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Solid Oxide Fuel Cells

• Electrochemical energy conversion

• Highly efficient (no Carnot limit)

• CO2 readily captured (no N2)

• Scaleable

• Fuel-flexible – hydrogen, methane, syngas

• Main problem – degradation shortens cell 
lifetime, increasing cost

• Degradation strongly linked to 
microstructural changes, and probably to 
initial microstructure

Each electrode’s active layer 

is a porous cermet composite 

(3 phases) where different 

phases facilitate ion, 

electron, and gas transport.

The intersection of the 3 

phases – Triple Phase 

Boudnaries - is important for 

facilitating the reaction

US Dept. of Energy

Epting et al., JACerS v100 no. 5 (2017)
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• Fuel cells can have highly heterogeneous 
microstructures
• Wide particle size distributions

• Outlier particles/pores

• Poor mixing

• Heterogeneity itself  may impact 
electrochemical performance and degradation 
rate
• Dead spots / hot spots

• High local gradients or overpotentials

• If  we quantify this impact, it would be 
valuable advice to manufacturers
• “Sloppy” microstructure is fine if  it’s cheaper and 

delivers similar performance

• But if  it leads to unanticipated faster degradation, not 
so fine

• Which corners can be safely cut?

Microstructural Heterogeneity

Map of phase fraction in “poorly-
mixed” synthetic microstructure similar 

to above cathode

Map of phase fraction in “poorly-
mixed” synthetic microstructure with 5

μm sub-volumes

Map of polarization resistance in 5 and 12.5 μm sub-volumes in PFIB-SEM 
tomog. of commercial cathode
(from Rubayyat Mahbub, CMU)

Particularly large 

features

Particle size dist.
MSRI cell

W.K. Epting et al., JACerS v100 pg 2232 (2017)

T. Hsu et al., JPS v386 pg 1 (2018)
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• Six synthetic microstructures of  various 
mixedness modeled using microstructurally 
resolved Fortran multiphysics model

• Other than good/poor mixing, all other 
properties globally identical

• Preliminary results show significantly different 
performance vs. extent of  poor mixing, 
despite identical global average 
microstructural values

Impact of Poor Mixing on Performance

Total cathode overpotential for cathode-comparable 

synthetic microstructures with poor mixing, Lblock=12.5 µm, 

σ=0.6

Multiphys. modelling by Dr. Hunter Mason

Well-mixed Poorly-mixed
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• Phase field model from Dr. Yinkai 
Lei simulates Ni/LSM particle 
growth*

• Rate of  Ni/LSM coarsening 
depends on initial microstructure

• Volume fractions, initial particle sizes 
have largest impact

• Particle size distribution width has 
weaker impact

• Some of  this also suggested by 
experiment**

Degradation vs Initial Microstructure
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Images courtesy of Dr. Yinkai Lei

*  Yinkai Lei et al., J. Power Sources, 345 (2017) 275-289

**Chen-Wiegart et al, J. Power Sources, 307 (2016) 604-612

Abdeljawad et al, J. Power Sources, 250 (2014) 319-331

Lei et al, J. Electrochem. Soc., 164 (2017) F3073-F3082 
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Coarsening, Microstructure, and Multiphysics

Multiphysics 
model predicts 

cell performance 
from 

microstructural 
properties

Coarsening model 
predicts microstructure 

after operation

Microstructural 
analysis extracts 

performance-
relevant 

properties

Some degradation methods are 

impacted by  local 

overpotential, local 

temperature, etc

Goal: model coarsening, 
microstructure, and cell 

performance over lifetime of 
a cell in a linked, 

unattended model

Why?
To predict performance 
degradation for a large 

parameter space of initial 
microstructures as well as 

real, measured cells
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Integrated Degradation Model

Microstructure data 
(orig.)

Microstructure analysis

Multiphysics model

Physics results for 
each subvol

Phase field model

Split into sub-volumes

Ldiscr TPB, tort., etc. for each 
subvol, for each time step

Phase field: 
separate loop for now

Run for each time step

Physics results for 
entire cell

Later (𝑖𝑒 , 𝑖𝑖 , 𝜂, 𝑇, 𝑝𝐻2𝑂 etc.)

For each time 
step
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Overview of Microstructural Analysis
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Phase fractions
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Microstructure at a given time-step

Divided into subvolumes
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Components of Microstructural Analysis

Lideal

Lact

𝜏𝑖 =
𝐿𝑎𝑐𝑡
𝐿𝑖𝑑𝑒𝑎𝑙

=
4.6

2.3
= 2
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Avg particle/pore size (each phase) by inscribed 
sphere method

Spheres of increasing size are fit within 
features

Local “radius” value overwritten if larger 
sphere fits

Interfacial areas (each phase pair) by 
smoothed mesh

Tortuosity (each phase) by geometric 
definition
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Components of Microstructural Analysis

(Suppose there’s a large void on the next layer out of the screen, 
so LSM/YSZ borders are TPBs)

Smoothing: Each path is upsampled and smoothed based on a 3D 
Gaussian kernel with σ = voxel length

L = 10 
(apparent)

L = 7.1 (actual)

LSM

YSZ
Smoothed path will yield 

accurate TPB densities

YSZ

YSZ

LSM

YSZ
YSZ

YSZ

YSZ

TPB vertices

TPB line segments

Smoothing is necessary to 
prevent over-estimation 

due to voxelated (i.e. cubic) 
nature of data

TPB density

Accuracy validated with 
model systems
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Initial Microstructure Inputs

Experimentally imaged microstructures

• Directly relevant to applications
• Compare to experiments
• Predict how a particular cell might degrade, and how it might be 

improved
• More useful with baseline for comparison!

Generate Synthetic Microstructures

• Can deliberately explore a span of nearly any parameter
• Faster/easier than imaging thousands of real cells, which 

take days to prep & image
• Map out parameter spaces and use as baseline for real 

systems

Particle size 
distribution
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Results from Real Microstructures
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Bottom image courtesy of Dr. J. Hunter Mason

T. Hsu et al., JPS 386 pg. 1 (2018)

MSRI Cathode (real microstructure)
• Imaged at CMU by PFIB-SEM
• Segmented and run through integrated degradation model
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Synthetic Microstructures: Exploring Parameter Space

Phase  fraction

•Hold porosity at 0.33 (little 
effect)

•Vary YSZ/LSM 0.23, 0.28, 
0.33, 0.38, 0.45

Avg particle diam

•300, 400, 500, 600, 700 nm 
for all 3 phases

Stdev of part. size dist.

•YSZ: 0.15, 0.3, 0.6

•LSM/Ni/Pore: 0.3, 0.6

Mixedness

•Stdev of 0, 0.05, 0.1 among 
subvolume phase fractions

Total of 45,000 unique 
microstructures 

These have been generated 
using Joule supercomputer

Largest and broadest bank of 
fuel cell electrode 

microstructures ever?

Dream.3D can be made to work on supercomputing systems (command-line only).

A similar automation paradigm was used as shown previously, together with simple 
parallelization, to quickly generate thousands of microstructures on a cluster

Phase reassignment (swapping phase IDs) can be used to reduce actual number of 
microstructures to be generated and stored.
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Input vs Output Comparison
Using high-throughput microstructure analysis code, with correct voxel size

Shown: distributions in input vs. output property in 
2,400 (6.25 µm)3 microstructures
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Reduced set of microstructures

Phase  fraction

• Hold LSM/Ni at 0.33 (little 
effect)

• Vary YSZ/porosity 0.23, 
0.28, 0.33, 0.38, 0.45

Avg particle diam

• LSM only: 400, 500, 600500 
nm for all 3 phases

• 500 nm for pore, YSZ

Stdev of part. Size dist.

• Pore: 0.3

• LSM: 0.15, 0.3, 0.6

• YSZ: 0.15, 0.3, 0.6

Mixedness

• Not studied in this initial 
batch

Initial testing run on 96 initial 
cathode microstructures 

spanning expected high-impact 
parameters
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Evolution of Properties in Time
Example system: MSRI LSM/YSZ cathode, 0 hrs (actual) to 1,000 hrs (simulated)
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Results: Polarization Curves Over Time
One random selection of initial microstructure
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Voltage Decay at Given Current
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Voltage Decay at Given Current

In this 1-to-1 
comparison, we see a 

significant 
improvement by 

lowering polydispersity 
of LSM and raising that 

of YSZ
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Spatial Variation During Degradation
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Final Decay Ranked by Initial Electrode

Note that on y-axis, lower is better
However, these plots do not capture whether initial

performance was good or bad



21

Decay vs Average LSM Particle Size
Nominal diameter
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Decay vs Average LSM Particle Size
Nominal diameter, grouped by constant other parameters
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Decay vs Average LSM Particle Size
Nominal diameter, grouped by constant other parameters
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Decay vs Average LSM Particle Size
Actual diameter, grouped by nominally constant other parameters
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Decay vs LSM/YSZ Ratio

Porosity constant (33%)

YSZ fraction is remaining balance
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Decay vs LSM Polydispersity
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Decay vs YSZ Polydispersity
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• Performance and degradation depend on initial 
microstructure

• We have successfully generated a large library 
of  synthetic microstructures that represent, to 
our knowledge, the largest variety of  
microstructural parameters covered in the fuel 
cell world

• NETL’s integrated model framework has been 
successfully tested on a large pilot batch

• Basic analysis of  results already shows effects 
of  several parameters

Summary
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Thank you!
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