Investigating SOFC Elecirode Microstructures and
Performance Degradation: A High Throughput N = [D20A
Integrated Model

T TECHNOLOGY
LABORATORY

Solutions for Today | lOptions for Tomorrow



Solid Oxide Fuel Cells
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* Electrochemical energy conversion
* Highly efficient (no Carnot limit)
* CO, readily captured (no N,)
* Scaleable

* Fuel-flexible — hydrogen, methane, syngas

* Main problem — degradation shortens cell
lifetime, increasing cost

* Degradation strongly linked to
microstructural changes, and probably to
initial microstructure
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Electrical Current , .
e Each electrode’s active layer

AirIn is a porous cermet composite
(3 phases) where different

=
l’ — phases facilitate ion,
p electron, and gas fransport.
=t
Oz
Unused
S The intersection of the 3
— phases - Triple Phase
o Boudnaries - is important for
Cathode . . .
e facilitating the reaction

Epting et al., JACerS v100 no. 5 (2017)
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* Fuel cells can have highly heterogeneous S one Particle size dist. o =
microstructures 20 MR cel R
* Wide particle size distributions I > = -
* Outlier particles/pores — 0 o5 1 'D;:T; T

* Poor mixing

Map of polarization resistance in 5 and 12.5 um sub-volumes in PFIB-SEM
tomog. of commercial cathode
(from Rubayyat Mahbub, CMU)

* Heterogeneity itself may impac
electrochemical performance and degradation
rate

* Dead spots / hot spots
* High local gradients or overpotentials

. L] L] L] L]
If we quantlfy thlS lmpaCt’ 1t WOllld be Map of phase fraction in “poorly- Map of phase fractionin “poorly-

Valuable adViCC to manufacturers mixed" synthetic microstructure with 5 mixed" synthetic microstructure similar
Um sub-volumes to above cathode

* “Sloppy” microstructure is fine if it’s cheaper and
delivers similar performance

* But if it leads to unanticipated faster degradation, not
so fine

* Which corners can be safely cut? i
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Impact of Poor Mixing on Performance
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* Six synthetic microstructures of various
mixedness modeled using microstructurally
resolved Fortran multiphysics model

* Other than good/poor mixing, all other
properties globally identical

* Preliminary results show significantly different
performance vs. extent of poor mixing,
despite identical global average
microstructural values

U.S. DEPARTMENT OF

0.3 v - .
mz
0.25 _ AQ0 mAIC
O il
0.2 e}
= . _ 50 mAICTY —
T 0.15 o el
= =]
0.1
Total cathode overpotential for cathode-comparable
0.05 | synthetic microstructures with poor mixing, Lpock=12.5 pm,
0=0.6
0 » - -
] 0.05 0.1 0.15 0.2
Het. factor
Well-mixed Poorly-mixed

Multiphys. modelling by Dr. Hunter Mason




Degradation vs Initial Microstructure
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. . E-D ": 30/
* Phase field model from Dr. Yinkai £E 2
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Abdeljawad ez a/, ]. Power Sources, 250 (2014) 319-331
Lei ¢t al, ]. Electrochem. Soc., 164 (2017) F3073-F3082
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Coarsening, Microstructure, and Multiphysics
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Goal: model coarsening,
microstructure, and cell
performance over lifetime of
a cell in a linked,
unattended model
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Multiphysics
model predicts
cell performance
from
microstructural
properties

Microstructural
analysis extracts
performance-
relevant
properties

Coarsening model
predicts microstructure
after operation

Some degradation methods are
impacted by local
overpotential, local

temperature, etc
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Local overpotential {mY)

J12.5um

¥ (pm)

Microstructure data
(orig.)

Run for each time step

Microstructure analysis

1.5 300
Multiphysics model 1 F + 20
05+ 4 100
0 : : : 0
For each time 0 01 02 03 04
Phase field model step‘)/

Phase field:
separate loop for now

Later (ig, i;, 1, T, pyao etc.)
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re at a given time-step
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Divided into subvolumes

J12.5 um

Overview of Microstructural Analysis
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Components of Microstructural Analysis

Tortuosity (each phase) by geometric Interfacial areas (each phase pair) by
definition smoothed mesh

Lace 46
Lideal 2.3

T; =

Tror = avg(T)
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Avg particle/pore size (each phase) by inscribed
sphere method

Spheres of increasing size are fit within
features

Local “radius” value overwritten if larger
sphere fits
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Components of Microstructural Analysis ¥
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Smoothing: Each path is upsampled and smoothed based on a 3D
TPB vertices Gaussian kernel with o = voxel length

TPB line segments

Accuracy validated with
model systems

YSZ

Smoothed path will yield

accurate TPB densities

L=7.1 (actual)

(Suppose there’s a large void on the next layer out of the screen,
so LSM/YSZ borders are TPBs)
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Initial Microstructure Inputs

Experimentally imaged microstructures

* Directly relevant to applications
* Compare to experiments

* Predict how a particular cell might degrade, and how it might be
improved

* More useful with baseline for comparison!

3 Generate Synthetic Microstructures

2f Particle size
A distribution »m e Can deliberately explore a span of nearly any parameter
e o | RS » Faster/easier than imaging thousands of real cells, which
R R take days to prep & image
 Map out parameter spaces and use as baseline for real

DREAM.3D
BlueQuartz Softvwwvare Edition Syste m S

Probability

;;

N
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MSRI Cathode (real microstructure)
! *Imaged at CMU by PFIB-SEM
73 pon’, ' *Segmented and run through integrated degradation model
o THsu et aI JPS 3-86: ?gg.mll (2018)
0.86 Cell potential at 0.25 A/cm2 (performance at 800°C)
S ¢
= 0.5 = e— i i j: t 1 j
2
0 0.84 ——
S —— .
=0.83 + —e- o
o -e-800°C -e—-900°C -e-1000°C
0.82 i i | | :
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Time (hrs)
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Synthetic Microstructures: Exploring Parameter Space

Phase fraction Avg particle diam

e Hold porosity at 0.33 (little ¢ 300, 400, 500, 600, 700 Nnm
effect) for all 3 phases

e Vary YSZ/LSM 0.23, 0.28,
0.33,0.38, 0.45

Total of 45,000 unique
: : : microstructures
Stdev of part. size dist. Mixedness

*¢YSZ:0.15,0.3,0.6 e Stdev of 0, 0.05, 0.1 among

* LSM/Ni/Pore: 0.3, 0.6 subvolume phase fractions Largest and broadest bank of
fuel cell electrode
microstructures ever?

These have been generated
using Joule supercomputer
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Using high-throughput microstructure analysis code, with correct voxel size LABORATORY
Shown: distributions in input vs. output property in
2,400 (6.25 pm)3 microstructures
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Reduced set of microstructures
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Phase fraction

e Hold LSM/Ni at 0.33 (little
effect)

e Vary YSZ/porosity 0.23,

Initial testing run on 96 initial 0.28, 0.33, 0.38, 0.45

cathode microstructures
spanning expected high-impact

parameters Stdev of part. Size dist.

e Pore: 0.3
e [SM: 0.15, 0.3, 0.6
e YSZ:0.15, 0.3, 0.6
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Avg particle diam

e LSM only: 400, 500, 600500
nm for all 3 phases

e 500 nm for pore, YSZ

Mixedness

¢ Not studied in this initial
batch
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Evolution of Properties in Time TE ECHNOLOGY

Example system: MSRI LSM/YSZ cathode, 0 hrs (actual) to 1,000 hrs (simulated) LABORATORY
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One random selection of initial microstructure LABORATORY
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pf34-38-28 Davg500-500-500_sigma0.3-0.3-0.3_hf0 ca : V_cell ati = 0.4 Afcm?

— 1000C
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pf34-38-28 Davg500-500-500 sigma0.3-0.15-0.6 hf0 ca : V cell ati = 0.4 Afcm?

— 1000C
0.020 1 800C
— 900C
"y 00151 In this 1-to-1
= comparison, we see a
= . oo
s significant
A 0,010 c
= improvement by
= lowering polydispersity
~ 0.005 - of LSM and raising that
of YSZ
0,000

T T T T T
200 400 S 00 800 1000
Operation time [hr]
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pf34-43-23 Davg500-400-500 sigma0.3-0.3-0.3 _hf0_ca
ir [A/cm?3] at eta=200mV, T=900C, t=0h
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pf34-43-23 Davg500-500-500 _sigma0.3-0.3-0.6_hf0 _ca
ir [A/cm?3] at eta=200mV, T=900C, t=0h
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atial Variation During Degradation ¥
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Decay vs Average LSM Particle Size ¥E ENERGY ey
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T=900C, potential decay at t=1000 and at i=0.4
0.025 = 3
.
g : i
£ o0.020 1 ] *
= $ ° :
= g H
E 0.015- ! ®
: . :
= . :
= 0.010 - .
e °
* ]
0.005
°
D-DDD T T T T T T T T T
400 425 450 475 500 525 550 575 600

Davg LSM (nominal)
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Decay vs Average LSM Particle Size N= ENERGY. v
Nominal diameter, grouped by constant other parameters TL LABORATORY

T=900C, potential decay at t=1000 and at i=0.4

0.025
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0.015 1

0.010 T

AV [V] at 0.4 Ajem?by 1000hrs

0.005

0.000
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Decay vs Average LSM Particle Size

Nominal diameter, grouped by constant other parameters

0.025

0.020

0.015

0.010

AV [V] at 0.4 A/cm?by 1000hrs

0.005

0.000
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T=900C, potential decay at t=1000 and at i=0.4
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Decay vs Average LSM Particle Size N= ENERGY. v
Actual diameter, grouped by nominally constant other parameters TL LABORATORY

T=900C, potential decay at t=1000 and at i=0.4

0.020

AV [V] at 0.4 A/cm?by 1000hrs
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0.010 - \.\
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Decay vs LSM/YSZ Ratio ¥

T=900C, potential decay at t=1000 and at i=0.4

0.025 7

0.020

0.015

0.010

AV [V] at 0.4 A/cm?by 1000hrs

0.005 1

D-uuo T T T T T T
0.20 0.25 0.20 0.35 0.40 0.45

Ph. frac. LSM

Porosity constant (33%)
YSZ fraction is remaining balance
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T=900C, potential decay at t=1000 and at i=0.4

0.025 7

0.020

0.015

AV [V] at 0.4 A/cm?by 1000hrs
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Decay vs YSZ Polydispersit ¥

T=900C, potential decay at t=1000 and at i=0.4

0.025 7
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0.015

0.010

AV [V] at 0.4 A/cm?by 1000hrs
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Phase O, hf0125( slice 1 of 1)

* Performance and degradation depend on initial ol
microstructure T e———=
Dlameter [ee m]
* We have successfully generated a large library

of synthetic microstructures that represent, to
our knowledge, the largest variety of
microstructural parameters covered in the fuel
cell world
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* NETL’s integrated model framework has been
successfully tested on a large pilot batch

* Basic analysis of results already shows effects
of several parameters
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