures

The idealized “rising staircase” (Fig. 6c) of global mean surface temperature (GMST) trends 

represents actual epochs of larger or smaller amplitude positive GMST trends (Fig. 6d) in a 

world with steadily increasing positive radiative forcing from increasing greenhouse gases (180). 

This increase in radiative forcing means that the entire Earth System warms continuously, but the 

manifestation of that warming at the Earth’s surface on decadal timescales depends on how heat 

is redistributed in the climate system: if more heat remains near the ocean surface, the GMST 

rate of warming will be larger, but if more heat is distributed into the deeper ocean, then the 

GMST trend will be reduced (44, 181). 

 It is recognized that the slowdown in the rate of GMST warming in the early 2000s was likely a 

combination of internal variability from the negative phase of the IPO (182, 183, 184, 185, 186) 

and/or variations in the strength of the Atlantic meridional overturning circulation (187), both of 
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which acted to re-distribute heat into the subsurface ocean. However, there is disagreement on 

whether the heat is primarily stored in the tropics (174) or at high-latitudes (181). External 

forcing from a collection of moderate sized volcanic eruptions (188) and from anthropogenic 

aerosols (189), might have also played a role in the slowdown, though their contribution is not 

entirely settled (190).

Initialized predictions have been shown to successfully predict the onset of the GMST warming 

slowdown, linked to increased ocean heat uptake in the tropical Pacific and Atlantic oceans (191; 

183). Spatial patterns of predicted 20-year surface air temperature trends have been shown to 

depend on the initial state of the Pacific Ocean (192), with initialized model predictions 

exhibiting a large spread in projected multi-decadal global warming unless the initial state of the 

Pacific Ocean is known and well represented in the model. Apart from its connection to the 

recent global warming slowdown, the negative phase of the IPO has also been linked to regional 

climate changes at higher latitudes, including the rate of Arctic sea ice decrease in the early 

2000s (193) and Antarctic sea ice expansion during that same period (194, 195). 

Statistical methods (47) and initialized predictions (196, 197)  foretold a transition of the IPO in 

the tropical Pacific from negative to positive in the 2014-2015 time frame, with a resumption of 

more rapid rates of global warming thereafter. There is observational evidence that this IPO 

transition also contributed to initiating rapid Antarctic sea ice retreat (198).

There is a chronic shortage of observed data in the ocean to document heat redistribution. In 

models, this redistribution has been shown to involve the subtropical cells in the Pacific, 

Antarctic Bottom Water formation and the AMOC in the Atlantic (44; 2), as well as changes in 

the zonal slope of the equatorial thermocline (182; 199) associated with changes in tropical 
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winds. However, deciphering decadal timescale variability in the observed climate system, and 

interpreting such variability in the context of initialized predictions, is complicated by the 

presence of external forcings (such as anthropogenic and volcanic aerosols and solar forcing) 

that can produce decadal variability in the Pacific (189) or Atlantic (200; 201) with similar 

patterns to presumptive internally generated decadal climate variability (180; 202, 203) 

[H2] Interactions between ocean basins

Interactions between various ocean basins is one of the most compelling science questions that 

has arisen regarding the origins and nature of decadal climate variability, with implications for 

initialized prediction skill (160, 204, 205). For instance, if a skillful prediction of climate in one 

basin is achieved, then skillful simulations in the other basins could follow (if the models capture 

these connections realistically), thus improving the skill of initialized S2D predictions. 

SST variability in one ocean basin can affect the others through the tropical large-scale east-west 

atmospheric Walker Circulation, though the direction of those influences differs (205, 206). For 

example, model simulations have indicated that decadal timescale variability in the Atlantic 

could produce decadal timescale variability in the Pacific (61; 207; 208; 209). Pacific decadal 

variability can also affect the Atlantic (210; 211; 194) and control a large fraction of decadal 

variability in the Indian Ocean (58, 172, 212, 213, 214). Similarly, the Indian Ocean could 

influence decadal variability in the Pacific (168; 204; 215). There also could be staggered 

responses based on decadal timescales, with the tropical Pacific driving the tropical Atlantic on 

interannual timescales, with the Atlantic then affecting the Indian Ocean and subsequently the 

Pacific on decadal timescales (216; 217). It has further been postulated that the tropical Atlantic 
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and Pacific Oceans are mutually interactive on decadal timescales, with each alternately 

affecting the other (206), and that the tropical Pacific could be driving the extra-tropical Pacific 

(218). 

External forcing, particularly from time-evolving anthropogenic aerosols, is another factor that 

could produce decadal climate variability and inter-basin connections (200; 189; 219). Such 

fundamental interactions all currently fall under the heading of a compelling research frontier 

that, with increased understanding, will certainly advance the science of initialized prediction.

 

[H1] Summary and future perspectives 

Numerical models initialized with observations for specific time periods and integrated forward 

in time provide a continuum of predictions on different timescales from S2S, S2I and S2D. 

Results so far demonstrate initialized prediction skill for variables such as surface temperature 

and key modes of atmospheric and ocean variability. Such skill has been demonstrated, for 

example, for the MJO on S2S timescales, for ENSO on S2I timescales, and for surface 

temperatures in most ocean regions on S2D timescales.  Yet despite progress in predictions and 

processes, there are still many challenges and priorities for future research.

 [H2] Model error 

 Almost every science-related aspect of subseasonal to decadal climate variability has 

considerable uncertainty associated with it. Therefore, apart from fundamental scientific 
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understanding, perhaps the key obstacle to progress is model error, particularly resolving biases 

and drifts and drifts and errors in the signal to noise ratio. Progress thus requires model 

improvement, developments of which are difficult but not impossible. In recent years for 

instance, model development work has been undertaken in the coupled space, improving 

simulation of atmosphere-ocean phenomena that give rise to predictability (such as the MJO and 

ENSO), and therefore minimizing the exacerbation of drift when developed in isolation.  Model 

improvements depend critically on our understanding of processes and mechanisms and how 

they work in the climate system since it is difficult to model what is not understood.  Therefore, 

enhanced observational and analysis projects must continue to provide the knowledge base from 

which to make improvements to the model simulations.  

Model error remains a significant obstacle against which future progress will be measured, with 

profound implications for possible applications to stakeholder communities. Such applications 

could include energy supply (wind, solar) and demand (220), agriculture (drought, freezing), 

transport (221) and numerous others spanning a range of timescales. Notably, S2S prediction 

could inform preparedness for specific large-scale extreme events weeks ahead (5), and S2I and 

S2D initialized predictions are beginning to inform planning at ranges between the seasonal to 

multi-decadal climate change time scales (222).

In addition to coupled model development, increased model resolution has also shown ability to 

improve model bias and signal to noise ratio. Consequently, the benefit of increased model 

resolution is one of the research frontiers of initialized prediction. However, such increased 

resolution must also be accompanied by comparable increases in the quality of the physical 

parameterizations such as cloud feedbacks and cloud-aerosol interactions (198). Though we are 

still very likely decades away from having global coupled models (and suitable machines) 
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capable of explicitly resolving processes that would improve model bias (such as atmospheric 

convection and ocean eddies), approaches have been developed to reduce computational cost and 

bias. These approaches include flux correction techniques (223); parameter estimation (224); 

reducing the precision of some variables (225); and stochastic modelling (226). Additionally, 

machine learning techniques are providing indications of improving predictive skill.  For 

example, a deep-learning approach using a statistical forecast model has been shown to produce 

skillful ENSO forecasts for lead times of up to one and a half years (227).  Utilization of GPU-

based computer architectures could become useful and open the way to better parametrizations 

that depend on intensive calculations that can be addressed with GPU architectures.  

    

[H2] Initialization 

Integrating the vast amount of observed information into an Earth System model is 

central to the S2D prediction. Traditionally the most advanced data assimilation 

techniques were implemented in the atmospheric component. In the last decade, 

however, there have been growing interests in how to fully utilize relevant satellite and 

in situ observations to improve S2S and S2I predictions.  Coupled ocean-atmosphere 

data assimilation (28, 228, 229) shows promising evidence that coupling can reduce 

“initialization shock” and improve forecast performance on time scales of weeks to 

decades (230). The advancement has led to coupled reanalysis products for both ocean 

and atmosphere (CFSR by NCEP, (231) and CERA by ECMWF, (232)) and is expected 

to substantially improve S2S and S2I predictions. 
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Compared to S2S and S2I predictions, there remain critical obstacles as to how to initialize 

decadal predictions. First, there is a lack of observations.  S2D models need to be 

initialized in the 1960s and 1970s in order to calibrate the decadal prediction systems 

and achieve the potential to capture the evolution of low-frequency modes of variability 

(such as PDV and AMV). Reconstruction of global ocean subsurface temperature and 

salinity prior to the advent of Argo floats remain a large problem. Currently most 

modeling centers performing decadal predictions don’t carry out their own assimilation 

exercise, rather they simply nudge some reanalysis products in the ocean and 

atmosphere (Supplementary Table 3). It has not been carefully investigated how to best 

initialize the ocean without reliable subsurface observations, and how the 

inhomogeneity of the observations can impact the model performance. 

Building ensembles is another key obstacle to decadal prediction, as the common 

practice in the community is to use an ensemble of 10 members following the CMIP5 

and CMIP6 experimental designs. A large ensemble consisting of 40 members can 

provide better opportunities for skillful predictions of low-frequency climate variability 

over land in selected regions (20). However, compared to the atmosphere, there is very 

limited understanding of the mechanisms and uncertainty associated with the low-

frequency internal variability in the ocean owing to the lack of long-term observations of 

the subsurface ocean, and thus lack of guidance as to how to build the ensemble.  

Machine learning methods could help address this problem, though lack of long-term 

subsurface ocean observations will always be a factor for the S2D timescale.  

Finally, a major constraint is computational capability, both for initialization and for 

running adequate numbers of ensembles to improve skill (33). The future of initialized 

prediction will depend on computational resources balanced with factors involving 
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increased resolution, artificial intelligence, use of new high performance computing 

architectures, and developments in exascale computing. 

    

[H2] Predictability of internal variability

There are considerable future challenges for understanding internal variability in the context of 

initialized prediction. These include the need to have a better understanding and better estimates 

of predictability. Additionally, research is needed regarding why models appear to underestimate 

the magnitude of predictable signals compared to unpredictable variability, and this involves the 

response to external forcing as well (233).

One issue that remains to be resolved for S2D initialized predictions is whether there are well-

defined processes and mechanisms that, if initialized properly, could provide predictable signals 

distinct from the background of climatic noise. Signals from PDV and AMV offer the best 

prospect for long-term predictability. Strong low-frequency variability in paleoclimate “proxy” 

records, which is not captured by most climate models, suggests that either models do indeed 

underestimate low-frequency modes of variability, that proxy observations contain significant 

residual non-climatic sources of variation, or some combination thereof (234; 235, 236, 237). 

Even if there is no distinct low-frequency (oscillating) phenomenon, predictability on decadal 

timescales could also come from memory and slowly varying components of the Earth System 

such as the slow propagation of oceanic planetary waves (238; 239) or natural volcanic forcing 

(47), and initialization could be expected to contribute to skill in such cases.
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[H2] Expanding predicted variables

There is interest, and corresponding applications, for expanding beyond the prediction of surface 

temperature, precipitation and SST. There have been efforts at predicting soil moisture with 

implications for drought prediction (240) and ecosystem respiration (241, as well as snowpack 

with ramifications for water resources (242; 243) and marine heat waves (244). There is also a 

great societal need for prediction of sea-ice on S2I and S2D timescales. Some S2I models show 

some skill in predicting sea-ice edge in the Arctic (245), while S2S models show a very wide 

range of skill in predicting the sea-ice edge in the Arctic, with the most skillful models producing 

useful forecasts up to 45 days (99). While the potential for skillful initialized predictions of 

Arctic sea-ice on S2S timescales has improved in the last decade, there is still a lot more to be 

explored and improved (101). We still need to understand what are the key processes driving 

sub-seasonal variations of sea-ice and improve the representation of these processes in the S2S 

models. Improved coupled data assimilation of the ocean, sea-ice and the atmospheric coupled 

system can help improve initial conditions for coupled forecasts and concomitantly the forecast 

skill of features that are sensitive to the initial state (14, 246; 247).  

Other important aspects of the cryosphere relevant to initialized prediction on S2D timescales are 

ice sheets.  As new interactive ice sheet simulations and spin-up procedures come increasingly 

online (248), this will provide an additional opportunity for initialized S2D predictions.

Air pollution and air quality are other very society-relevant applications which have been largely 

unexplored owing to the lack of inclusion of interactive tropospheric chemistry in most S2S, S2I 

and S2D models. However, new comprehensive ESMs, such as the Community Earth System 
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Model with the Whole Atmosphere Community Climate Model as its atmospheric component 

(CESM2-WACCM, 249) will be able to explore this research area. 

In the broader Earth System, there is growing interest in predicting the biosphere and 

biogeochemical state variables and fluxes that could inform management decisions. Skillful 

initialized predictions of SST on S2S timescales can engender predictability of fish yields in the 

California Current System (250) and other Large Marine Ecosystems (251). S2S initialized 

predictions of heat stress and coral bleaching risk have also demonstrated considerable skill and 

have provided critical advanced warning for coral reef scientists, managers, and stakeholders 

(252). SST anomalies in the western tropical Pacific and northern subtropics, often associated 

with ENSO events, appear to be skillful precursors for variations in temperature and related 

biological productivity along the U.S. West Coast at S2I timescales (253). 

Emerging literature on S2D predictions of biogeochemistry in the terrestrial biosphere and ocean 

suggests that slowly evolving state variables could enable prediction of biogeochemically 

relevant quantities with greater skill than physical state variables such as temperature and 

precipitation. For example, predictions of marine net primary production by photosynthesizing 

phytoplankton (including algae, eukaryotes and cyanobacteria) might foretell future potential 

fisheries catch, predict harmful algal blooms (254), and aid with fisheries management strategies 

(255; 254; 256; 257), as would   skillful predictions of ocean oxygen content or acidity (258; 

259). Reliable forecasts of the changing global carbon budget, including the rate of ocean carbon 

absorption (217; 260; 261; 262) or the rate of terrestrial biosphere-atmosphere net ecosystem 

exchange (260; 241) could help to generate forecasts of atmospheric CO2 growth rate and 

contribute to CO2 emissions management strategies. Additionally, there has been demonstrated 

S2I skill at predicting net primary production related to fire risk (263).
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  Recently reported skillful predictions of chlorophyll concentrations over the global oceans at 

seasonal to multi-annual timescales have been related to the successful simulation of the 

chlorophyll response to ENSO, and to the winter re-emergence of subsurface nutrient anomalies 

in the extra-tropics (256). Chlorophyll not only responds to ENSO, but can also constitute a 

potentially useful ENSO precursor (264). 

In the ocean biogeochemical system, variables of interest for prediction are rarely directly 

observed at the spatial and temporal scales needed for forecast verification, regardless of the 

timescale of the prediction (265; 266). Thus, most of the literature is focused on the potential to 

make predictions of these quantities, rather than on skill as measured by historical observations 

(255, 260; 261, 257), with exceptions (258; 259; 217).  On the global scale, verification is 

limited to variables measured or derived from satellite observations, such as ocean chlorophyll 

(256), marine primary productivity (19), or interpolated estimates of the surface ocean partial 

pressure of CO2 (262). Nevertheless, there is promising potential to make ocean biogeochemical 

initialized predictions across multiple timescales.

For S2S, S2I, and S2D initialized predictions to be useful, they must be shown to be not only 

skillful but reliable (267), and this is a considerable challenge that the community is only starting 

to attempt to address (5; 21). The ultimate challenge in this emerging area of research, and one 

that is igniting excitement and interest in the scientific community, is to provide predictions with 

maximum skill that take into account all relevant processes across subseasonal to decadal 

timescales (268, 269). Toward that end, initialized prediction is already put to task and being 

applied in various sectors even as improvements in understanding and prediction capability are 

being improved, thus driving rapid advances in this burgeoning field.
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Key points

- Initialization methods vary greatly across different prediction timescales creating 

difficulties for seamless prediction.

-  Model error and drift limit predictability across all timescales. Although higher 

resolution models show promise in reducing these errors, improvement in physical 

parameterizations are needed to improve predictability.
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- The effects of land processes, interactions across various ocean basins and the role of 

stratospheric processes in predictability are not well understood.

- Predictability on S2D timescales is largely associated with predictability of the major 

modes of variability in the atmosphere and the ocean.

- Evolution of Earth System models will lead to predictability of more societal-relevant 

variables spanning multiple parts of the Earth System
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Table 1. General characteristics of models used for S2S, S2I and S2D initialized 

predictions*.

 Timescale Number 
of 
models

Atmospheric 
resolution & 
levels

Ocean 
resolution & 
levels

Components 
initialized

Initiali- 
zation

Number 
of 
ensembles

Prediction 
length

S2S 18 25—200 km

17—91 levels

8—200 km

25—75 levels

Most 
initialize 
atmosphere, 
ocean, land 
and sea ice

Full 
field

4—51 31—62 
days

S2I 13 36—200 km

24—95 levels

25—200 km

24—74 levels

All initialize 
atmosphere, 
ocean, land 
and sea ice

Full 
field

10—51 6—12 
months

S2D 14 50—20 0km

26—95 levels

25—100 km

30—75 levels

Models 
range from 
initializing 
only ocean, 
to 
initializing 
atmosphere, 
ocean, land 
and sea ice

Full 
field, 
anomaly

10—40 5—10 
years

*A full and more complete accounting of model features is given in Supplementary Table 1, 2 

and 3 for S2S, S2I and S2D models.
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 Figure 1. 

Timescales and processes involved with initialized predictions. a| Timescales and sources of 

predictability for S2S, S2I, and S2D. Lighter green shading indicates larger uncertainty.  MJO: 

Madden-Julian Oscillation; NAO: North Atlantic Oscillation; QBO: Quasi-Biennial Oscillation; 

SSWs: Sudden Stratospheric Warmings; ENSO: El Niño-Southern Oscillation; PDW: Pacific 

Decadal Variability; AMV: Atlantic Multi-decadal variability; GMST: Global Mean Surface 

Temperature; GHG: Greenhouse Gas. b| skill in predicting the upper 300m of the Atlantic Ocean 

temperature, as measured by relative entropy, in initialized models (blue) and those forced by 

RCP4.5 (red). Skill is high for initialized predictions at S2S and S2I timescales (<2 years), but 

decreases toward S2D (year 3-9), after which time skill from external forcing increases. Panel b 

adapted, with permission, from ref 10.
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Figure 2. Influence of ensemble size and lead year ranges on predictive skill. a| Skill (as 

measured by anomaly correlation coefficient) in predicting S2S globally averaged NDJFM 

surface air temperature (excluding the Antarctic) from CESM initialized hindcasts of various 

ensemble size (grey line). Shading denotes the 5% and 95% significance levels. Blue and red 

whiskers illustrate predictive skill for NCEP CFSv2 and ECMWF subseasonal hindcasts, 

respectively. b| Skill (as measured by the anomaly correlation coefficient) in predicting S2D 

wintertime NAO using ensembles of different sizes from the Decadal Prediction Large 

Ensemble, DPLE (20). Each line depicts a different lead year range, with those that are colored 

corresponding to statistically significant correlations; the darker the shading, the greater the 

statistical significance. The dashed-dotted line shows the skill of the sub-ensemble mean against 

a single member of the ensemble (averaged for all possible combinations). Both panels illustrate 

that the more ensemble members, the higher the skill for longer lead year ranges. Panel b 

adapted, with permission, from ref 37.



77

Figure 3. Extending proxy observations of S2D variability back in time derived from 

corals. a | Global mean surface temperature anomalies , b | 30 year running means of the coral-

based Indian Ocean Dipole (IOD) (blue) and El Nino-Southern Oscillation (ENSO) (red); c | 

scatter plot of coral-based IOD and ENSO; d | equatorial Pacific west-east SST gradient, shading 

represents uncertainty ; e | central and eastern Pacific El Niño derived from teleconnected 

climate patterns. f | An indication of reconstructions considered robust in panel e.  Collectively, 

the figures illustrate a strengthening of IOD-ENSO decadal variability after ~ 1590. Figure 

adapted, with permission, from ref 58.
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Figure 4. Impact of model drift on initialized predictions. Globally averaged surface 

temperature predictions from the Decadal Prediction Large Ensemble (20) as a function of 

simulation year. Initial state predictions (blue dots) compare well to observations (black line), 

but drift (progression of blue dots to red dots) toward the model’s systematic error state 

represented by the uninitialized state (dark gray line; gray shading is range of uninitialized 

projections).  
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Figure 5. Initialized S2S predictions of the MJO. a | observed outgoing longwave radiation 

(OLR) anomalies averaged over 5°S to 5°N as a function of the stage of the Madden-Julian 

Oscillation (MJO). b-g | as in a, but for various initialized predictions, with OLR anomalies 

taken as the average of simulations days 15-21. MJO events are identified based on the Real-time 

Multivariate MJO (RMM) index amplitude ≥1. The eastward propagation of MJO-related OLR 

anomalies is well captured by all six models. Figure adapted, with permission, from ref 6.
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Figure 6. S2D predictions and aspects of time-evolving globally averaged temperature. 

a| Prediction skill, measured as the anomaly correlation coefficient, of sea surface temperature 
(SST) averaged over lead years 5-9 from the decadal prediction large ensemble (20); darker red 
indicates higher skill.  b| improvement in prediction skill from initialized predictions in a over 
and above a persistence prediction; darker red indicates better skill in the initialized predictions, 
thus showing the value-added of initialized predictions c| Schematic of the “rising staircase”, 
illustrating how natural decadal-scale temperature fluctuations (blue) are tilted upwards owing to 
anthropogenic greenhouse gas emissions (red), producing accelerated warming in some decades, 
and reduced warming in others. d| time series of observed global mean surface temperature 
anomalies showing characteristics of the rising staircase: accelerated warming over 1980-2000 
and 2014-present, and a slow-down in the rate of warming over 2000-2014. Panels a and b 
adapted, with permission, from ref 20. Panel c adapted, with permission, from ref  268 Panel d 
adapted, with permission, from NASA.     
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TOC summary 

Initialized climate predictions offer distinct benefits for multiple stakeholders. This Review 

discusses initialized prediction at subseasonal-to-seasonal (S2S), seasonal-to-interannual (S2I) 

and seasonal-to-decadal (S2D) timescales, highlighting potential for skillful predictions in the 

years to come.


