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21 Light-pulse Atom Interferometry Quick Review
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31 Light-pulse Atom Interferometry
Kasevich, and Chu, Phys. Rev. Lett. 67, 181-184 (1991)

Laser ranging technique

Accelerating atom
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Why is this an interferometer?

Single atom trajectory
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41 Sensitivity and Scaling
Phase (acceleration) uncertainty for
N independent measurements
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However, interferometry with entangled
states can lead to lower uncertainty. Two
types of commonly sought states with
potential metrological value:

Highly Entangled state1,2
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XFragile, but achievable1,2

Spin-squeezed state3

iLarge N
XLow fidelity 1

I
1
I

[1] Y.-Y. Jau, G.B., I.D., et al., Nat Phys. 12 (2016) ; [2] A. Omran, M.D. Lukin et al., Science 365 (2019); [3] Wineland, et al., PRA 46 (1992)



51 Sensitivity and Scaling
Phase (acceleration) uncertainty for
N independent measurements
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[1] Y.-Y. Jau, G.B., I.D., et al., Nat Phys. 12 (2016) ; [2] A. Omran, M.D. Lukin et al., Science 365 (2019); [3] Wineland, et al., PRA 46 (1992)



6 1 The Ideal Entangled Atom Interferometer
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71 How it works

• Trap atoms individually in tweezers

• Extinguish traps

• Apply pulses to run (entangled)
interferometer
• Atoms fall a few microns.

Information encoded in phase

• Recapture atoms in traps and perform
state readout

Repeat experiment until atoms are lost
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81 Entanglement and Interferometer Protocols
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1 Mitra, Anupam et al. "Robust Molmer-Sorensen Gate for Neutral Atoms Using Rapid Adiabatic Rydberg Dressing!' Physical Review A 101.3 (2020).

2 Lee, et al. Physical Review A. 95. 10.1103/PhysRevA.95.041801. 3 Y.-Y. Jau, G.B., I.D., et al., Nat Phys. 12 (2016)



91 Experimental Progress at Sandia
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Single Atom Gravimeter
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Parazzoli, et al., Phys. Rev. Lett. 109, 230401 (2012)

2 entangled Cs atoms with 81% fidelity
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Steps towards sensitivity beyond SQL:

• Study sources of error to determine feasibility of demonstration

• Demonstrate sufficient state readout

• Move Raman beams to measure g

• Construct infrastructure for larger arrays

• Improve global rotations with counter-propagating Raman beams

• Improve GHZ state fidelity



101 Effects of Small Errors

Type of error

Imperfect state
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Laser intensity
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Paper on error modeling to be submitted to PRX by C. Brif and Brandon Ruzic!
1 Fidelity reported by Saffman group, 2017

2 Fidelity reported by Weiss group, 2019

110 ranges from 0.89 to 0.97 for N = 2
IIo ,-,' 0.70 for N = 4
Ho ,-,' 0.49 for N = 8

—i0-3 to i0-4

ao is very small but actual value is
unknown

1 < r < 5

17 --' 1204.62 kHz
for (n) = 0

Vtrap

110 ,-,- 0.877 for N = 10 at q=0.9871
110 ,-,- 0.94 for N = 100 at q=0.99942



ill Effects of Small Errors
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121 Initial Velocity Distribution

Reasonable trap frequency : -10 kHz

.c 0.5

2 0.2
eL

vtrap = 7.6 kHz

<n›.4.0

<n>=3.0

<n>=2.0

‹n›.1.0

<n>=0.0

1 2 3 4 5 6 7

Number of Entangled Atoms
Dipole Power = 0.03, Trap Frequency = 11.48 kHz

500

200

100

50

20

10 20 50 100

Trap Frequency (kHz)

200

N* is the approximate point of
breakdown for Heisenberg scaling.

So for 10 kHz, we should be able to
get metrological advantage for order
100's of atoms.

10 20 30 40 50 60 70 80

Time(us)

90 100



131 SPAM Error

State dependent detection fidelity: 95%

q = 0.05 -> no 0.9 for N=2

For N>2, will need to improve.

Fluorescence

Trapping light

Before: 
• Internal aspheric lens
• Expected efficiency —1.13%
• Measured efficiency 0.15%

Now:
• External objective lens
• Expected efficiency —0.52%
• Measured efficiency > 0.48%

Best DF Entangled State to date: 81% -> More to come on this



141 Ongoing Work
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