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Abstract
Initialized Earth System predictions are made by starting a numerical prediction model in
a state as consistent as possible to observations and running it forward in time for up to ten
years. Skillful predictions at time slices from subseasonal to seasonal (S2S), seasonal to
interannual (S2I) and seasonal to decadal (S2D) offer information useful for various
stakeholders, from agriculture to water resource management, and human and
infrastructure safety. In this Review, we examine the processes influencing predictability,
and discuss estimates of skill across S2S, S2I and S2D timescales. There are encouraging
signs that skillful predictions can be made: at S2S timescales, there has been some skill in
predicting the Madden-Julian Oscillation and North Atlantic Oscillation; at S2I in
predicting the El Nifio-Southern Oscillation; and at S2D, in predicting variability in North
Atlantic sea surface temperatures. However, challenges remain, and future work must
prioritize reducing model error, more effectively communicating forecasts to users, and
increasing process and mechanistic understanding that could increase predictive skill and,
in turn, confidence. As numerical models progress towards Earth System models,
initialized predictions are expanding to include prediction of sea-ice, air pollution,
terrestrial and ocean biochemistry which can bring clear benefit to society and various

stakeholders.



[H1] Introduction

In recent decades there has been an increasing desire for climatic information on timescales from
weeks, to months, to seasons and years. Such information offers clear benefits to society and
various stakeholders alike. For instance, prediction of the hydroclimate could allow for better
water resource management and improved agricultural maintenance, while temperature and wind
predictions could provide critical information for infrastructure planning and expected energy
consumption. To obtain this climatic information, initialized predictions on various near-term
timescales must be used.

Initialized Earth System prediction describes a suite of climate model simulations wherein the
starting conditions are set as close to observations as possible and the model run forward for up
to 10 years (1). Internally-generated, naturally-occurring variability is therefore considered a key
aspect of these time-evolving climate predictions (2). They differ from unititialized simulations —
or climate change projections — where internal variability is removed through ensemble
averaging and focus is instead given to quantifying the effects of external forcing such as
anthropogenic greenhouse gases (3,4).

Given the duration of simulations, initialized predictions span various timescales (Fig. 1a):
subseasonal-to-seasonal (S2S; ~2 weeks to 2 months) (5, 6); seasonal-to-interannual (S2I; 2 to 12
months) (7); and seasonal-to-decadal (S2D; 3 months to 10 years) (1,2). In each case, efforts
have focused on climate phenomena that also operate on similar timescales. For example, S2S
research has concentrated on the Madden-Julian Oscillation (MJO) and sudden stratospheric
warmings (SSW); S2I on the El Niflo-Southern Oscillation (ENSO), North Atlantic Oscillation

(NAO), Indian Ocean Dipole (I0OD), Southern Annular Mode (SAM) and Quasi-Biennial



Oscillation (QBO); and S2D on slowly evolving oceanic processes such as Pacific Decadal
Variability (PDV) and Atlantic Multidecadal Variability (AMV).

Distinct communities have therefore formed to coordinate research and perform initialized
predictions at each timescale. Efforts such as the S2S Prediction Project and Database (5) and the
Subseasonal Experiment (SubX (6)) emerged for S2S; the North American Multi-Model
Ensemble [PR, hyperlink to: https://www.cpc.ncep.noaa.gov/products/NMME/] (NMME (7) and
the Copernicus Climate Change Service [PR, hyperlink to: https://climate.copernicus.eu/] (C3S)
for S2I; and sets of hindcasts and predictions as part of the Coupled Model Intercomparison
Project phase 5 (1,2) (CMIP5) and CMIP6 (8) for S2D.

While these communities are often separate, however, all rely on similar methodologies (Table
1, Supplementary Tables 1-3). Thus, there is potential for “seamless prediction” (9), whereby
one framework can be used to address prediction across all timescales, with skill increasingly
associated with external forcing as simulations progress (10) (Fig. 1b). Yet in practice,
community differences with regards to initialization frequency, for example, make seamless
prediction challenging (1,2).

In this Review, we bring together research on initialized predictions on timescales of weeks to
years. We begin by outlining current methodologies for initialized predictions, incorporating
discussion of the process, ensemble size, verification and prediction skill. We subsequently
outline prediction at S2S, S2I and S2D timescales, before discussing priorities for future research

that will increase the feasibility for seamless prediction.

[H1] Making Predictions



S21 research using initialized prediction has been taking place since the late 1980s (11). In
contrast, it was not until 20 years later that initialized S2D climate predictions began, in turn,
initiating a rapid acceleration of research from which operational systems are now routinely
produced (12). We begin by describing the process of initialized prediction, focusing on the
methodological aspects involving forecast verification and measures of prediction skill (the level

of agreement between an initialized prediction and the observed state it is meant to predict).

[H2] Process of initialized prediction

Predictions for S2S, S2I and S2D timescales, ranging from weeks to years, use numerical models
with components of (at least) atmosphere, ocean, land and sea ice that are started from a
particular observed state. The process of bringing the model components into close
correspondence to that observed state is termed initialization, and predictions that are started
from such observed states initialized predictions. There are currently many activities taking
place in the S2S, S2I and S2D communities with regards to initialized prediction, with key
differences amongst centers regarding how models are used (Table 1, Supplementary Tables 1-

3).

One key difference between the subseasonal and longer timescale systems is the origin of the
model. Many S2S (and some S2I) prediction systems originate in the numerical weather
prediction (NWP) community. As such, they tend to have the highest horizontal resolution in the
atmosphere, largely ~ 0.25-0.5° (Table 1). Atmospheric initialization in these NWP-derived
models uses data assimilation, such as 3D variational assimilation (as in the CMA model).

Moreover, to produce the initial perturbations for ensemble generation, they sometimes use data



assimilation with an Ensemble Kalman Filter (14) (as in the ECCC model) or singular vectors
(15) (as in the JMA model). In comparison, most S2I, and all but one S2D, prediction systems
are based on climate or Earth System Models (ESMs) previously used for IPCC climate
projections. In these cases, the majority of models have a horizontal resolution of ~0.5-1° (Table
1).

In addition to differences in the models and their resolution across prediction timescales,
contrasts are also evident in the components that are initialized and the degree of coupling
between Earth System components. In S2S predictions, for example, coupling between the
atmosphere, ocean, land and sea ice is not considered crucial (Fig. 1a). As such, only a small
number of models initialize the ocean and employ atmosphere-ocean coupling, but the majority
initialize land surface conditions (Supplementary Table 1). For S2D predictions, however,
oceanic processes are vital, and as a result, all models initialize the ocean and have at least partial
coupling with the atmosphere and sea ice; only a fraction initialize the atmosphere and land
surface (Supplementary Table 3). As S2I falls in the time window where predictability comes
from all Earth System components (Fig. 1a), care is typically taken to initialize each of them.
Atmospheric initialization is often achieved by interpolating an existing analysis to the model
grid and generating an ensemble spread using the random field perturbation method (16) (as in
CESM1 for S28S), the lagged ensemble method (17) (as in CCSM3), or nudging to reanalyses in
coupled mode (19) (as in the CCCma model). A variety of approaches have also been used to
initialize the ocean state, including a hindcast spin-up in an ocean forced by observed
atmospheric conditions (20), nudging the ocean model to some observed ocean state (21), or
using full ocean data assimilation (22). Land variables are initialized either by assimilation of

land observations (23) or by running an offline land-only model that is forced with observed



atmospheric conditions (24). The initialization strategy also differs between the shorter and
longer-term prediction models. All S2S and S2I prediction models use full fields (such as sea
surface temperate, SST). By contrast, about half of the S2D modes use anomaly initialization,
meaning an initial condition is constructed by adding observed (or reanalysis) anomalies to the
model’s climatology in order to minimize initialization shock and model drift (25, 26, 27).

As individual model components are often initialized in different ways, there is frequently no
coupling between initial conditions for various parts of the Earth System, thereby creating an
imbalance in the initial state of the model. New methodologies, such as weakly coupled and
strongly coupled data assimilation, offer promising approaches to reduce initialization shock and
imbalance in the model (28). In the weakly coupled approach, the assimilation is applied to each
of the components of the coupled model independently, whereas interaction between the
components is provided by the coupled forecasting system (28). In the strongly coupled method,
however, assimilation is applied to the full Earth System state simultaneously, treating the

coupled system as one single integrated system (28).

There are currently very few modeling centers that have been able to apply seamless prediction
owing to numerous practical aspects (including initialization method, initialization frequency,
number of ensemble members, among others). The most seamless system is currently operated
by the UK Met Office which is providing S2S, S2I, and S2D forecasts operationally, using
almost identical configurations of the model for all prediction systems (29). NCAR, although not
an operational center, is also using the same models, CESM1 and CESM2, to generate S2S, S21
and S2D hindcasts (and predictions for research purposes) using the same modeling framework,

although at this time initialization details vary among the three prediction systems.



[H2] Ensemble size

Ensemble size is an important aspect determining predictive skill and reliability. In most
prediction systems, ensemble sizes typically range between 10 and 50 (Table 1). There is
potential of increasing the number of ensembles by combining those from multiple systems (30)
or time-lagged ensembles (31), or using other techniques such as subsampling (32, 33) to
improve the ensemble properties. Typically, the more ensemble members, the higher the
anomaly correlation coefficient (ACC), a measure of prediction skill. For example, at S2S
timescales, ACC of global surface air temperature over land is ~0.29 when using only 4 CESM 1
hindcast ensemble members (34), increasing to ~0.33 for 8 members, and ~0.36 for 16 members
(Fig. 2a).

Very large ensembles are also advantageous for improving seasonal prediction skill of the NAO
(35), including at S2D timescales (36, 33). For example, ACC values are ~ 0.6 for an average of
years 2 to 8 when using 40 ensemble members (Fig. 2b) (37). Further increases in multi-year
NAO skill with ACC of 0.8 are possible with a lagged ensemble of 676 members (33) as a result
of the modelled signal to noise ratio being too small.

Yet, there are consequences in terms of computing costs when using more ensemble members.
For instance, an S2S reforecast could run 16 years (SubX) * 4 members * 2 months long *
weekly start dates for ~600 model years; an S2I example could run 30 years *9 members*1 year
long* 4 start dates per year for ~1000 model years; and an S2D example (DCPP) could run 60

years*10 members *10 years long for ~6000 model years.



[H2] Verification using observations

A key element of initialized prediction is having a solid understanding of the climate phenomena
that are being predicted. Analyses of observations in comparison to the model simulations are
thus required. On S2S and S2I timescales, the observational record provides a good source of
data to verify initialized hindcasts. For example, observations cover roughly 30 ENSO events
and as many as 300 MJO cycles. However, these data have their limitations. For instance, 3D
observations of the atmosphere and ocean are desired for prediction verification, for
understanding of processes and mechanisms, and for initialization of the predictions in the first
place (38). Yet such 3D gridded data are limited to the period of the satellite record (dating from
the late-1970s) and to reanalyses that assimilate all available observations. Moreover, while
several ENSO (and similar timescale) events have been observed, these can exhibit different
expressions (39) and undergo large decadal-to-millennial variations (40, 41, 42), requiring a long

observational record to perform robust analyses.

Researchers in the field of initialized Earth System prediction on S2D timescales often cite the
short observational record as a factor inhibiting understanding. For example, with reliable
observations limited to the latter half of the 20th century (43), only ~3 PDV or AMV transitions
have occurred by which to compare to predictions. While some observations are available earlier
in the 20" century, these are sparse and reanalyses are highly uncertain, making consistent
comparisons of prediction skill between the pre- and post- satellite era difficult. Added to that,
subsurface ocean observations and critical state atmospheric variables (such as surface winds)
are crucial to understanding slow variations in the climate system (44), but such observations
also have a very short duration. Moreover, it is also difficult to objectively separate forced

(natural and anthropogenic) and internal decadal-to-multidecadal climate variability, adding



further challenges for S2D prediction verification and triggering debate of best practices for

signal separation (45, 46, 47, 48).

Nevertheless, efforts are underway to improve methodological approaches and data provisions
for prediction verification. The crucial need for better observations of the full depth of the ocean
have started to be addressed by Argo floats, first for the upper 2000m (49) but with plans to be

expanded to the full ocean depth (50).

Proxy-based reconstructions are also increasingly available, shedding light on processes
associated with interannual and decadal timescales of variability (51) beyond that possible by
instrumental observations. Indeed, the particular limitations of instrumental data length and
coverage for verification of S2D predictions have pointed to paleoclimate reconstructions --
using trees, corals and speleothems -- to extend observations and provide further realizations of
decadal variability (52; 40; 53; 54; 55; 42; 56) (Fig. 3). Additionally, such records can provide
insights into the physical mechanisms associated with that variability, including westerly wind
anomalies (51), upwelling, gyre circulation (57) and links among major modes of variability
(58). Together with further advances in paleoclimate research — including paleoclimate synthesis
(59, 60, 61, 62), paleo data assimilation techniques (63, 64, 65), and development and expansion
of proxy system models and toolboxes (66, 67) — paleoclimate data will not only help with the
verification of climate model simulations, particularly on the S2D timescale, but also will
provide context for initialized predictions by providing insights into the timescales of variability

beyond the instrumental record.

10



[H2] Bias correction and prediction skill

To account for model drifts and biases, the skill of initialized predictions is typically evaluated in
terms of forecast time-dependent anomalies that are departures from some measure of mean
climate. However, a prediction will drift rapidly from the initial observed state towards its own
climatology owing to model error. These drifts start almost immediately in a prediction, and by

lead year 1, are already considerable (Fig. 4).

The calculation of anomalies and correction of model biases are addressed together, typically by
calculating and removing the model climatology. For S2S predictions, the common methodology
is to calculate a lead time dependent model climatology from a set of hindcasts and to compute
anomalies from this climatology. However, such a procedure is complicated owing to the
inhomogeneous nature of current subseasonal prediction systems (6, 68). The climatology for
S21I predictions is similarly accomplished by averaging over all years of the hindcast for a
particular start time and lead or target time (68), thereby assuming stationarity of biases and

drifts in the predictions.

For S2D predictions, model drift is acute and is addressed by multiple approaches for computing
anomalies (Fig. 4). One method is to calculate the model climatology of drifts from hindcasts
over a prediction period of interest (for example, the average of lead years 3 to 7), and subtract
that climatology from each 3 to 7 year prediction (69); this approach works well for short
timescale predictions where externally-forced trends are less of a factor, but can be problematic
for longer timescales. An alternative method is to compute a mean time-evolving drift from a set
of hindcasts, subtract that mean drift from a prediction, and compute anomalies as differences

from the drift-adjusted prediction and time period (such as the previous 15 year average)

11



immediately prior to the prediction (70). This alternative approach better reduces the effects of
an externally-forced trend, but raises the issue of how big a role the recent observed period
should play in prediction verification. When long-term trends in the hindcasts differ from
observations, a further method is to correct biases in the trends in addition to those in the mean
model climatology over the hindcast period (71), though such an approach can yield an

overestimation of the skill of the system.

Models can also underestimate the magnitude of predictable signals relative to unpredictable
internal variability, especially on seasonal and longer timescales in the extra-tropical north
Atlantic sector (33). This underestimation leads to the counterintuitive implication that models
are better at predicting the real climate variability than they are at predicting themselves, a
phenomenon termed the “signal to noise paradox”, when observed signal to noise ratios are
larger than in models (72). Given that such features also occur in uninitialized climate
simulations of the historical period (73; 74), and potentially in modelled responses to volcanoes
and solar variations (72), they are not believed to arise from initialization itself. As a result of the
signal to noise paradox, it is necessary to take the mean of a very large ensemble to extract the

predictable signal and then adjust its variance (33).

Although discrepancies between signal to noise measures in models and observations highlight
an important model deficiency, it also implies an optimistic potential to use adjusted climate
model outputs to predict the observed system (36, 33). Additionally, there has been a growing
interest in the influence of decadal variability on the predictability and skill of seasonal forecasts
(75). Sometimes the impact of this variability can obscure the gradual skill improvements that

are found from advancing the science and modelling (76).
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Clearly a major challenge for initialized prediction on any timescale is the mean drift of the
model away from its initialized state to its preferred systematic error state (Fig. 4). All the efforts
at bias adjustment and drift correction arise from this fundamental characteristic of model error,
but improvements in initialized prediction require increased understanding of the processes and

mechanisms at work in the climate system in order to reduce model error.

[H1] S2S initialized predictions

All initialized predictions start with a particular observed state that could contribute to some
combination of externally forced and internally generated variability. However, owing to the
relatively short timescales, subseasonal (S2S) predictability is largely an initial value problem in
which the atmosphere, ocean, land and sea-ice contribute to prediction skill through their
memory of the initial state, and not external forcing (Fig. 1)). Considerable resources are
therefore allocated to initialization of atmosphere and land, including generation of ensemble
spread. Ocean initialization and coupling are additionally important, especially in tropical
regions where sources of predictability can come from modes of variability such as the MJO (77;

6), as well as the stratosphere, both of which are now discussed.

[H2] Modes of variability

The MJO is recognized as one of the leading sources of S2S predictability (78) owing to the
strong interaction between the tropics and extratropics on subseasonal timescales (79). For

example, forecast models involved in SubX and the Subseasonal-to-Seasonal Project can predict

13



the MJO skillfully up to 4 weeks (5, 80, 81). Furthermore, skill has been shown in predicting the
MJO in a multi-model framework consisting of six SubX models for week three predictions
averaged over days 15-21 (6) (Fig. 5), whereby most reproduce the eastward propagation of
outgoing longwave radiation anomalies. Some models, however, have difficulty in simulating the
propagation of the MJO across the Maritime Continent (eastward of 120°E), the so-called
Maritime Continent “barrier” (78). MJO-related Rossby wave propagation into the extratropics
also provides predictability for extreme events such as storm tracks (82), atmospheric rivers (83)

and tornadoes (84).

S2S predictability is also influenced by the NAO (itself influenced by ENSO (85)), sea-ice and
the stratosphere (86), which has bearing on extremes in large regions of Europe and North
America. Using the NCEP Climate Forecast System version 2 (CFSv2) and the Met Office
Global Seasonal forecast System 5 (GloSea$), it has been suggested that the NAO exhibits
predictability out to at least several months ahead (87, 88, 35). Indeed, all SubX models

demonstrate significant NAO skill at week 3, specifically an ACC of ~ 0.27 to 0.5 (ref 6).

Similarly, the SAM is a source of predictability and prediction skill of rainfall, temperature and
heat extremes over Australia (89, 90). Although SAM predictability is typically low beyond ~
two weeks, there is the potential to make seasonal predictions (91) because of its association with

ENSO (92) and the influence of the stratosphere (81, 93).

Consideration of these modes offer ‘windows of opportunity’ in S2S prediction, where in certain
situations, there could be better predictability owing to active periods of the MJO or certain

large-scale atmospheric regimes, for example (94).
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[H2] Initial state

Given that the land surface varies more slowly than the atmosphere, it provides a source of
predictability for temperature and precipitation on S2S timescales, the greatest contribution
coming from soil moisture (95). This predictability is most pronounced during boreal spring and
summer when synoptic systems have a smaller influence on soil moisture variability. The
contribution of soil moisture anomalies to subseasonal predictability also varies regionally, with
the largest contribution in areas of strong land-atmosphere interactions (96). As such, the land-
surface is initialized in most current operational subseasonal prediction systems and all research
subseasonal systems (Supplementary Table 1, 2). In doing so, improved skill for S2S
predictions of temperature and precipitation have been observed, although model errors impact

the full realization of this skill (97, 98, 95).

The coupling of the atmosphere to the ocean and sea-ice are further thought to be important for
predictability at lead times longer than two weeks, and accordingly, ocean-sea ice-atmosphere
coupled models are routinely used in operational S2S initialized predictions. For Arctic sea ice,
there is rising demand for reliable projections up to months ahead owing to increased human
activities. Currently the best subseasonal models show skillful forecasts of more than 1.5 months
ahead (99). Yet, many current operational forecast models lack skill even on timescales of a
week (100). Hence, there is more work to be done to improve the S2S forecast skill of Arctic
sea-ice variables, though many systems are capable of predicting sea ice extent on seasonal time

scales, at least in some regions and seasons (101, 102, 103, 104).

Sea-ice conditions (such as the location of the sea-ice edge) can have significant feedbacks with

the atmosphere and thus impact the forecast of the coupled system in initialized predictions

15



(105). For example, the largest midlatitude forecast skill improvements have occurred owing to
improved Arctic predictions over eastern Europe, northern Asia and North America relating to

sea ice reductions and anomalous anticyclonic circulation (106).

[H2] Stratosphere

The largest recognized influence of the stratosphere on the troposphere comes from extreme
states of the stratospheric polar vortex, particularly SSWs. SSWs are followed by tropospheric
circulation anomalies that can last up to 60 days and resemble the negative phase of the NAO (
107, 108). S28S forecasts initialized near the onset of an SSW thus show increased skill for mid-
to high-latitude surface climate (109), and seasonal predictability of the NAO is dependent on
the presence of SSWs in ensemble predictions (110). While SSWs are not as common in the
Southern Hemisphere, weakening and warming of the stratospheric polar vortex is predictable a
season in advance, and through connections with a negative SAM, can offer some predictability

of hot and dry extremes over Australia (81, 93).

The QBO can further influence the troposphere on S2S timescales. Specifically, phase changes
in the QBO modify the strength of the stratospheric polar vortex (111), in turn affecting the
subtropical jet and storm tracks (112, 113)., and strength of the MJO (114, 115). For example,
the phase of the QBO in the initial state influences the prediction skill of the MJO, with higher
skill during easterly-QBO boreal winters compared to westerly-QBO winters and improved skill
for lead times of 1-10 days (116). The prediction skill of the QBO itself is very high on the S2S

timescales with ACC of 0.85 to 1.0 on a one month timescale (93).
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[H1] S2I initialized predictions

S2I initialized predictions are relatively mature compared to S2S and S2D, as evidenced by the
number of national operational meteorological services that maintain state-of-the-art initialized
S2I prediction systems (7; 117). Primary sources and mechanisms of S2I predictability consist of
slowly evolving boundary conditions of SST, land-surface conditions (moisture, snow cover),
sea-ice variations (118) and stratospheric state. Additional predictability might be gained from
atmospheric composition, not typically represented in S2I models. Each of these factors are now

discussed.

[H2] ENSO

The largest source of S2I predictability is associated with ENSO. ENSO provides skill in
predicting rainfall across the tropics (119) and surface climate across the globe given their
teleconnections (120). This predictability skill is primarily derived from subsurface ocean
processes (121). Specifically, given that winds and SST in the deep tropical Pacific are largely in
equilibrium, and the sub-surface temperature or thermocline variations are in dis-equilibrium,

capturing the latter in the initial state of ESMs offers predictability (121).

However, ENSO events exhibit a large diversity in spatial patterns, with the location of
maximum SST anomalies ranging from the central Pacific to the far-eastern Pacific (39; 122).

ENSO diversity raises predictability issues in terms of precursor mechanisms such as Pacific

17



Meridional Modes (123; 124; 125; 126; 127), forecast skill (128, 129), teleconnections (130),
multi-year events (131) and interpretation in the paleo-record (132)--many of which remain

unresolved.

Overall, current state-of-the-art prediction systems are able to predict SSTs in the eastern Pacific
up to 6-9 months in advance with modest skill, especially for forecasts initialized in June and
verifying in the following boreal winter. Yet, current prediction systems consistently struggle to
predict through the boreal spring season, that is, the so-called spring prediction barrier. The rapid
onset or initiation of canonical, eastern Pacific, ENSO events also remains a challenge to predict,
largely because onset often requires stochastic triggers such as westerly wind bursts (133, 134).
Indeed, inclusion of westerly wind bursts (or other triggers) as stochastic parameterizations has
been found to improve model simulations of ENSO (135) and forecast skill (136). Prediction of
different ENSO types appears to be limited to about one month (137), and owing to the models’
systematic tendency to produce more warming in the east, strong eastern Pacific events are

generally better predicted (that is, exhibit better forecast skill) than central Pacific events (7).

[H2] Other modes of variability

Tropical Atlantic SST anomalies are also predictable on S21I time-scales. SST anomaly
variability in this region is broadly categorized into two spatial patterns. The first is often
referred to as the “Atlantic Nifio” and involves many of the feedback mechanisms noted for
ENSO (138), but is shorter lived and weaker. In comparison to ENSO, however, Atlantic Nifio

are less studied and also less predictable (139;140). The second pattern of variability is referred
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to the Atlantic Meridional Mode (87). It is estimated that the Atlantic Meridional Mode is
predictable one to two seasons in advance, with the mechanisms for predictability largely
stemming from near surface air-sea interactions (thermocline variability is of secondary
importance). However, even with some indications of successful predictions in certain
circumstances including interactions with the tropical Pacific (138), as with all timescales of
initialized predictions, persistent regional systematic errors with current initialized Earth
prediction systems continue to be a factor in limiting predictive abilities of tropical Atlantic S2I

variability (141; 142).

Much like the Atlantic, Indian Ocean SST anomaly variability is weaker and less predictable
than the Pacific, but is important for regional teleconnections and impacts. Indian Ocean SST
variability has three distinct patterns of interest: the IOD, that can be triggered by ENSO but can
also emerge independently (58; 143); a basin-wide pattern that is an ENSO teleconnection (144);
and a meridional mode pattern that depends on near surface air-sea interactions similar to that in
the Atlantic (145). Earth System prediction models typically struggle to predict the connection
between ENSO and the IOD, the northward propagation of the meridional mode, and the
persistence of the IOD, except in large amplitude cases (146). The IOD also can affect processes
on the S28 timescale (147), including the MJO. There are also other possible sources of S21I
predictive skill involving the NAO (148) and Atlantic Ocean state which appears to drive aspects

of summer European rainfall (149).

[H2] Land Surface Processes
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Slowly varying S21 soil moisture anomalies influence prediction skill of precipitation and
temperature (150). Currently, the memory resulting from large soil moisture anomalies in the
initial conditions is believed to last ~2-3 months (151), but there are case-by-case examples
where predictability can be considerably longer under conditions where soil moisture anomalies
persist for more than one season, particularly for surface temperature. Indeed, some seasonal
temperature predictability has been confirmed to arise from soil moisture, but the realization of
skill is severely hampered by model biases (152; 153). Thus, reducing model error in the land
surface components could considerably improve forecast skill, as seen in a large sample of

initialized Earth System prediction experiments (17).

[H2] Stratosphere

Improved surface prediction resulting from stratosphere-related processes has been demonstrated
on the seasonal timescale: having a higher vertical resolution in the stratosphere in a GCM
captures SSWs earlier compared to the standard model configuration and has a positive influence
on the simulations of European surface climate (154). Southern Hemisphere SSWs also affect
predictions of Australian extremes (81; 93). The QBO, discussed earlier with respect to S2S
predictability, has also been shown to lead to enhanced predictability on seasonal timescales

(155; 156), is predictable out to several years ahead (157), and can also involve the MJO (116).

[H2] Atmospheric composition and other possible sources of predictive skill
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There are additional sources and mechanisms for S2I predictability that are not particularly well
modeled in S2I prediction. For example, slowly evolving greenhouse gases such as carbon
dioxide and methane are known to be a source of forecast skill owing to their role as external
forcing agents (158). However, an approximate time-history of carbon dioxide, methane and
chlorofluorocarbons is typically specified and not predicted, thus limiting the potential to capture
S21 variability or regional effects. Moreover, dust and aerosol concentrations are known to affect
human health, but these changes in atmospheric composition are usually not included in

prediction systems.

[H1] S2D initialized predictions

There is a high level of interest in, and expectations of, initialized Earth System predictions on
timescales beyond S2S and S2I. For example, even with their limitations, there is evidence of
skill in predicting surface temperature over and above that of simple persistence (Fig. 6a,b), and
also precipitation and sea level pressure when using large multi-model ensembles, albeit with
less skill (36) . These skillful multi-year predictions of precipitation over land indicate potential
benefit to communities, as demonstrated with summer drought indicators in major European
agricultural regions being predictable on multi-year timescales (159). Here we review the
evidence for processes and mechanisms acting on the S2D timescale that could contribute to the

skill of initialized predictions (12; 36 ).

[H2] Modes of decadal SST variability
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Processes and mechanisms have been identified that could provide skill for fundamental
quantities like SST in initialized predictions. Attention has been focused on AMV (160), but
predictions of PDV (160; 161) -- which are often described in terms of the Interdecadal Pacific
Oscillation (IPO) (162) over the Pacific basin and the Pacific Decadal Oscillation (163; 164)
over the North Pacific -- are also of interest. Other modes of variability associated with decadal

timescales include the Meridional Modes (165) and the North Pacific Gyre Oscillation (166).

Basin-wide warming and cooling patterns of SSTs and upper ocean heat content (0-400 m
averaged temperature) have also been shown to characterize decadal-timescale variability in the
Indian Ocean (167, 168; 169), as have decadal variations of the IOD (56, 170). Decadal
variability in the Indian Ocean could influence warming events near the Australian west coast
(171; 172). Furthermore, a rapid rise in Indian Ocean subsurface heat content in the 2000s in
observations and model simulations is associated with a redistribution of heat from the Pacific to
the Indian Ocean and has been suggested to account for a large portion of the global ocean heat
gain during that period (173, 174). IPO variability could thus be affecting Indian Ocean
variability, transmitted through both the atmospheric and oceanic bridges (175). These low-
frequency connections have been implicated in modulating interannual variability associated

with the IOD on decadal timescales (176, 172).

One issue that remains to be resolved for S2D related to prediction skill is whether there are
well-defined timescales of variability that are distinct from the background of climatic noise; that
is, if there are modes of large-scale variability that might display a statistically significant
spectral peak in the decadal-to-multidecadal range and that could be predicted. Such signals
could offer the best prospect for long-term predictability, but on this timescale, there is more of a

broad-band spectral peak. For example, CMIP5 control simulations showed patterns and multi-
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decadal timescales of variability in the Pacific associated with the PO that resemble
observations but with lower amplitude (177). Moreover, analysis of three generations of climate
models (CMIP3, CMIP5 and CMIP6) shows progressive improvement of climate models’
simulations of PDV (178). However, there was no convincing evidence across these state-of-the-
art coupled models for distinct oscillatory signals, other than on the interannual (3-7 year) ENSO
timescales (179). These observations suggest, as noted previously, that low frequency variability

on interdecadal timescales is characterized by broadband rather than oscillatory behavior.

[H2] Global temperatures

The idealized “rising staircase” (Fig. 6¢) of global mean surface temperature (GMST) trends
represents actual epochs of larger or smaller amplitude positive GMST trends (Fig. 6d) in a
world with steadily increasing positive radiative forcing from increasing greenhouse gases (180).
This increase in radiative forcing means that the entire Earth System warms continuously, but the
manifestation of that warming at the Earth’s surface on decadal timescales depends on how heat
is redistributed in the climate system: if more heat remains near the ocean surface, the GMST
rate of warming will be larger, but if more heat is distributed into the deeper ocean, then the

GMST trend will be reduced (44, 181).

It is recognized that the slowdown in the rate of GMST warming in the early 2000s was likely a
combination of internal variability from the negative phase of the IPO (182, 183, 184, 185, 186)

and/or variations in the strength of the Atlantic meridional overturning circulation (187), both of
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which acted to re-distribute heat into the subsurface ocean. However, there is disagreement on
whether the heat is primarily stored in the tropics (174) or at high-latitudes (181). External
forcing from a collection of moderate sized volcanic eruptions (188) and from anthropogenic
aerosols (189), might have also played a role in the slowdown, though their contribution is not

entirely settled (190).

Initialized predictions have been shown to successfully predict the onset of the GMST warming
slowdown, linked to increased ocean heat uptake in the tropical Pacific and Atlantic oceans (191;
183). Spatial patterns of predicted 20-year surface air temperature trends have been shown to
depend on the initial state of the Pacific Ocean (192), with initialized model predictions
exhibiting a large spread in projected multi-decadal global warming unless the initial state of the
Pacific Ocean is known and well represented in the model. Apart from its connection to the
recent global warming slowdown, the negative phase of the IPO has also been linked to regional
climate changes at higher latitudes, including the rate of Arctic sea ice decrease in the early

2000s (193) and Antarctic sea ice expansion during that same period (194, 195).

Statistical methods (47) and initialized predictions (196, 197) foretold a transition of the IPO in
the tropical Pacific from negative to positive in the 2014-2015 time frame, with a resumption of
more rapid rates of global warming thereafter. There is observational evidence that this IPO

transition also contributed to initiating rapid Antarctic sea ice retreat (198).

There is a chronic shortage of observed data in the ocean to document heat redistribution. In
models, this redistribution has been shown to involve the subtropical cells in the Pacific,
Antarctic Bottom Water formation and the AMOC in the Atlantic (44; 2), as well as changes in

the zonal slope of the equatorial thermocline (182; 199) associated with changes in tropical
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winds. However, deciphering decadal timescale variability in the observed climate system, and
interpreting such variability in the context of initialized predictions, is complicated by the
presence of external forcings (such as anthropogenic and volcanic aerosols and solar forcing)
that can produce decadal variability in the Pacific (189) or Atlantic (200; 201) with similar

patterns to presumptive internally generated decadal climate variability (180; 202, 203)

[H2] Interactions between ocean basins

Interactions between various ocean basins is one of the most compelling science questions that
has arisen regarding the origins and nature of decadal climate variability, with implications for
initialized prediction skill (160, 204, 205). For instance, if a skillful prediction of climate in one
basin is achieved, then skillful simulations in the other basins could follow (if the models capture

these connections realistically), thus improving the skill of initialized S2D predictions.

SST variability in one ocean basin can affect the others through the tropical large-scale east-west
atmospheric Walker Circulation, though the direction of those influences differs (205, 206). For
example, model simulations have indicated that decadal timescale variability in the Atlantic
could produce decadal timescale variability in the Pacific (61; 207; 208; 209). Pacific decadal
variability can also affect the Atlantic (210; 211; 194) and control a large fraction of decadal
variability in the Indian Ocean (58, 172, 212, 213, 214). Similarly, the Indian Ocean could
influence decadal variability in the Pacific (168; 204; 215). There also could be staggered
responses based on decadal timescales, with the tropical Pacific driving the tropical Atlantic on
interannual timescales, with the Atlantic then affecting the Indian Ocean and subsequently the

Pacific on decadal timescales (216; 217). It has further been postulated that the tropical Atlantic

25



and Pacific Oceans are mutually interactive on decadal timescales, with each alternately
affecting the other (206), and that the tropical Pacific could be driving the extra-tropical Pacific

(218).

External forcing, particularly from time-evolving anthropogenic aerosols, is another factor that
could produce decadal climate variability and inter-basin connections (200; 189; 219). Such
fundamental interactions all currently fall under the heading of a compelling research frontier

that, with increased understanding, will certainly advance the science of initialized prediction.

[H1] Summary and future perspectives

Numerical models initialized with observations for specific time periods and integrated forward
in time provide a continuum of predictions on different timescales from S2S, S2I and S2D.
Results so far demonstrate initialized prediction skill for variables such as surface temperature
and key modes of atmospheric and ocean variability. Such skill has been demonstrated, for
example, for the MJO on S2S timescales, for ENSO on S2I timescales, and for surface
temperatures in most ocean regions on S2D timescales. Yet despite progress in predictions and

processes, there are still many challenges and priorities for future research.

[H2] Model error

Almost every science-related aspect of subseasonal to decadal climate variability has

considerable uncertainty associated with it. Therefore, apart from fundamental scientific
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understanding, perhaps the key obstacle to progress is model error, particularly resolving biases
and drifts and drifts and errors in the signal to noise ratio. Progress thus requires model
improvement, developments of which are difficult but not impossible. In recent years for
instance, model development work has been undertaken in the coupled space, improving
simulation of atmosphere-ocean phenomena that give rise to predictability (such as the MJO and
ENSO), and therefore minimizing the exacerbation of drift when developed in isolation. Model
improvements depend critically on our understanding of processes and mechanisms and how
they work in the climate system since it is difficult to model what is not understood. Therefore,
enhanced observational and analysis projects must continue to provide the knowledge base from

which to make improvements to the model simulations.

Model error remains a significant obstacle against which future progress will be measured, with
profound implications for possible applications to stakeholder communities. Such applications
could include energy supply (wind, solar) and demand (220), agriculture (drought, freezing),
transport (221) and numerous others spanning a range of timescales. Notably, S2S prediction
could inform preparedness for specific large-scale extreme events weeks ahead (5), and S2I and
S2D initialized predictions are beginning to inform planning at ranges between the seasonal to

multi-decadal climate change time scales (222).

In addition to coupled model development, increased model resolution has also shown ability to
improve model bias and signal to noise ratio. Consequently, the benefit of increased model
resolution is one of the research frontiers of initialized prediction. However, such increased
resolution must also be accompanied by comparable increases in the quality of the physical
parameterizations such as cloud feedbacks and cloud-aerosol interactions (198). Though we are

still very likely decades away from having global coupled models (and suitable machines)
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capable of explicitly resolving processes that would improve model bias (such as atmospheric
convection and ocean eddies), approaches have been developed to reduce computational cost and
bias. These approaches include flux correction techniques (223); parameter estimation (224);
reducing the precision of some variables (225); and stochastic modelling (226). Additionally,
machine learning techniques are providing indications of improving predictive skill. For
example, a deep-learning approach using a statistical forecast model has been shown to produce
skillful ENSO forecasts for lead times of up to one and a half years (227). Utilization of GPU-
based computer architectures could become useful and open the way to better parametrizations

that depend on intensive calculations that can be addressed with GPU architectures.

[H2] Initialization

Integrating the vast amount of observed information into an Earth System model is
central to the S2D prediction. Traditionally the most advanced data assimilation
techniques were implemented in the atmospheric component. In the last decade,
however, there have been growing interests in how to fully utilize relevant satellite and
in situ observations to improve S2S and S2| predictions. Coupled ocean-atmosphere
data assimilation (28, 228, 229) shows promising evidence that coupling can reduce
“initialization shock” and improve forecast performance on time scales of weeks to
decades (230). The advancement has led to coupled reanalysis products for both ocean
and atmosphere (CFSR by NCEP, (231) and CERA by ECMWEF, (232)) and is expected

to substantially improve S2S and S2I predictions.
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Compared to S2S and S2I predictions, there remain critical obstacles as to how to initialize
decadal predictions. First, there is a lack of observations. S2D models need to be
initialized in the 1960s and 1970s in order to calibrate the decadal prediction systems
and achieve the potential to capture the evolution of low-frequency modes of variability
(such as PDV and AMV). Reconstruction of global ocean subsurface temperature and
salinity prior to the advent of Argo floats remain a large problem. Currently most
modeling centers performing decadal predictions don’t carry out their own assimilation
exercise, rather they simply nudge some reanalysis products in the ocean and
atmosphere (Supplementary Table 3). It has not been carefully investigated how to best
initialize the ocean without reliable subsurface observations, and how the
inhomogeneity of the observations can impact the model performance.

Building ensembles is another key obstacle to decadal prediction, as the common
practice in the community is to use an ensemble of 10 members following the CMIP5
and CMIP6 experimental designs. A large ensemble consisting of 40 members can
provide better opportunities for skillful predictions of low-frequency climate variability
over land in selected regions (20). However, compared to the atmosphere, there is very
limited understanding of the mechanisms and uncertainty associated with the low-
frequency internal variability in the ocean owing to the lack of long-term observations of
the subsurface ocean, and thus lack of guidance as to how to build the ensemble.
Machine learning methods could help address this problem, though lack of long-term
subsurface ocean observations will always be a factor for the S2D timescale.

Finally, a major constraint is computational capability, both for initialization and for
running adequate numbers of ensembles to improve skill (33). The future of initialized

prediction will depend on computational resources balanced with factors involving
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increased resolution, artificial intelligence, use of new high performance computing

architectures, and developments in exascale computing.

[H2] Predictability of internal variability

There are considerable future challenges for understanding internal variability in the context of
initialized prediction. These include the need to have a better understanding and better estimates
of predictability. Additionally, research is needed regarding why models appear to underestimate
the magnitude of predictable signals compared to unpredictable variability, and this involves the

response to external forcing as well (233).

One issue that remains to be resolved for S2D initialized predictions is whether there are well-
defined processes and mechanisms that, if initialized properly, could provide predictable signals
distinct from the background of climatic noise. Signals from PDV and AMV offer the best
prospect for long-term predictability. Strong low-frequency variability in paleoclimate “proxy”
records, which is not captured by most climate models, suggests that either models do indeed
underestimate low-frequency modes of variability, that proxy observations contain significant
residual non-climatic sources of variation, or some combination thereof (234; 235, 236, 237).
Even if there is no distinct low-frequency (oscillating) phenomenon, predictability on decadal
timescales could also come from memory and slowly varying components of the Earth System
such as the slow propagation of oceanic planetary waves (238; 239) or natural volcanic forcing

(47), and initialization could be expected to contribute to skill in such cases.
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[H2] Expanding predicted variables

There is interest, and corresponding applications, for expanding beyond the prediction of surface
temperature, precipitation and SST. There have been efforts at predicting soil moisture with
implications for drought prediction (240) and ecosystem respiration (241, as well as snowpack
with ramifications for water resources (242; 243) and marine heat waves (244). There is also a
great societal need for prediction of sea-ice on S2I and S2D timescales. Some S2I models show
some skill in predicting sea-ice edge in the Arctic (245), while S2S models show a very wide
range of skill in predicting the sea-ice edge in the Arctic, with the most skillful models producing
useful forecasts up to 45 days (99). While the potential for skillful initialized predictions of
Arctic sea-ice on S2S timescales has improved in the last decade, there is still a lot more to be
explored and improved (101). We still need to understand what are the key processes driving
sub-seasonal variations of sea-ice and improve the representation of these processes in the S2S
models. Improved coupled data assimilation of the ocean, sea-ice and the atmospheric coupled
system can help improve initial conditions for coupled forecasts and concomitantly the forecast

skill of features that are sensitive to the initial state (14, 246; 247).

Other important aspects of the cryosphere relevant to initialized prediction on S2D timescales are
ice sheets. As new interactive ice sheet simulations and spin-up procedures come increasingly

online (248), this will provide an additional opportunity for initialized S2D predictions.

Air pollution and air quality are other very society-relevant applications which have been largely
unexplored owing to the lack of inclusion of interactive tropospheric chemistry in most S2S, S21I

and S2D models. However, new comprehensive ESMs, such as the Community Earth System
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Model with the Whole Atmosphere Community Climate Model as its atmospheric component

(CESM2-WACCM, 249) will be able to explore this research area.

In the broader Earth System, there is growing interest in predicting the biosphere and
biogeochemical state variables and fluxes that could inform management decisions. Skillful
initialized predictions of SST on S2S timescales can engender predictability of fish yields in the
California Current System (250) and other Large Marine Ecosystems (251). S28S initialized
predictions of heat stress and coral bleaching risk have also demonstrated considerable skill and
have provided critical advanced warning for coral reef scientists, managers, and stakeholders
(252). SST anomalies in the western tropical Pacific and northern subtropics, often associated
with ENSO events, appear to be skillful precursors for variations in temperature and related

biological productivity along the U.S. West Coast at S2I timescales (253).

Emerging literature on S2D predictions of biogeochemistry in the terrestrial biosphere and ocean
suggests that slowly evolving state variables could enable prediction of biogeochemically
relevant quantities with greater skill than physical state variables such as temperature and
precipitation. For example, predictions of marine net primary production by photosynthesizing
phytoplankton (including algae, eukaryotes and cyanobacteria) might foretell future potential
fisheries catch, predict harmful algal blooms (254), and aid with fisheries management strategies
(255; 254; 256, 257), as would  skillful predictions of ocean oxygen content or acidity (258;
259). Reliable forecasts of the changing global carbon budget, including the rate of ocean carbon
absorption (217; 260; 261; 262) or the rate of terrestrial biosphere-atmosphere net ecosystem
exchange (260; 241) could help to generate forecasts of atmospheric CO, growth rate and
contribute to CO, emissions management strategies. Additionally, there has been demonstrated

S21 skill at predicting net primary production related to fire risk (263).

32



Recently reported skillful predictions of chlorophyll concentrations over the global oceans at
seasonal to multi-annual timescales have been related to the successful simulation of the
chlorophyll response to ENSO, and to the winter re-emergence of subsurface nutrient anomalies
in the extra-tropics (256). Chlorophyll not only responds to ENSO, but can also constitute a

potentially useful ENSO precursor (264).

In the ocean biogeochemical system, variables of interest for prediction are rarely directly
observed at the spatial and temporal scales needed for forecast verification, regardless of the
timescale of the prediction (265; 266). Thus, most of the literature is focused on the potential to
make predictions of these quantities, rather than on skill as measured by historical observations
(255, 260; 261, 257), with exceptions (258; 259; 217). On the global scale, verification is
limited to variables measured or derived from satellite observations, such as ocean chlorophyll
(256), marine primary productivity (19), or interpolated estimates of the surface ocean partial
pressure of CO, (262). Nevertheless, there is promising potential to make ocean biogeochemical

initialized predictions across multiple timescales.

For S2S, S21I, and S2D initialized predictions to be useful, they must be shown to be not only
skillful but reliable (267), and this is a considerable challenge that the community is only starting
to attempt to address (5; 21). The ultimate challenge in this emerging area of research, and one
that is igniting excitement and interest in the scientific community, is to provide predictions with
maximum skill that take into account all relevant processes across subseasonal to decadal
timescales (268, 269). Toward that end, initialized prediction is already put to task and being
applied in various sectors even as improvements in understanding and prediction capability are

being improved, thus driving rapid advances in this burgeoning field.
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Key points

- Initialization methods vary greatly across different prediction timescales creating

difficulties for seamless prediction.

- Model error and drift limit predictability across all timescales. Although higher

resolution models show promise in reducing these errors, improvement in physical

parameterizations are needed to improve predictability.
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The effects of land processes, interactions across various ocean basins and the role of

stratospheric processes in predictability are not well understood.

Predictability on S2D timescales is largely associated with predictability of the major

modes of variability in the atmosphere and the ocean.

Evolution of Earth System models will lead to predictability of more societal-relevant

variables spanning multiple parts of the Earth System
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Table 1. General characteristics of models used for S2S, S2I and S2D initialized

predictions*.

Timescale | Number | Atmospheric Ocean Components | Initiali- | Number Prediction
of resolution & resolution & initialized zation of length
models | levels levels ensembles

S2S 18 25—200 km 8—200 km Most Full 4—51 31—62

initialize field days
17—91 levels 25—75 levels atmosphere,
ocean, land
and sea ice
S21 13 36—200 km 25—200 km All initialize | Full 10—51 6—12
atmosphere, | field months
24—95 levels 24—74 levels ocean, land
and sea ice
S2D 14 50—20 Okm 25—100 km Models Full 10—40 5—10
range from field, years
26—95 levels 30—75 levels initializing anomaly
only ocean,
to
initializing
atmosphere,
ocean, land
and sea ice

*A full and more complete accounting of model features is given in Supplementary Table 1, 2

and 3 for S2S, S2I and S2D models.
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Figure 1.

Timescales and processes involved with initialized predictions. a| Timescales and sources of

predictability for S2S, S21, and S2D. Lighter green shading indicates larger uncertainty. MJO:

Madden-Julian Oscillation; NAO: North Atlantic Oscillation; QBO: Quasi-Biennial Oscillation;

SSWs: Sudden Stratospheric Warmings; ENSO: El Nifio-Southern Oscillation; PDW: Pacific

Decadal Variability; AMV: Atlantic Multi-decadal variability; GMST: Global Mean Surface

Temperature; GHG: Greenhouse Gas. b| skill in predicting the upper 300m of the Atlantic Ocean

temperature, as measured by relative entropy, in initialized models (blue) and those forced by

RCP4.5 (red). Skill is high for initialized predictions at S2S and S2I timescales (<2 years), but

decreases toward S2D (year 3-9), after which time skill from external forcing increases. Panel b

adapted, with permission, from ref 10.
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Figure 2. Influence of ensemble size and lead year ranges on predictive skill. a| Skill (as
measured by anomaly correlation coefficient) in predicting S2S globally averaged NDJFM
surface air temperature (excluding the Antarctic) from CESM initialized hindcasts of various
ensemble size (grey line). Shading denotes the 5% and 95% significance levels. Blue and red
whiskers illustrate predictive skill for NCEP CFSv2 and ECMWF subseasonal hindcasts,
respectively. b| Skill (as measured by the anomaly correlation coefficient) in predicting S2D
wintertime NAO using ensembles of different sizes from the Decadal Prediction Large
Ensemble, DPLE (20). Each line depicts a different lead year range, with those that are colored
corresponding to statistically significant correlations; the darker the shading, the greater the
statistical significance. The dashed-dotted line shows the skill of the sub-ensemble mean against
a single member of the ensemble (averaged for all possible combinations). Both panels illustrate
that the more ensemble members, the higher the skill for longer lead year ranges. Panel b

adapted, with permission, from ref 37.
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Figure 3. Extending proxy observations of S2D variability back in time derived from

corals. a | Global mean surface temperature anomalies , b | 30 year running means of the coral-

based Indian Ocean Dipole (I0D) (blue) and El Nino-Southern Oscillation (ENSO) (red); ¢ |

scatter plot of coral-based IOD and ENSO; d | equatorial Pacific west-east SST gradient, shading

represents uncertainty ; e | central and eastern Pacific El Nifo derived from teleconnected

climate patterns. f | An indication of reconstructions considered robust in panel e. Collectively,

the figures illustrate a strengthening of IOD-ENSO decadal variability after ~ 1590. Figure

adapted, with permission, from ref 58.
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Figure 4. Impact of model drift on initialized predictions. Globally averaged surface
temperature predictions from the Decadal Prediction Large Ensemble (20) as a function of
simulation year. Initial state predictions (blue dots) compare well to observations (black line),
but drift (progression of blue dots to red dots) toward the model’s systematic error state
represented by the uninitialized state (dark gray line; gray shading is range of uninitialized

projections).
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Figure 5. Initialized S2S predictions of the MJO. a | observed outgoing longwave radiation
(OLR) anomalies averaged over 5°S to 5°N as a function of the stage of the Madden-Julian
Oscillation (MJO). b-g | as in a, but for various initialized predictions, with OLR anomalies
taken as the average of simulations days 15-21. MJO events are identified based on the Real-time
Multivariate MJO (RMM) index amplitude >1. The eastward propagation of MJO-related OLR

anomalies is well captured by all six models. Figure adapted, with permission, from ref 6.
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Figure 6. S2D predictions and aspects of time-evolving globally averaged temperature.

a| Prediction skill, measured as the anomaly correlation coefficient, of sea surface temperature
(SST) averaged over lead years 5-9 from the decadal prediction large ensemble (20); darker red
indicates higher skill. b| improvement in prediction skill from initialized predictions in a over
and above a persistence prediction; darker red indicates better skill in the initialized predictions,
thus showing the value-added of initialized predictions ¢| Schematic of the “rising staircase”,
illustrating how natural decadal-scale temperature fluctuations (blue) are tilted upwards owing to
anthropogenic greenhouse gas emissions (red), producing accelerated warming in some decades,
and reduced warming in others. d| time series of observed global mean surface temperature
anomalies showing characteristics of the rising staircase: accelerated warming over 1980-2000
and 2014-present, and a slow-down in the rate of warming over 2000-2014. Panels a and b
adapted, with permission, from ref 20. Panel ¢ adapted, with permission, from ref 268 Panel d
adapted, with permission, from NASA.
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TOC summary

Initialized climate predictions offer distinct benefits for multiple stakeholders. This Review
discusses initialized prediction at subseasonal-to-seasonal (S2S), seasonal-to-interannual (S2I)
and seasonal-to-decadal (S2D) timescales, highlighting potential for skillful predictions in the

years to come.
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