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2| Light-pulse Atom Interferometry — Quick Review

9)

Two counter-propagating laser
beams drive Raman transitions

Large momentum kick
K = kl = k2 ~ 2k1

Small transition energy
Weg = W1 — W2

Pulses drive Rabi oscillations ‘g> ; |6>

pulse area A = Q7
/2 e /2

19, P) 9, P)

Two paths acquire a phase difference
p=K- -aT*

Alkali atoms
‘6> : |g> = |F, mF> long coherence time
|K‘ ~ 107 rad./m amplifies signal



sl Light-pulse Atom Interferometry

Kasevich, and Chu, Phys. Rev. Lett. 67, 181-184 (1991)

Laser ranging technique

Accelerating atom Why is this an interferometer?

‘ ¢lower — ¢upper = K- gT2
|||||||||||||||||||||||

Distance

Single atom trajectory

<

Upper path acquires more phase
because it has more curvature

Time ~

2

~

Measure this phase difference
to measure acceleration

A\



.| Sensitivity and Scaling

Phase (acceleration) uncertainty for
N independent measurements

K¢:K-aT2

Pr_g = %(1 — €08 @)
Parity: <H> — COSN ¢
N N
11 = Qo™ = @ (19) 9] ) (e]) o
a=1 a=1

Phase Uncertainty

ATIT
20 = T30 /o9)

1 Standard Quantum |

A¢ >  —— Limit
v N (Poisson shot noise)

= Aa |K|cos(8)T?

However, interferometry with entangled
states can lead to lower uncertainty. Two
types of commonly sought states with
potential metrological value:

Spin-squeezed state3

v'Large N
XLow fidelity

Highly Entangled statel?
XSmaller N

v High fidelity

X Fragile, but achievable!?

[1] Y.-Y. Jau, G.B,, I.D., et al., Nat Phys. 12 (2016) ; [2] A. Omran, M.D. Lukin et al., Science 365 (2019); [3] Wineland, et al., PRA 46 (1992)



;| Sensitivity and Scaling

However, interferometry with entangled

Phase (acceleration) uncertainty for states can lead to lower uncertainty. Two
N independent measurements 9 types of commonly sought states with
K¢:K‘3T tential metrological value:
1 potential metrological value:
Pr_3y = —(1 —cos
[ F'=3) ) ( ¢) Highly Entangled statel? Spin-squeezed state?
- - N XSmaller N V'Large N
Parity: <H> — COS ¢ v High fidelity XLow fidelity
N (o) N X Fragile, but achievablel2
_ )
=)ol =X)(lg){gl — le){el) ()
=1 a—1 We use a GHZ state:
| N N
Phase Uncertainty [Vin = E @ 9 Paja + @ €, Pa + hK>a]
AII . o o
A¢ _ = Aa |K|cos(6)T <H> _ COS(N¢)
O(1L) /09|
1 Standard Quantum A¢ = l Heisenberg
Ap = Limit - N Limit
vV N (Poisson shot noise) |

[1] Y.-Y. Jau, G.B,, I.D., et al., Nat Phys. 12 (2016) ; [2] A. Omran, M.D. Lukin et al., Science 365 (2019); [3] Wineland, et al., PRA 46 (1992)



s| The Ideal Entangled Atom Interferometer

N entangled atoms Pulse sequence

lg...9)+|e...e) z W/3(¢/)

Measure Parity

N
1= @ol”
a=1

<H> — Pee T ng . Peg o Pge As N grows:

Parity oscillates faster

1.0}
(IT) = cos Oy
@N = NK - aT2
2 = N¢
o Phase uncertainty decreases
AII
Aop =
e
. . _ R . . 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 5
Phase Shift (rad.) All = \/1 — (IT)



| How it works

dipole trap
laser (938 nm)

dichroic

* Trap atoms individually in tweezers

atom 1
to APD

e Extinguish traps

dipole traps

« Apply pulses to run (entangled) A
interferometer o - bandpass filter APD
o —_— YO )y € nm erkinElmer
* Atoms fall a few microns. ® B sk 3 = —

> to APD
a

Information encoded in phase

e Recapture atoms in traps and perform
state readout

30

20

Repeat experiment until atoms are lost

Occurrences

0 20 40 60 80 100 120 140 160
APD Counts / 5ms




;| Entanglement and Interferometer Protocols
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Molmer-Sorenson(MS) Gate! Input state |gg) _.l |A IAl |_, |gg>\j—_|ee> Eztzf;filsttlte
2

Adiabatic Rydberg Dressing Scheme?
—+ 64P5),

Electric dipole-
dipole
interaction
blockades
double
excitation 3

(0-20,)/Q,

<> <————>
T 5

2

1t EY)

-1

-2

0} &2

1. Use MS Gate with Doppler-sensitive global rotations
to prepare GHZ state input to interferometer

N N
1
|¢> — T = ® |ga poz>04 an ® |67 Pa + hK>a
\/5 a=1 a=1

N
+[1,00/42

20

mw
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2. Apply single atom
“mirror” and final

N
U= U

0.5 0.0 Q.5
Frequency offset (MHz)

“beamsplitter” pulses a=1
3. Add a phase difference ¢ =K - a T?
N
~ 4. Measure parity 1= ® o)
a=1

1 Mitra, Anupam et al. “Robust Mglmer-Sgrensen Gate for Neutral Atoms Using Rapid Adiabatic Rydberg Dressing.” Physical Review A 101.3 (2020).

2 Lee, et al. Physical Review A. 95. 10.1103/PhysRevA.95.041801.

3Y.-Y. Jau, G.B., I.D., et al., Nat Phys. 12 (2016)



| Experimental Progress at Sandia

Single Atom Gravimeter 2 entangled Cs atoms with 81% fidelity
o 1.01
,-m?% ; OCb 0.8 —
,ﬁgf @5 %30% 0'6_:___ A R e
w107 o . 047 # ‘ Entanglement
§ : boOOO + % 021 threshold
' I <. 0.0
@ oo 5.02]
% PP 4y SN[
L o 061
; 0.8 & -/
g [ § il 8 SRS S WS Sown— — . 1B.) = (]0,0) +[1,1))/v2
10" 10°  10° e S
M‘@mw #( ' ’ Relative phase offset ( ¢) of n/2 pulse (rad)
Parazzoli, et al., Phys. Rev. Lett. 109, 230401 (2012) Jau, Y., et al. Nature Phys 12, 71-74 (2016)

Steps towards sensitivity beyond SQL:
e Study sources of error to determine feasibility of demonstration
 Demonstrate sufficient state readout
* Move Raman beams to measure g
e Construct infrastructure for larger arrays
* Improve global rotations with counter-propagating Raman beams
* Improve GHZ state fidelity



| Effects of Small Errors

(IT) =1y cos(Nop), A¢p = !

Ty N

Type of error | Error parameter(s) I1, for small | Parameter value(s)
error

— weight of random nois
: Y [1, ranges from 0.89 t0 0.97 for N = 2

state
IT;Oear::’(c::oS:ate i —I\f;riance of random 1=(+ 032/2) g2 L =
Prep B [l ~ 049 for N =8

phase 8
Laser intensity o? = &2A, — variance of g2 L _a
fluctuations random pulse area error 64 1= bk SRl

o5 — variance of random oy is very small but actual value is
Laser phase noise relative phase error 9 1—N?g3r/2 unknown

r — correlation parameter 1<r<5
Initial n — empirical scaling Vtrap
momentum parameter, 1— Nn = 1204.62 kHz
spread n= f(vtrap: (n)) for (n) = 0
Measurement q — probability of erroneous 1—N [, = 0.877 for N = 10 at q=0.9871
error state detection for one atom 1 [T, = 0.94 for N = 100 at q=0.99942

Paper on error modeling to be submitted to PRX by C. Brif and Brandon Ruzic!

1 Fidelity reported by Saffman group, 2017
2 Fidelity reported by Weiss group, 2019



| Effects of Small Errors

(IT) = Iy cos(N @),

A¢ =

1
Ty N

Type of error | Error parameter(s) I1, for small
error

Paper on error modeling to be submitted to PRX by C. Brif and Brandon Ruzic!

1
2

— weight of random noisy

Imperfect state state 1{)
preparation gj — variance of random
phase 8

Hoctuations randompulse areaerrord4

65— variance of random
Laserphasereise relative phaseerrord

r—-eevrrelationpararmeter
Initial n — empirical scaling
momentum parameter,
spread N = f Veraps (n))
Measurement q — probability of erroneous
error state detection for one atom

Fidelity reported by Saffman group, 2017
Fidelity reported by Weiss group, 2019

1-(p+03/2)

1 — NE2/2

1 MZ— 9::2’: [

1—Nn

1—- Ng

Parameter value(s)

[1, ranges from 0.89 t0 0.97 for N = 2
II, = 0.70 for N = 4
II, = 0.49 for N = 8

Vtrap

1204.62 kHz
for(n) =10

n=

M, ~ 0.877 for N = 10 at g=0.987"
[y, = 0.94 for N = 100 at q=0.99942

5



| Initial Velocity Distribution

Reasonable trap frequency : ~10 kHz

1 1 500} ]
8 Virap = 7.6 kHz —— 4755.65 kHz / Virap
::; 200 ® calculations
£ 0.5} <n>=5.0 ]
4y —
% —— <=n>==4.0 > 100} <n> =0
2 —— <n>=3.0
- . 50+
0 — <n>=2.0
8 0.2 — <n>=1.0
o — <n>=00 _ 20 ®
1 10 20 50 100 200
Number of Entangled Atoms Trap Frequency (kHz)
05 ’Dipole’ Powelr = 0'0.3’ TraR Freql.llencyl= 11'48. kHz ‘
2 / \ /\ s N* is the approximate point of
A / breakdown for Heisenberg scaling.
éossi. \‘\\. / \\ / . _
8 \ - s Y N #
£ \\/ N/ So for 10 kHz, we should be able to
E - ' get metrological advantage for order
. 100’s of atomes.

0 10 20 30 40 50 60 70 80 90 100
Time(us)



13| SPAM Error

State dependent detection fidelity: 95%
q=0.05->1I; = 0.9 for N=2
For N>2, will need to improve.

Fluorescence [ ™

—A—*f] [

Trapping light

Before: Now:

- Internal aspheric lens - External objective lens

« Expected efficiency ~1.13% « Expected efficiency ~0.52%
« Measured efficiency 0.15% - Measured efficiency > 0.48%

Best DF Entangled State to date: 81% -> More to come on this

B s



| Ongoing Work

Raman +
Rydberg beams

dichroic

dichroic
mirror

atom 1
to APD

gold knife

dipole trap
laser (938 am)

dipole traps

w,= 1.2 pm
bandpass filter APD
852 nm PerkinElmer
atom 3
to APD

Steps towards sensitivity beyond SQL:

Stud : I ina feacibilitv of d .
+_Demonstrate-sufficientstate readout (80%)
s Move Remran-beamstomeastteg

»_Constructinfrastructure-for larger arrays (50%)
* Improve global rotations with counter-propagating Raman beams
* Improve GHZ state fidelity
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