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What Are We Doing?

Brine Availability Test in Salt at WIPP (BATS)

Monitoring brine from heated salt using geophysical methods
and in-drift analysis or sampling.
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Why are we doing this?



Motivation

Salt long-term (104 — 106 yrs.) benefits at km-scale
• Low porosity (4) 0.1 vol-%) and permeability (k < 10-22 m2)

• High thermal conductivity (-5 W/(m • K))

• No flowing groundwater (< 5 wt-% water)

• Rooms, damage, and fractures will creep closed (10° — 102 yrs.)

Near-field (cm — 10 m) short-term (hr. — month) complexities
• Brine and salt are corrosive

• Evaporites are very soluble in water

• Salt creep requires drift maintenance

• Excavation Damaged Zone (EDZ):

• Is main source of and k near drift

• May be highly anisotropic (kr « ko)

• Has steep gradients in properties and system state

• Evolves with stress and temperature

Alpine miner at WIPP
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Waste Isolation Pilot Plant (WIPP) Context
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Brine in Bedded Salt

• Water types in bedded salt
1. Disseminated clay (< 5 vol-% total; —25 vol-% brine)
2. lntragranular brine (fluid inclusions; 1 — 2 vol-%)
3. Hydrous minerals (e.g., polyhalite, bischofite, epsomite)
4. lntergranular brine (between salt crystals; << 1 vol-%)

• These water types:
• respond differently to heat & pressure

• have varying chemical composition

• differ in stable water isotope makeup
WIPP fluid inclusions, 2 mm scale bar

(Caporuscio et al., 2013)

• EDZ increases intergranular (/) —> primary flow path

How do water types contribute to Brine Availability?

Polyhalite

Fluid

Inclusions

lntergranular

Fractures

Clay

10.1 cm diameter core CT data (Betters et al., 2020)
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Why is Brine Important in a Repository?

Brine Availability: Brine distribution in salt & how it flows to excavations

• Initial conditions to post-closure safety assessment
• Brine migration and re-distribution

• Evolution of disturbed rock zone (DRZ) porosity and permeability

• Brine causes corrosion of waste package / waste form

• Brine is primary radionuclide transport vector

• Liquid back-pressure can resist drift creep closure
INIPP Room J canister tests

WIPP bring permeability te
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Why Perform a Heated Test?

• Impact heat-generating radioactive
waste would have on salt

• How do water types respond to heat
• Brine & salt thermal expansion

• Thermal gradient drives fluid inclusions

• Dry-out of hydrous minerals

• Mechanical response to heating
• Creep accelerated at higher T

• Rapid AT (up or down) cause damage

SFWST 9 energy.gov/ne



What Data are We Collecting?

• Two Arrays: Heated / Unheated

• Behind packer

• Circulate dry N2

• Quartz lamp heater (750 W)

• Borehole closure gage

• Samples / Analyses
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• Gas stream (natural / applied tracers and isotopic makeup)

• Liquid brine (natural chemistry and natural / applied tracers)

• Cores (X-ray CT and fluorescence at NETL)

• Cement Seals
• Sorel cement + Salt concrete: 3-axis strain & temperature

• Geophysics

• 3 x Electrical resistivity tomography (ERT)

• 3 x Acoustic emissions (AE)

• 2 x Fiber optic distributed strain / temperature sensing
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Why are These Data Useful?

■ Brine composition samples / H20 isotope data
• Observe change in brine sources with temperature

■ Geophysics
• Evolution of saturation / porosity / permeability

■ Temperature distribution
• More brine at high T (inclusions + hydrous minerals)

• Thermal expansion brine driving force

• Salt dry-out near borehole (above boiling)

■ Gas permeability and borehole closure
• Thermal-hydrological-mechanical (THM) evolution of salt

■ Tracer migration through salt
• Monitor brine movement through salt damage zone

SFWST 1 1 energy.gov/ne



Why use Horizontal Boreholes with Packers?
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Near-drift vertical fractures
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BATS borehole

We want to characterize DRZ, avoiding most damaged areas

• Horizontal borehole avoids clay & anhydrite layers (e.g., MB139) in floor

• Inflatable packer isolates heater from near-drift vertical fracutres
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What types of data are we collecting?



BATS Boreholes As-Built

0.4

0.2

E
0.0

N

—0.2

—0.4

—1

—5

Heated array - drift view

VT1 T2

®HAE1

E2

41E1

GP) 

SL

GHHP 014  AE

04Forx

ciHAE2
oFIE3

-1.0 -0.8 -0.6 -0.4 -0.2

X [m]

Heated array - top view

0 0 0 2 0.4

6 
—1.0 —0.8 —0.6 —0.4 —0.2 0r.0

X [m]

0.4

0.2

3 -Z
>_ 0.0

0.2

Heated array - side view

011

-0.4 —

0 -1 -2 -3

Z [m]
-4 -5 -6
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• Drilled Feb-Apr 2019

• Side/ top view shows
• Thermocouples (blue dots)

• Heated interval (red box)

• Fractures/damaged zone (purple)

Discrete fractures in BATS near-drift EDZ
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BATS Borehole Arrays
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Temperature Data (Heating phase 1)
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Brine Inflow (strong THM coupling)

Gas flowrate + humidity 

Brine inflow to boreholes
• Highest inflow rate initially

• Exponential decay with time

Brine inflow jumps at +AT

Permeability in DRZ from fractures
• Fractures are stress-sensitive

• Thermal expansion changes stress

• Permeability changes with temperature

• 4 Thermal pressurization

• 4 Release of brine at cooling

Avery Island (Krause, 1983)
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Brine Composition

• Liquid brine samples vacuumed from back of boreholes 

• Distinguish sources of water in salt?
• Not all brine is same composition

• Different formations at WIPP

• "Natural" brine vs. dissolved salt

• Add / monitor liquid tracers
• Perrhenate (NaRe04)

• Blue fluorescent dye

• Isotopically distinct H20

• Data will inform: 
• Contribution of 3 brine types (brine)

• Advection / diffusion / reaction (tracers)
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Gas Stream Water Isotope Composition

• Continuously analyze gas stream 

• Isotopic makeup of humidity stream
• Info on brine source (fluid inclusions vs. clays)

• When is there a puddle in back of borehole?

• Data will inform: 
• Isotopic identification of 3 brine types

• Advection / diffusion / reaction (water as a tracer)
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Gas Stream Composition

• Continuously analyze gas stream 

• Gases may come from
• Dissolved in brine

• Less soluble in lower pressure, hotter brine

• Sorbed to salt (002)

• Geogenic gases within salt (e.g., He & Ar)

• Added gas tracers (Ne, Kr & SF6)

• Data will inform: 
• Gases produced from heating salt

• Leakiness of packer system

• Advection / diffusion /reaction (tracer)
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Acoustic Emissions (AE)

Listen to salt with piezoelectric transducers 

Passive AE
• Salt cracking during heat up & cool-down

• Triangulate AE sources around heated borehole

• AE correlated with permeability increases

• Active AE
• "Ping" sensors while listening
• Lower velocity in damaged rock

• Difficult to hear in ambient noise

• Data will inform: 
• Where & when damage occurs

• Estimate damage extent

• Monitor damage evolution
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Electrical Resistivity Tomography (ERT) and Fiber Optics

ERT: Measure voltage from applied 
current at every electrode pair

• Multiple AC frequencies (1-10 Hz)

• Electrodes grouted into boreholes

• Data will inform evolution of brine 
content  (i.e., dry-out)

• Fiber-optic distributed sensing
• Scattering in grouted fiber-optics

• Measure temperature and strain 

• Sub-mm resolution in space

• 1 Hz resolution in time

• Fiber is delicate!
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Cementitious Seals

• Emplace pre-fabricated cement plug
— Snug fit into satellite borehole

— Monitor seal evolution as borehole closes

— Strain gages inside plugs

— Upscale Lab Seals Tests

• Compare:
— Sorel cement (MgO) and salt concrete plugs

— Heated and unheated conditions

• Observe salt / brine / cement interactions 

SaltAnnulus
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Czaikowski & Wieczorek (2016)
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Test Status

• Boreholes drilled (Feb-Apr 2019)

• Installed instrumentation (May-Aug 2019)
• Plumbed and wired experiment (Aug-Oct 2019)
• Currently in COVID-related shutdown
• First BATS publication: Vadose Zone Journal (Apr 2020)

• "Temperature response and brine availability to heated boreholes in bedded salt"

Test

Installation

Test Phase 1

P re-test

background Heating Cooling COVID-19

Jan Feb Mar ????4

2019 2020

—2 months

Test Phase 2 Test Phase 3

P re-test

background Heating Cooling Heating Cooling

1
1

add gas tracers add liquid tracers

—2-3 months —2-3 months
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DECOVALEX 2023 BATS Collaboration

• DEvelopment of COupled models and their VALidation against EXperiments

• Current DECOVALEX phase 2020-2023 (decovalex.org)
• Began in 1992, previous phase was 2015-2019

• BATS Task is 1 of 7 (Task E)
• Uncertainty quantification & model sensitivity, while building complexity

• Thermal / hydro 4 Thermal Hydro Mechanical (THM) 4 THM + Chemistry

• Participating teams:
• US (Sandia, Los Alamos, Lawrence Berkeley national labs),
• Germany (GRS, BGR),

• Netherlands (COVRA),

• UK (Quintessa/RWM)
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Summary / Looking Forward

• Design and Implementation of field experiment at WIPP
• Some unexpected problems (electronics + brine = bad)

• More brine in places than expected (brine in thermocouple wires)

• Less brine in other places than expected (small liquid samples -few mL)

• COVID-19 shutdown
• Won't restart test until consistent access is assured

• Time to reconsider data acquisition / repair instruments

• Looking forward to next tests
• More tests in existing boreholes (tracer tests, permeability f (T))

• Next set of boreholes in a different map unit

• International collaborations increase project impact

SFWST 28 energy.gov/ne



Sandia
National
Laboratories

rrrrrrrl
llll

BERKELEY LAB

• Los Alamos
NATIONAL LABORATORY

EST.1943

SFWST 29 energy.gov/ne



References

Beauheim, R.L. & R.M. Roberts, 2002. Hydrology and hydraulic properties of a bedded evaporite formation, Journal of Hydrology, 259(1-4):66-88.

Betters, C., J. Vornlocher, T. Paronish, D. Crandall, J. Moore & K.L. Kuhlman, 2020. Computed Tomography Scanning and Geophysical Measurements of the Salado
Formation from Boreholes at the Waste Isolation Pilot Plant, (44 p.) NETL-TRS-1-2020. Morgantown, WV: National Energy Technology Laboratory.

Borns, D.J. & J.C. Stormont, 1988a. An Interim Report on Excavation Effect Studies at the Waste Isolation Pilot Plant: The Delineation of the Disturbed Rock Zone, (35 p.)
SAND87-1375. Albuquerque, NM: Sandia National Laboratories.

Caporuscio, F., H. Boukhalfa, M.C. Cheshire, A.B. Jordan, M. Ding, 2013. Brine Migration Experimental Studies for Salt Repositories (102 p.) LA-UR-13-27240. Los Alamos,
NM: Los Alamos National Laboratory.

Czaikowski, O., J. Dittrich, U. Hertes, K. Jantschik, K. Wieczorek & B. Zehle, 2016. Full Scale Demonstration of Plugs and Seals (DOPAS): Final Technical Report on ELSA
Related Testing on Mechanical-Hydraulical Behavior - LASA, (119 p.) GRS-A-3851. Braunschweig, Germany: Gesellschaft kw Anlagen- und Reaktorsicherheit (GRS).

Guiltinan, E.J., K.L. Kuhlman, J. Rutqvist, M. Hu, H. Boukhalfa, M. Mills, S. Otto, D.J. Weaver, B. Dozier & P.H. Stauffer, 2020. Temperature response and brine availability to
heated boreholes in bedded salt, Vadose Zone Journal (in press).

Hohlfelder, J.J., 1979. Salt Block II: Description and Results, (62 p.) SAND79-2226. Albuquerque, NM: Sandia National Laboratories.

Krause, W.B., 1983. Avery Island Brine Migration Test: Installation, Operation, Data Collection, and Analysis, (91 p.) ONWI-190(4). Rapid City, SD: RE/SPEC Inc.

Mills, M., K. Kuhlman, E. Matteo, C. Herrick, M. Nemer, J. Heath, Y. Xiong, C. Lopez, P. Stauffer, H. Boukhalfa, E. Guiltinan, T. Rahn, D. Weaver, B. Dozier, S. Otto, J.
Rutqvist, Y. Wu, M. Hu & D. Crandall, 2019. Salt Heater Test (FY19), (61 p.) SAND2019-10240R. Albuquerque, NM: Sandia National Laboratories.

Olivella, S., S. Castagana, E.E. Alonso & A. Lloret, 2011. Porosity variations in saline media induced by temperature gradients: experimental evidences and modelling.
Transport in Porous Media, 90(3):763-777.

Rothfuchs, T., K. Wieczorek, H.K. Feddersen, G. Staupendahl, A.J. Coyle, H. Kalia & J. Eckert, 1988. Brine Migration Test Final Report, (317 p.) GSF-Bericht 6/88,
Remlingen, F.R. Germany: Gesellschaft kw Strahlen- und Umweltforschung mbH München (GSF).

Stormont, J.C., C.L. Howard & J.J.K. Daemen, 1991. In Situ Measurements of Rock Salt Permeability Changes Due to Nearby Excavations, (81 p.) SAND90-3134.
Albuquerque, NM: Sandia National Laboratories.

SFWST 30 energy.gov/ne



Acronyms and lnitialisms

AE

BATS

BGR

COVRA

CT

DECOVALEX

DOE

DOE-EM

DOE-NE

DRZ

DSS, DTS

EDZ, EdZ

ERT

GRS

LANL

LBL

NETL

RWM

SFWST

SNL

TCO

TH2MC

WIPP

acoustic emissions

brine availability test in salt

Bundesanstalt für Geowissenschaften und Rohstoffe

Centrale Organisatie Voor Radioactief Afval

computed tomography

DEvelopment of COupled models and their VALidation against Experiments

Department of Energy

DOE Office of Environmental Management (energy.gov/em)

DOE Office of Nuclear Energy (energy.gov/ne)

disturbed rock zone

distributed strain, temperature sensing

Excavation Damaged Zone, Excavation disturbed Zone

electrical resistivity tomography

Gesellschaft für Anlagen- und Reaktorsicherheit

Los Alamos National Laboratory

Lawrence Berkeley National Laboratory

National Energy Technology Laboratory

Radioactive Waste Management

Spent Fuel and Waste Science & Technology (DOE-NE program)

Sandia National Laboratories

WIPP Test Coordination Office (LANL)

thermal, two-phase hydrological, mechanical, and chemical (also TH1, TH2M, TH2C)

Waste Isolation Pilot Plant (DOE-EM site, wipp.energy.gov)
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