

1 Co-expression of a β -D-xylosidase from *Thermotoga maritima* and a Family 10
2 xylanase from *A. cellulolyticus* significantly improves the xylan degrading activity of the
3 *Caldicellulosiruptor bescii* exoproteome

4

5 Sun-Ki Kim^{1,2,4}, Jordan Russell^{1,4}, Minseok Cha^{1,4}, Michael E. Himmel^{3,4}, Yannick J.
6 Bomble^{3,4} and Janet Westpheling^{1,4,*}

7 Sun-Ki Kim: skkim18@cau.ac.kr

8 Jordan Russell: jfruss@uga.edu

9 Minseok Cha: mcha@uwalumni.com

10 Michael E. Himmel: Mike.Himmel@nrel.gov

11 Yannick J. Bomble: yannick.bomble@nrel.gov

12 Janet Westpheling: janwest@uga.edu

13

14

15 ¹Department of Genetics, University of Georgia, Athens, Georgia 30602, USA

16 ²Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi
17 17546, Republic of Korea

18 ³Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA

19 ⁴The BioEnergy Science Center/Center for BioEnergy Innovation, Oak Ridge National
20 Laboratory, Oak Ridge, Tennessee, 37831, USA

21

22 * Corresponding author: Janet Westpheling

23 Email: janwest@uga.edu

24 Phone: +1-706-542-1436

25 **Abstract**

26 *Caldicellulosiruptor* species are hyperthermophilic, Gram-positive, anaerobes and the
27 most thermophilic cellulolytic bacteria so far described. They have been engineered to
28 convert switchgrass to ethanol without pretreatment and represent a promising
29 platform for the production of fuels, chemicals and materials from plant biomass.

30 Xylooligomers such as xylobiose and xylotriose that result from the breakdown of plant
31 biomass more strongly inhibit cellulase activity than do glucose or cellobiose. High
32 concentrations of xylobiose and xylotriose, are present in *C. bescii* fermentations after
33 90 h incubation and removal or breakdown of these types of xylooligomers is crucial to
34 achieve high conversion of plant biomass to product. In previous studies the addition of
35 exogenous β -D-xylosidase substantially improved the performance of glucanases and
36 xylanases *in vitro*. β -D-Xylosidases are, in fact, essential enzymes in commercial
37 preparations for efficient deconstruction of plant biomass. In addition, the combination
38 of xylanase and β -D-xylosidase is known to exhibit synergistic action on xylan
39 degradation. In spite of its ability to grow efficiently on xylan substrates, no extracellular
40 β -D-xylosidase was identified in the *C. bescii* genome. Here we report that the co-
41 expression of a thermal stable β -D-xylosidase from *Thermotoga maritima* and a
42 xylanase from *Acidothermus cellulolyticus* in a *C. bescii* strain containing the *A.*
43 *cellulolyticus* E1 endoglucanase significantly increased the activity of the exoproteome
44 as well as growth on xylan substrates. The combination of these enzymes also
45 resulted in increased growth on crystalline cellulose in the presence of exogeneous
46 xylan.

47

48 **Importance (150 words, nontechnical)**

49 *Caldicellulosiruptor* species are bacteria that grow at extremely high temperature, more
50 than 75 degrees centigrade, and are the most thermophilic bacteria so far described
51 capable of growth on plant biomass. This native ability allows the use of unpretreated
52 biomass as a growth substrate, eliminating the prohibitive cost of
53 preprocessing/pretreatment of the biomass. They only grow under strictly anaerobic
54 conditions and the combination of high temperature and the lack of oxygen reduces
55 the cost of fermentation and contamination by other microbes. They have been
56 genetically engineered to convert switchgrass to ethanol without pretreatment and
57 represent a promising platform for the production of fuels, chemicals and materials
58 from plant biomass. In this study we introduced genes from other cellulolytic bacteria
59 and identified a combination of enzymes that improves growth on plant biomass. An
60 important feature of this study is that it measures growth, validating predictions made
61 from adding enzyme mixtures to biomass.

62

63 **Keywords:** consolidated bioprocessing; biomass deconstruction; xylanase; β -D-
64 xylosidase; *Caldicellulosiruptor*

65

66 **Introduction**

67 Members of the genus, *Caldicellulosiruptor*, are hyperthermophilic anaerobes and the
68 most thermophilic cellulolytic bacteria so far described. Unlike most cellulolytic species
69 of the *Clostridium* genus that rely on complex protein structures, called cellulosomes,
70 *Caldicellulosiruptor* species secrete primarily free multifunctional enzymes into the
71 exoproteome. One such cellulase, CelA, is the most abundant enzyme secreted by *C.*
72 *bescii* (1, 2), and has been shown to outperform mixtures of commercially available exo-
73 and endoglucanases *in vitro* (3). Moreover, *C. bescii* uses both xylans and glucans
74 simultaneously and has the ability to grow well on xylan (1, 4). While most strain
75 engineering of *C. bescii* has focused on improving cellulolytic activity (5-7), improving
76 hemicellulolytic activity is essential to make consolidated bioprocessing by *C. bescii* an
77 industrially relevant process (8). Hemicelluloses, particularly in the form of xylobiose
78 and xylotriose, strongly inhibit cellulase activity even more so than glucose or cellobiose
79 (9). A previous study showed that high concentrations of xylobiose and, to a lesser
80 extent, xylotriose, accumulate in *C. bescii* fermentations after 90 h incubation (1).
81 Complete removal or breakdown of xylooligomers is crucial to achieve higher
82 conversion of plant biomass, and in fact, β -D-xylosidases are essential in commercial
83 enzyme preparations for efficient deconstruction of plant biomass as the activity of
84 cellulases and hemicellulases in these mixtures has been shown to be inhibited by
85 xylobiose. Previous studies also showed that the addition of exogenous β -D-xylosidase
86 substantially improved the performance of glucanases and xylanases *in vitro* (8, 10, 11).
87 In spite of its ability to grow efficiently on xylan substrates, no extracellular β -D-
88 xylosidase was identified in the *C. bescii* genome (4, 5). To investigate whether the
89 addition of a secreted β -D-xylosidase would improve growth, xylan utilization and

90 cellulose utilization even in the presence of xylan by *C. bescii*, we cloned and expressed
91 a thermal stable β -D-xylosidase from *T. maritima* (Tm_0076, GenBank accession
92 number AAD35170) in *C. bescii* using the CelA signal sequence for protein export. This
93 gene was chosen because the enzyme was reported to be maximally active at 90°C
94 (12). We then examined the effect of co-expression of this β -D-xylosidase with a Family
95 10 xylanase (Acel_0180) from *A. cellulolyticus* on the activity of the exoproteome in a
96 strain containing the *A. cellulolyticus* E1 endoglucanase, previously shown to act
97 synergistically to improve the cellulolytic activity of the *C. bescii* exoproteome (6). The
98 combination of xylanase and β -D-xylosidase is known to act synergistically on xylan
99 degradation (10). We selected the xylanase based on a previous study showing that
100 introduction of this enzyme including the tandem carbohydrate binding modules (CBM2
101 and CBM3) located at the C-terminus significantly improved the ability of *C. bescii* to
102 utilize xylan (13). The combination of these enzymes increased the overall activity of the
103 *C. bescii* exoproteome, improved growth on xylan as well as growth on crystalline
104 cellulose even in the presence of exogenous xylan in the growth medium.

105

106 **Results and Discussion**

107 **Heterologous expression and secretion of a β -D-xylosidase from *T. maritima* in a**
108 ***C. bescii* strain containing the *A. cellulolyticus* endoglucanase E1.** To construct an
109 expression vector for Tm_0076 in *C. bescii* (Figure S1), the gene was amplified from *T.*
110 *maritima* gDNA and cloned into a shuttle vector, pSKW28, under the transcriptional
111 control of the *C. bescii* S-layer promoter (14, 15). The native Tm_0076 signal peptide
112 was replaced with the CelA signal sequence as CelA is the most abundant extracellular

113 enzyme produced by *C. bescii* (1, 2) and previous work showed that it can be used to
114 drive secretion of other heterologous proteins including the secretion of cellobiose
115 phosphorylase from *T. maritima* in *C. bescii* (7). The plasmid was introduced into a *C.*
116 *bescii* strain, JWCB52, that contains the E1 protein from *A. cellulolyticus*, a
117 thermostable endo-1,4- β -glucanase (GH5) with a family 2 carbohydrate-binding module,
118 inserted into the *C. bescii* chromosome at the chromosomal integration site one (CIS1)
119 (15). Strain JWCB52 also contains a deletion of *pyrF* and transformants were selected
120 for uracil prototrophy to generate JWCB95 which was grown at 65°C to accommodate
121 the expression of *C. thermocellum* *pyrF* gene used for complementation and plasmid
122 selection. To verify the presence of the plasmid, primers (DC460 and DC228) were
123 used to amplify the portion of the plasmid containing the open reading frame of the
124 targeted proteins, but also annealing to regions of the plasmid outside the gene to avoid
125 amplification of sequences residing on the chromosome (Figure S2A). Total DNA from
126 strain JWCB95 was also back-transformed into *E. coli*, and two different restriction
127 endonuclease digests performed on plasmid DNA purified from three independent back-
128 transformants resulted in identical digestion patterns to the original plasmid (Figure
129 S2B). These results indicated that the plasmid was successfully transformed into *C.*
130 *bescii* and structurally stable during transformation and replication in *C. bescii* and back-
131 transformation into *E. coli*.

132 For detection of β -D-xylosidase activity, the extracellular protein (ECP) fraction from
133 JWCB95 (Figure 1) culture supernatants was first separated in a SDS-PAGE gel (Figure
134 2A) and then renatured in the same gel followed by infusion with 4-methylumbelliferyl β -
135 D-xylopyranoside (MUX). As shown in Figure 2B, two protein bands exhibiting β -D-

136 xylosidase activity were detected in the parent and E1 expression strain. The *C. bescii*
137 genome contains only two genes annotated as potential extracellular xylosidases,
138 Cbes_2371 (34 KDa) and Cbes_0182 (152 KDa) both containing GH43s, known to
139 exhibit xylosidases (16, 17). Protein bands consistent with a molecular weight of ~160
140 and ~110 kDa were detected and these species most likely represent the intact
141 Cbes_0182 and functional truncations. Note that we have also observed similar
142 functional truncations of cellulases in the *C. bescii* exoproteome. The predicted
143 molecular weight of a *T. maritima* β -D-xylosidase dimer (Tm_0076) would be ~174 kDa
144 which is close to the molecular weight of Cbes_0182, making it difficult to separate the
145 two. However, comparison of the band intensities from the zymogram showed that the
146 activity corresponding to this molecular weight was in JWCB95 more than twice that in
147 JWCB82 (the parental strain) or JWCB73 (the E1 expression strain).

148 To confirm the expression of Tm_0076 and remove the background from native
149 *C. bescii* CAZymes, we performed zymogram analysis using 4-methylumbelliferyl β -D-
150 glucopyranoside (MUG) a substrate specific for β -D-glucosidase activity as Tm_0076
151 (GH3) should exhibit activity on this substrate but not Cbes_0182 (GH43).

152 A clearing zone corresponding to a protein of molecular weight 160 kDa was
153 obtained from the JWCB95 strain, but was not present in the JWCB73 strain (Figure
154 2C). We conclude from these analyses that the *T. maritima* β -D-xylosidase was
155 expressed, secreted, and functional in *C. bescii*. We believe that this band corresponds
156 to a dimer of Tm_0076 (~174 Kda). The maintenance of multimers of thermostable
157 proteins in SDS-PAGE gels is well documented. For example, the β -D-glucosidase from
158 *Pyrococcus furiosus* (BGLPf) appears to form a dimer that is stable in the presence of

159 sodium dodecyl sulfate and this dimer migrated in reducing SDS-PAGE even after
160 incubation at 95°C (18).

161 **Heterologous expression and secretion of a xylanase from *A. cellulolyticus* in a**
162 ***C. bescii* strain containing the *A. cellulolyticus* endoglucanase E1.** To generate a
163 strain containing the *A. cellulolyticus* xylanase (Acel_0180) in the *C. bescii* strain
164 containing E1, the xylanase expression cassette was amplified by PCR from a
165 replicating shuttle vector, pSKW10 (13), and cloned into an integrational expression
166 vector, pSKW23 (Figure 3A). The $P_{S\text{-layer}}$ - Acel_0180 cassette was flanked by two 1-kb
167 DNA regions of homology from the intergenic region between Cbes2199 and Cbes2200
168 (CIS2), previously determined to be available without affecting growth or resulting in a
169 detectable phenotype (19). JWCB52 contained the *A. cellulolyticus* E1 gene inserted
170 into the intergenic region between Cbes0863 and Cbes0864, designated CIS1 (5).
171 Uracil prototrophic transformants were serially passaged as described (14) to allow
172 segregation of merodiploids containing a mixture of the integrated Acel_0180
173 expression cassette and the parental strain (JWCB52) genomes. This resulted in strain
174 JWCB87 (Δ pyrFA $ldh::ISCbe4$ Δ cbe1 CIS1:: $P_{S\text{-layer}}$ Acel0614(E1) CIS2:: $P_{S\text{-layer}}$ Acel0180
175 (xylanase)) (Table 1). Verification of insertion of the xylanase gene into the JWCB87
176 chromosome was performed using PCR amplification with primers SK65 and SK66
177 (Figure 3B), and sequencing the PCR products. The parental strain, JWCB52, produced
178 the expected wild type 2.2 kb band, whereas amplification of JWCB87 produced 4.4 kb,
179 indicating an insertion of the xylanase expression cassettes within the targeted region
180 (Figure 3B). Expression and secretion of the *A. cellulolyticus* xylanase in *C. bescii* was
181 confirmed using zymogram analysis (Figure S3).

182

183 **Co-expression of the *T. maritima* β-D-xylosidase and the *A. cellulolyticus* 184 xylanase in the *C. bescii* strain containing E1 was synergistic for xylan**185 **degradation.** To first test β-D-xylosidase activity in this strain, cells were grown at 65°C
186 and the extracellular protein fraction from JWCB82 (the parental strain), JWCB73
187 (containing E1), JWCB95 (containing E1 and the *T. maritima* β-D-xylosidase), JWCB102
188 (containing E1 and the *A. cellulolyticus* xylanase), and JWCB103 (containing E1, the β-
189 D-xylosidase and the xylanase) were compared. Expression and secretion of the
190 *Acel_0180* xylanase and *Tm_0076* β-D-xylosidase were confirmed by zymogram
191 analysis (Figure S3). The extracellular protein fraction was then assayed for β-D-
192 xylosidase activity at 65°C and 75°C, on *p*-nitrophenyl β-D-xylopyranoside (pNP-X), a
193 substrate specific for β-D-xylosidase activity. The stability and activity of native *C. bescii*
194 xylan degrading enzymes are known to decrease significantly at temperatures higher
195 than 85°C (13). While the optimal temperature for growth of *T. maritima* is 80°C (20),
196 the optimal temperature for activity of the β-D-xylosidase was reported to be 90°C (12).197 For the strains expressing β-D-xylosidase there was, as expected, an increase in β-D-
198 xylosidase activity. Culture supernatants from the JWCB95 showed a 70%
199 ($P_{value}=0.019$) increase over the parental strain at 65°C and a 46% ($P_{value}=0.009$) higher
200 β-D-xylosidase activity at 75°C. Culture supernatants from the JWCB103 showed a 41%
201 ($P_{value}=0.003$) increase at 65°C and a 27% ($P_{value}=0.035$) increase at 75°C (Figure 4A).202 Xylobiose is a known inhibitor of xylanase activity, and studies have shown that
203 the exogenous addition of β-D-xylosidase markedly improved the performance of some
204 xylanases (10, 11). To examine whether expression of the β-D-xylosidase enhanced the

205 xylan degrading activity of the exoproteome, enzyme assays were performed at 65°C
206 using oat spelts and birchwood xylans as substrates using the same three strains. Oat
207 spelts xylan is a complex arabinoxylan, branched with arabinose residues. Birchwood
208 xylan is a simpler, primarily unsubstituted xylose polymer with traces of uronic acids as
209 side groups (more than 90% β -1,4-linked xylose residues) (21, 22). As previously
210 reported (13), the exoproteome from a xylanase expressing strain (JWCB102) showed
211 23% ($P_{value} = 0.026$) higher activity on oat spelt xylan and 24% ($P_{value} = 0.008$) higher
212 activity on birchwood xylan compared to the parental strain, JWCB82 (Figure 4B).
213 Increased activity of the concentrated culture supernatants from the β -D-xylosidase
214 expressing strain was observed for both oat spelts and birchwood xylans compared to
215 the parental strain, indicating that increasing the extracellular β -D-xylosidase does, in
216 fact, increase xylan hydrolysis. In JWCB102 the β -D-xylosidase most likely aids the
217 native *C. bescii* xylanases but an even greater synergy is observed in JWCB103 which
218 also expresses the *A. cellulolyticus* xylanase. The activity of the exoproteome from
219 JWCB95 (the β -D-xylosidase expression strain without the *A. cellulolyticus* xylanase) on
220 oat spelts and birchwood xylans increased 16% ($P_{value} = 0.009$) and 23% ($P_{value} <$
221 0.001), the activity from JWCB103 (the β -D-xylosidase and *A. cellulolyticus* xylanase co-
222 expression strain) increased 45% ($P_{value} < 0.001$) and 79% ($P_{value} < 0.001$), respectively
223 (Figure 4B). Total xylanase activity increased at 75°C, (Figure 4C) but the pattern was
224 the same (Figure 4C). These results suggest that the *T. maritima* β -D-xylosidase acts
225 synergistically with both the native and *A. cellulolyticus* xylanases to deconstruct xylans
226 more efficiently.

227

228 **Co-expression of the *T. maritima* β -D-xylosidase and the *A. cellulolyticus***
229 **xylanase in the *C. bescii* strain containing E1 resulted in an increase in the ability**
230 **of *C. bescii* to grow on xylan substrates.** To examine the effect of the expression of
231 the heterologous β -D-xylosidase and xylanase on the growth of the *C. bescii* strain
232 containing E1, growth was first measured on the soluble substrate, cellobiose as sole
233 carbon source, a disaccharide that does not require the activity of either a xylanase or
234 cellulase. As shown in Figure 5A, growth of the JWCB82 (the parental strain), JWCB73
235 (the E1 expression strain), JWCB95 (the E1 expression strain containing the *A.*
236 *cellulolyticus* xylanase), JWCB102 (the E1 expression strain containing the *T. maritima*
237 β -D-xylosidase), and JWCB103 (the E1 expression strain containing both the *A.*
238 *cellulolyticus* xylanase and *T. maritima* β -D-xylosidase) strains was virtually identical.
239 While doubling time of the JWCB102 was slightly shorter than that of the JWCB82, it
240 was not significant ($P_{value} = 0.81$). This result indicates that expression of these
241 heterologous enzymes had no obvious effect on growth in general.

242 As previously reported (13) and as shown in Figure 5B, growth of JWCB102 (the
243 E1 expressing strain containing the *A. cellulolyticus* xylanase) on birchwood xylan was
244 23.0 ($P_{value}=0.008$) fold higher than that of the JWCB82 parental strain. JWCB95,
245 containing E1 and the Tm_0076 β -D-xylosidase resulted in a dramatic increase in the
246 ability of this strain to grow on xylan, a 2.7 ($P_{value}=0.076$) and 6.7 ($P_{value}=0.039$) fold
247 increase on oat spelt and birchwood xylans, respectively, over that of the JWCB82
248 parental strain (Figure 5B). Growth of JWCB103 (the E1 expression strain containing
249 both the *A. cellulolyticus* xylanase and *T. maritima* β -D-xylosidase) was even more
250 dramatic, a 5.7 ($P_{value}=0.052$) and 32.1 ($P_{value}=0.009$) fold increase on oat spelt and

251 birchwood xylans, respectively, over that of the JWCB82 parental strain. We suggest
252 that in both JWCB102 and JWCB103, Acel_0180 may help release more xylobiose or
253 xylotriose in the media and further reduce the degree of polymerization of the
254 deconstructed xylans rendering them readily transported and used as a carbon source.
255 This is apparently more pronounced in the case of the simpler substrate (birchwood
256 xylans) than the more complex branched substrate (oat spelts xylans). On oat spelts
257 xylan, the activity of Acel_0180 as well as other xylanases is likely limited by increased
258 branching that reduces accessibility. In addition the released xylans, most likely
259 branched, may not be as readily transported or utilized by the microorganism. In
260 JWCB103, the increased growth is most likely due to decreased inhibition by xylobiose
261 or xylotriose, resulting from the action of the β -D-xylosidase, on xylanases including
262 Acel_0180, leading to increased overall solubilization. This is also demonstrated by the
263 difference in growth between JWCB95 and JWCB73 where the additional β -D-
264 xylosidase is augmenting the native xylanases in the *C. bescii* exoproteome therefore
265 leading to higher growth.

266 **The combination of the β -D-xylosidase and xylanase substantially improves the**
267 **activity of the exoproteome on cellulose even in the presence of exogenous**
268 **xylan.** To test whether the Tm_0076 β -D-xylosidase and Acel_0180 xylanase, do in
269 fact, aid in cellulose utilization by relieving inhibition of xylobiose or xylotriose
270 accumulating in the media, growth was measured on Avicel with and without the
271 addition of xylan. The strains JWCB073, JWCB082, and JWCB103 were grown on both
272 5 g/L Avicel alone and 5 g/L Avicel + 2.5 g/L oat spelts xylan at 65°C. Oats spelts xylan
273 was chosen because it is a poor substrate for growth (Figure 5B), should be inhibitory

274 because it contains branched arabinose residues, and its deconstruction is less affected
275 by the presence of Tm_0076 β -D-xylosidase and Acel_0180 (Figure 4B). On Avicel
276 alone, the combination of E1, the Tm_0076 β -D-xylosidase and the Acel_0180 xylanase
277 (JWCB103) resulted in significantly better growth than the parent strain (JWCB82) or
278 the E1 containing strain (JWCB73), a 43% increase compared to the parent strain
279 JWCB082 at 60 hours (Figure 5C). These results indicate that the combination of the β -
280 D-xylosidase and xylanase allows *C. bescii* to more readily utilize the negligible (~5%)
281 xylan content in Avicel. Additionally, this increase could also be due to the fact that the
282 GH3 in Tm_0076 possesses β -D-glucosidase activity (12), or that the fibronectin like
283 domain might aid in the deconstruction of Avicel as shown for other biomass degrading
284 enzymes (23). Growth of JWCB103 on Avicel in the presence of exogenous oat spelt
285 xylan resulted in significant differences in both the timing and overall amount of growth.
286 Perhaps the most striking difference was the almost total elimination of a lag phase for
287 JWCB103 and a reduced lag time for JWCB73 and JWCB82 (Figure 5D) compared to
288 growth on Avicel alone. The overall growth was also less than on Avicel alone. This
289 might be explained by the fact that *C. bescii* can utilize the easily accessible xylan, a
290 preferred carbon source, in oat spelt xylan, resulting in increased biomass and the
291 production of complex biomass degrading enzymes earlier in the fermentation. We also
292 believe that part of this increase is due to the xylan content in Avicel but is not sufficient
293 to explain that level of increased growth. While this is true for both JWCB73 and
294 JWCB82, the inhibition of oat spelt xylan during fermentation resulting in less biomass
295 production is more clear.

296

297 **Conclusions**

298 The ability of *C. bescii* to deconstruct non pretreated plant biomass, its ability to grow
299 anaerobically at high temperature and its ability to use both C5 and C6 sugars
300 simultaneously make it of special interest for use in consolidated bioprocessing to
301 produce fuels, chemicals and materials from this sustainable substrate. *C. bescii* also
302 represents a model for understanding the fundamentals of plant cell wall deconstruction
303 given its unusual cellulolytic activity. In previous studies the supplementation of its
304 secretome with heterologous CAZyme cassettes led to significant increases in
305 cellulolytic activity and growth on complex substrates. In this study, we examined
306 CAZyme cassettes with specific predicted synergy, a β -D-xylosidase thought to relieve
307 substrate inhibition and a xylanase while also likely to be susceptible to inhibition by
308 xylooligomers (in this case xylobiose and xylotriose) might augment the native *C. bescii*
309 xylanases. Taken together, the data presented support those predictions. Significant
310 increases in the enzymatic activity of the exoproteome as well as dramatic effects on
311 growth were observed suggesting synergistic interactions between CAZymes *in vivo*.
312 We further suggest that this kind of study will facilitate the optimization and the synergy
313 within and with these heterologous CAZyme cassettes to further improve thermophilic
314 consolidated bioprocessing in other microbes. Finally, we suggest that the results
315 shown in this study represent an important step towards addressing the inhibition of
316 xylooligomers in consolidated bioprocessing at industrially relevant (high) solids
317 loadings.

318

319 **Materials and methods**

320 **Strains, media, and culture conditions.** *E. coli* and *C. bescii* strains used in this study
321 are listed in Table 1. *C. bescii* strains were grown anaerobically at 65°C on solid or in
322 liquid low osmolarity defined (LOD) medium (24), as described, with 5 g/L maltose or
323 cellobiose as sole carbon source for routine growth and transformation experiments
324 (25). For growth of uracil auxotrophs, the medium contained 40 µM uracil. *E. coli* DH5α
325 was used as host for plasmid DNA construction and preparation using standard
326 techniques. *E. coli* cells were cultured in LB broth containing apramycin (50 µg/mL).
327 Plasmid DNA was isolated using a Qiagen Miniprep Kit (Qiagen, Valencia, CA, USA).
328 Chromosomal DNA from *C. bescii* strains was extracted using the Quick-gDNA
329 MiniPrep (Zymo, Irving, CA) as described (26).

330

331 **Construction of a shuttle vector for β-D-xylosidase expression.** Q5 High-Fidelity
332 DNA polymerase (New England BioLabs, Ipswich, MA, USA) was used for all PCR
333 reactions. Restriction enzymes (New England BioLabs, Ipwich, MA, USA) and the Fast-
334 link DNA ligase kit (Epicentre Biotechnologies, Madison, WI, USA) were used for
335 plasmid constructions according to the manufacturer's instructions. To construct
336 pSKW28, a 2.3 kb DNA fragment containing the coding sequence of Tm_0076 was
337 amplified using primers SK74 (with an XmaI site) and SK75 (with an AvrII site) using *T.*
338 *maritima* MSB8 gDNA as template. In addition, an 8.1 kb DNA fragment containing the
339 *C. bescii* replication origin from BAS2, an apramycin resistance gene cassette (Apr^R), a
340 *C. thermocellum* *pyrF* expression cassette, the regulatory region of Cbes2303 (S-layer
341 protein), the signal CelA signal sequence, a C-terminal 6X Histidine-tag, and a Rho-

342 independent transcription terminator was amplified with primers SK21 (with XmaI site)
343 and DC700 (with AvrII site) using pSKW10 (13) as template. These two linear DNA
344 fragments were digested with XmaI and AvrII and ligated to construct pSKW28 (Figure
345 S1B). Primers used are listed in Table 2.

346

347 **Construction of a vector for insertion of the Family 10 xylanase (Acel_0180) from**
348 ***Acidothermus cellulolyticus* into the *C. bescii* chromosome.** To construct pSKW23,
349 the 2.3 kb Acel_0180 expression cassette, containing the regulatory region of
350 Cbes2303 (S-layer protein), the CelA signal sequence, a C-terminal 6X Histidine-tag,
351 and a Rho-independent transcription terminator, was amplified by PCR with primers
352 DC460 (with Pvul site) and DC461 (with NotI site) using pSKW10 (13) as template. The
353 6.0 kb DNA fragment containing the 5' flanking region (1.0 kb) and the 3' flanking region
354 (1.0 kb) of the targeted insertion site (an intergenic region between Cbes2199 and
355 Cbes2200) in the *C. bescii* genome was amplified with primers SK61 (with Pvul site)
356 and SK62 (with NotI site) using pSKW22 (19) as template. These two linear DNA
357 fragments were digested with Pvul and NotI and ligated to construct pSKW23 (Figure
358 3A). Primers used are listed in Table 2.

359

360 **Transformation, screening, purification, and sequence verification of engineered**
361 ***C. bescii* strains.** Constructed plasmids were introduced into *E. coli* DH5 α by
362 electroporation in a 1-mm-gap cuvette at 1.8 kV and transformants were selected for
363 apramycin resistance. All plasmids were sequenced by Automatic Sequencing
364 (Genewiz, South Plainfield, NJ, USA). Electrotransformation of *C. bescii* cells was

365 performed as previously described (27). After electro-pulse with plasmid DNA (~0.5 µg),
366 cultures were recovered in low osmolarity complex (LOC) medium (24) at 75°C and
367 transferred into liquid LOD medium (24) without uracil to select uracil prototrophy. For
368 selection of shuttle vectors, cultures were plated on solid LOD media to obtain isolated
369 colonies, and total DNA was extracted for PCR confirmation. Taq polymerase (Sigma,
370 St. Louis, MO, USA) was used for PCR reactions. PCR amplification was done with
371 primers (DC460 and DC228) outside the gene cassette on the plasmid to confirm the
372 presence of gene insertion. To insert *Acel_0180* into the *C. bescii* chromosome,
373 recovery cultures were transferred into liquid LOD medium (24) without uracil to select
374 uracil prototrophic transformants, and transformants were inoculated into nonselective
375 liquid defined medium, with 40 µM uracil, and incubated overnight at 65 °C to allow
376 loop-out of the plasmid. The cultures were then plated onto 5-FOA (8 mM) containing
377 solid medium and transformants containing the insertion were purified by two additional
378 passages under selection on solid medium and screened a second time by PCR. The
379 insertion of the *Acel_0180* expression cassette in the targeted region was confirmed by
380 PCR amplification using primers (SK65 and SK66) outside the homologous regions
381 used to construct the insertion, generating JWCB87, and the PCR product was
382 sequenced. Primers used are listed in Table 2.

383

384 **Preparation of extracellular protein and zymogram analysis.** To collect the
385 extracellular protein (ECP) fraction, *C. bescii* cells were grown in 2 L of LOD medium
386 with 40 mM MOPS in closed bottles at 65°C with shaking at 150 rpm to an OD₆₈₀ of

387 0.25-0.3. Culture broth was centrifuged (6,000 \times g at 4°C for 15 min), filtered (glass
388 fiber, 0.7 μ m), to separate cells. The 2 L of ECP was loaded onto a hollow fiber
389 cartridge with 3 kDa molecular weight cut off (GE healthcare, Buckinghamshire, UK)
390 and eluted with 50 mL buffer 20 mM MES/2 mM β -mercaptoethanol (pH 5.5). The 50
391 mL EP was concentrated (~25 times) with a Vivaspin column (10 kDa molecular weight
392 cut off, Sartorius, Goettingen, Germany). Protein concentrations were determined using
393 the Bio-Rad protein assay kit with bovine serum albumin (BSA) as the standard. ECP
394 samples (10 μ g) were electrophoresed in 4-20% gradient Mini-Protein TGX gels (BIO-
395 RAD) and protein bands were visualized by staining with Coomassie Brilliant Blue G-
396 250. For detection of in-gel β -D-xylosidase activity, ECP samples (15 μ g) were
397 electrophoresed in 4-20% gradient Mini-Protein TGX gels (BIO-RAD). After soaking the
398 gel for 1 h in 2.5% (v/v) Triton X-100 solution to remove the SDS, the zymogram gel
399 was incubated at 75°C for 20 min in reaction buffer containing 0.3 mM 4-
400 methylumbelliferyl β -D-xylopyranoside, 20 mM MES (pH 5.5), 1 mM dithiothreitol (DTT),
401 1 mM CaCl₂, and 1 mM MgCl₂. The presence of fluorescent reaction product was
402 visualized under UV light using a gel document system. Detection of in-gel β -D-
403 glucosidase activity was performed similarly to that of β -D-xylosidase activity, but the
404 substrate was 5 mM 4-methylumbelliferyl β -D-glucopyranoside. For the zymogram
405 analysis of xylanase, ECP samples (15 μ g) were electrophoresed in 12%
406 polyacrylamide gel with a 5% stacking gel containing 0.1% birchwood xylan. After
407 removing SDS and incubating the gel in the reaction buffer as described above, the gel
408 was submerged in 0.1%(w/v) Congo red solution for 30 min and destained with 1 M
409 NaCl until pale-red hydrolysis zones appeared. The reaction was stopped by dipping the

410 gel into a 5% acetic acid solution. Quantification of band intensity was carried out using
411 densitometry software (Total Lab 1.01, Nonlinear Dynamics Ltd.)

412

413 **Enzyme activity assays.** The reaction mixture for β -D-xylosidase activity, contained
414 750 μ L distilled water, 100 μ L of 200 mM MES buffer (pH 5.5), 10 μ L of 100 mM
415 dithiothreitol (DTT), 10 μ L of 100 mM CaCl₂, 10 μ L of 100 mM MgCl₂, and 20 μ L of the
416 crude enzyme solution, and was preheated at 75°C for 10 min. The absorbance change
417 at 65°C and 75°C and 405 nm wavelength was monitored using a Jenway Genova
418 spectrophotometer after adding 100 μ L of 50 mM *p*-nitrophenyl β -D-xylopyranoside
419 (*p*NP-X, Sigma, USA). One unit (U) of β -D-xylosidase activity was defined as the
420 amount of enzyme needed to release 1 μ mol *p*-NP (*p*-nitrophenol) from *p*NP-X per min.
421 Specific enzyme activity (U/mg protein) was estimated by dividing the enzyme activity
422 by the total protein concentration. Protein concentrations were determined using the
423 Bio-Rad protein assay kit. Enzyme activity on xylan substrates was measured using 10
424 g/L of either oat spelts or birchwood xylan (Sigma, USA) in MES reaction buffer (pH 5.5)
425 as previously described (28). Cells were grown in a 2 liter volume of LOD medium with
426 40 mM MOPS and 5 g/L maltose as carbon source. 25 μ g/mL of the extracellular protein
427 fraction was added to each reaction and incubated at 65°C and 75°C for 12 h. Reducing
428 sugars in the supernatant were measured using dinitrosalicylic acid (DNS). Samples
429 and standards (xylose) were mixed 1:1 with DNS reaction solution, boiled for two
430 minutes and measured at OD₅₇₅. Activity was reported as mg/mL of sugar released.

431

432 **Growth of recombinant strains on cellobiose and xylan.** To measure growth on
433 cellobiose, cells were sub-cultured twice in LOD medium with 5 g/L maltose as sole
434 carbon source and used to inoculate media with cellobiose (1% total volume for all
435 experiments) as sole carbon source to a final concentration of 5 g/L in 50 mL LOD
436 medium with 40 mM MOPS, and incubated at 65°C with shaking at 150 rpm. Cell
437 growth on cellobiose was measured by optical density (OD) at 680 nm using a Jenway
438 Genova spectrophotometer. To measure growth on oat spelts and birchwood xylans,
439 both the sub-culture and the initial culture were performed in LOD medium with 5 g/L
440 oat spelts and birchwood xylans. Colony-forming units (CFU) were measured by plating
441 cells on LOC medium.

442

443 **Growth of recombinant strains on Avicel with and without the addition of xylan.**
444 Frozen cells were revived and then sub-cultured twice in LOD medium with 5 g/L
445 maltose as sole carbon source and with 40 mM MOPS. The second sub-culture was
446 grown to mid log-phase and used to inoculate 50 mL of LOD medium supplemented
447 with 40 mM MOPS with either 5 g/L of Avicel or 5 g/L Avicel + 2.5 g/L oat spelts xylan. A
448 0.2% v/v inoculum was used and cultures were incubated at 65°C while shaking at 150
449 rpm. Growth was measured CFU of serially diluted samples and plating on LOC
450 medium with 5 g/L maltose. Plates were incubated anaerobically at 65°C for four days.

451

452 **Acknowledgements**

453 Funding was provided by the BioEnergy Science Center (BESC) and the Center for
454 Bioenergy Innovation (CBI), from the U.S. Department of Energy Bioenergy Research
455 Centers supported by the Office of Biological and Environmental Research in the DOE
456 Office of Science. This work was authored in part by Alliance for Sustainable Energy,
457 LLC, the Manager and Operator of the National Renewable Energy Laboratory for the
458 U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The
459 views expressed in the article do not necessarily represent the views of the DOE or the
460 U.S. Government.

461

462

463

464

465

466

467

468

469

470

471

472 **References**

- 473 1. Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C,
474 Davis M, Westpheling J, Adams MW. 2009. Efficient degradation of
475 lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe
476 "*Anaerocellum thermophilum*" DSM 6725. *Appl Environ Microbiol* 75:4762-4769.
- 477 2. Lochner A, Giannone RJ, Rodriguez M, Jr., Shah MB, Mielenz JR, Keller M,
478 Antranikian G, Graham DE, Hettich RL. 2011. Use of label-free quantitative
479 proteomics to distinguish the secreted cellulolytic systems of *Caldicellulosiruptor*
480 *bescii* and *Caldicellulosiruptor obsidiansis*. *Appl Environ Microbiol* 77:4042-4054.
- 481 3. Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang SJ,
482 Resch MG, Adams MWW, Lunin VV, Himmel ME, Bomble YJ. 2013. Revealing
483 nature's cellulase diversity: the digestion mechanism of *Caldicellulosiruptor bescii*
484 CelA. *Science* 342:1513-1516.
- 485 4. Dam P, Kataeva I, Yang SJ, Zhou FF, Yin YB, Chou WC, Poole FL, Westpheling
486 J, Hettich R, Giannone R, Lewis DL, Kelly R, Gilbert HJ, Henrissat B, Xu Y,
487 Adams MWW. 2011. Insights into plant biomass conversion from the genome of
488 the anaerobic thermophilic bacterium *Caldicellulosiruptor bescii* DSM 6725.
489 *Nucleic Acids Res* 39:3240-3254.
- 490 5. Chung D, Young J, Cha M, Brunecky R, Bomble YJ, Himmel ME, Westpheling J.
491 2015. Expression of the *Acidothermus cellulolyticus* E1 endoglucanase in
492 *Caldicellulosiruptor bescii* enhances its ability to deconstruct crystalline cellulose.
493 *Biotechnol Biofuels* 8:113.

- 494 6. Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J. 2017. In vivo
495 synergistic activity of a CAZyme cassette from *Acidothermus cellulolyticus*
496 significantly improves the cellulolytic activity of the *C. bescii* exoproteome.
497 Biotechnol Bioeng 114:2474-2480.
- 498 7. Kim SK, Himmel ME, Bomble YJ, Westpheling J. 2017. Expression of a
499 cellobiose phosphorylase from *Thermotoga maritima* in *Caldicellulosiruptor bescii*
500 improves the phosphorolytic pathway and results in a dramatic increase in
501 cellulolytic activity. Appl Environ Microbiol 84:e02348-17.
- 502 8. Qing Q, Wyman CE. 2011. Supplementation with xylanase and beta-xylosidase
503 to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose
504 and pretreated corn stover. Biotechnol Biofuels 4:18.
- 505 9. Qing Q, Yang B, Wyman CE. 2010. Xylooligomers are strong inhibitors of
506 cellulose hydrolysis by enzymes. Bioresour Technol 101:9624-9630.
- 507 10. Huang D, Liu J, Qi YF, Yang KX, Xu YY, Feng L. 2017. Synergistic hydrolysis of
508 xylan using novel xylanases, β -xylosidases, and an α -L-arabinofuranosidase
509 from *Geobacillus thermodenitrificans* NG80-2. Appl Microbiol Biotechnol
510 101:6023-6037.
- 511 11. Yang XZ, Shi PJ, Huang HQ, Luo HY, Wang YR, Zhang W, Yao B. 2014. Two
512 xylose-tolerant GH43 bifunctional β -xylosidase/ α -arabinosidases and one GH11
513 xylanase from *Humicola insolens* and their synergy in the degradation of xylan.
514 Food Chem 148:381-387.

- 515 12. Xue YM, Shao WL. 2004. Expression and characterization of a thermostable β -xylosidase from the hyperthermophile, *Thermotoga maritima*. *Biotechnol Lett*
516 26:1511-1515.
- 517
- 518 13. Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J. 2016. Heterologous
519 expression of family 10 xylanases from *Acidothermus cellulolyticus* enhances the
520 exoproteome of *Caldicellulosiruptor bescii* and growth on xylan substrates.
521 *Biotechnol Biofuels* 9:176.
- 522 14. Chung D, Cha M, Guss AM, Westpheling J. 2014. Direct conversion of plant
523 biomass to ethanol by engineered *Caldicellulosiruptor bescii*. *Proc Natl Acad Sci
524 USA* 111:8931-8936.
- 525 15. Chung D, Young J, Bomble YJ, Vander Wall TA, Groom J, Himmel ME,
526 Westpheling J. 2015. Homologous expression of the *Caldicellulosiruptor bescii*
527 CelA reveals that the extracellular protein is glycosylated. *Plos One*
528 10:e0119508.
- 529 16. Jordan DB, Stoller JR, Lee CC, Chan VJ, Wagschal K. 2017. Biochemical
530 characterization of a GH43 β -xylosidase from *Bacteroides ovatus*. *Appl Biochem
531 Biotechnol* 182:250-260.
- 532 17. Barker IJ, Petersen L, Reilly PJ. 2010. Mechanism of xylobiose hydrolysis by
533 GH43 β -xylosidase. *J Phys Chem B* 114:15389-15393.
- 534 18. Kado Y, Inoue T, Ishikawa K. 2011. Structure of hyperthermophilic β -glucosidase
535 from *Pyrococcus furiosus*. *Acta Crystallogr Sect F Struct Biol Cryst Commun*
536 67:1473-1479.

- 537 19. Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J. 2019. Heterologous
538 co-expression of two β -glucanases and a cellobiose phosphorylase resulted in a
539 significant increase in the cellulolytic activity of the *Caldicellulosiruptor bescii*
540 exoproteome. *J Ind Microbiol Biotechnol* 46:687-695.
- 541 20. Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO.
542 1986. *Thermotoga maritima* sp. nov. represents a new genus of unique
543 extremely thermophilic eubacteria growing up to 90°C. *Arch Microbiol* 144:324-
544 333.
- 545 21. Liab K, Azadi P, Collins R, Tolan J, Kim JS, Eriksson KEL. 2000. Relationships
546 between activities of xylanases and xylan structures. *Enzyme and Microb
547 Technol* 27:89-94.
- 548 22. Puls J, Schroder N, Stein A, Janzon R, Saake B. 2006. Xylans from oat spelts
549 and birch kraft pulp. *Macromol Symp* 232:85-92.
- 550 23. Kataeva IA, Seidel RD, Shah A, West LT, Li XL, Ljungdahl LG. 2002. The
551 fibronectin type 3-like repeat from the *Clostridium thermocellum*
552 cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface.
553 *Appl Environ Microbiol* 68:4292-4300.
- 554 24. Farkas J, Chung D, Cha M, Copeland J, Grayeski P, Westpheling J. 2013.
555 Improved growth media and culture techniques for genetic analysis and
556 assessment of biomass utilization by *Caldicellulosiruptor bescii*. *J Ind Microbiol
557 Biotechnol* 40:41-49.

- 558 25. Chung D, Farkas J, Westpheling J. 2013. Overcoming restriction as a barrier to
559 DNA transformation in *Caldicellulosiruptor* species results in efficient marker
560 replacement. *Biotechnol Biofuels* 6:82.
- 561 26. Chung D, Huddleston JR, Farkas J, Westpheling J. 2011. Identification and
562 characterization of Cbel, a novel thermostable restriction enzyme from
563 *Caldicellulosiruptor bescii* DSM 6725 and a member of a new subfamily of HaeIII-
564 like enzymes. *J Ind Microbiol Biotechnol* 38:1867-1877.
- 565 27. Groom J, Chung D, Young J, Westpheling J. 2014. Heterologous
566 complementation of a *pyrF* deletion in *Caldicellulosiruptor hydrothermalis*
567 generates a new host for the analysis of biomass deconstruction. *Biotechnol*
568 *Biofuels* 7:132.
- 569 28. Kanafusa-Shinkai S, Wakayama J, Tsukamoto K, Hayashi N, Miyazaki Y, Ohmori
570 H, Tajima K, Yokoyama H. 2013. Degradation of microcrystalline cellulose and
571 non-pretreated plant biomass by a cell-free extracellular cellulase/hemicellulase
572 system from the extreme thermophilic bacterium *Caldicellulosiruptor bescii*. *J*
573 *Biosci Bioeng* 115:64-70.
- 574

575 **Figure Captions**

576 **Figure 1. Strains construction flow-chart.** The *A. cellulolyticus* E1 and Acel_0180
577 genes were inserted into the JWCB18 chromosome at the chromosomal integration site
578 one (CIS1) and CIS2, respectively. Then, the plasmids with (pSKW28) and without
579 (pJGW07) the TM_0076 gene from *T. maritima* were introduced into the JWCB18,
580 JWCB52, and JWCB87 strains.

581 **Figure 2. Confirmation of β -D-xylosidase expression and activity in *C. bescii*.** (A)
582 SDS-PAGE analysis of concentrated extracellular proteins (10 μ g). (B) Zymogram
583 analysis of concentrated extracellular proteins (15 μ g) using 0.3 mM MUX as a
584 substrate for detecting protein bands with β -D-xylosidase activity. (C) Zymogram
585 analysis of concentrated extracellular proteins (15 μ g) using 5 mM MUG as a substrate
586 for detecting protein bands with β -D-glucosidase activity. M, Pre-stained SDS-PAGE
587 standards, Broad range (Bio-Rad Laboratories); 1, JWCB82 (parental strain); 2,
588 JWCB73 (E1 expressing strain); 3, JWCB95 (E1 + Tm_0076 expressing strain).

589 **Figure 3. Chromosomal integration of the Acel_0180 xylanase gene into the *C.***
590 ***bescii* genome.** (A) A depiction of the chromosomal location and integration event of
591 the Acel_0180 expression cassette: SP, signal peptide; GH10, a family 10 glycoside
592 hydrolase; CBM3, a family 3 carbohydrate-binding module; CBM2, a family 2
593 carbohydrate-binding module. (B) Agarose gel showing PCR products amplified using
594 primers SK65 and SK66 annealing to regions outside the site of integration in the parent
595 strain, JWCB52 (Δ pyrFA + E1), 2.2 kb (*lane 1*) and the newly constructed strain

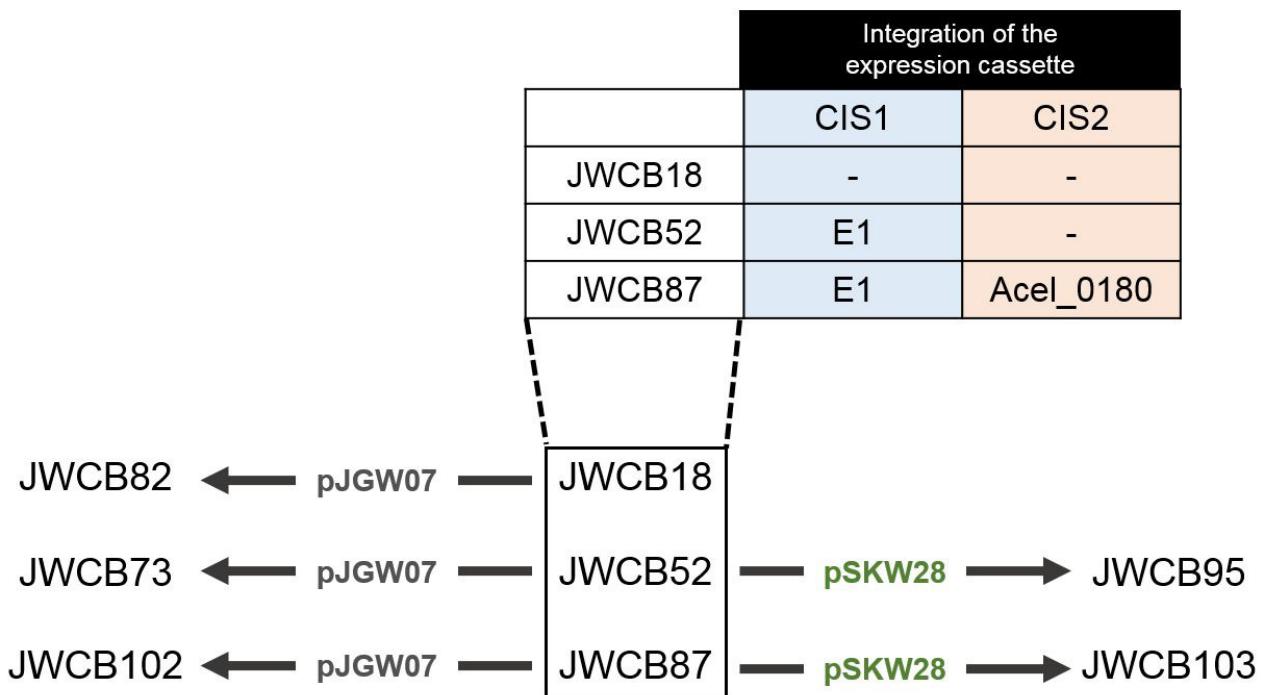
596 JWCB87 (Δ pyrFA + E1 + Acel_0180), 4.4 kb (lane 2); no template PCR control (lane 3);
597 NEB 1 kb DNA ladder (lane M).

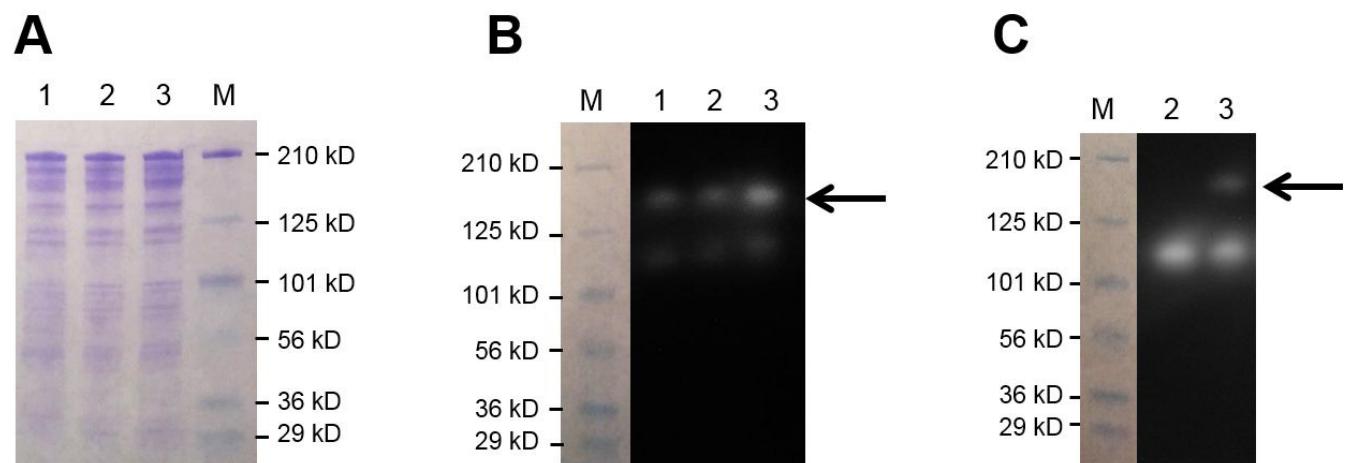
598 **Figure 4. Effects of expression of Tm_0076 β -D-xylosidase and Acel_0180**
599 **xylanase on the activity of the *C. bescii* exoproteome.** (A) The enzyme was
600 incubated at 65°C or 75°C for 10 min in reaction buffer containing 5 mM pNP-X, 20 mM
601 MES buffer (pH 5.5), 1 mM DTT, 1 mM CaCl₂, and 1 mM MgCl₂. (B and C) Relative
602 enzymatic activity of the extracellular fraction of *C. bescii* strains on oat spelts and
603 birchwood xylans. Activity of extracellular protein (25 μ g/mL concentrated protein) on
604 oat spelts and birchwood xylans was measured after 12 h incubation at 65°C (B) or
605 75°C (C). JWCB82, the parent strain used in these experiments; JWCB73, the E1
606 expression strain; JWCB95, the E1 expression strain containing Tm_0076; JWCB102,
607 the E1 and Acel_0180 expression strain; JWCB103, the E1 and Acel_0180 expression
608 strain containing Tm_0076. Results are the mean of triplicate experiments and error
609 bars indicate standard deviation.

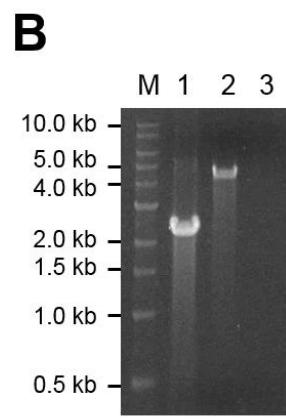
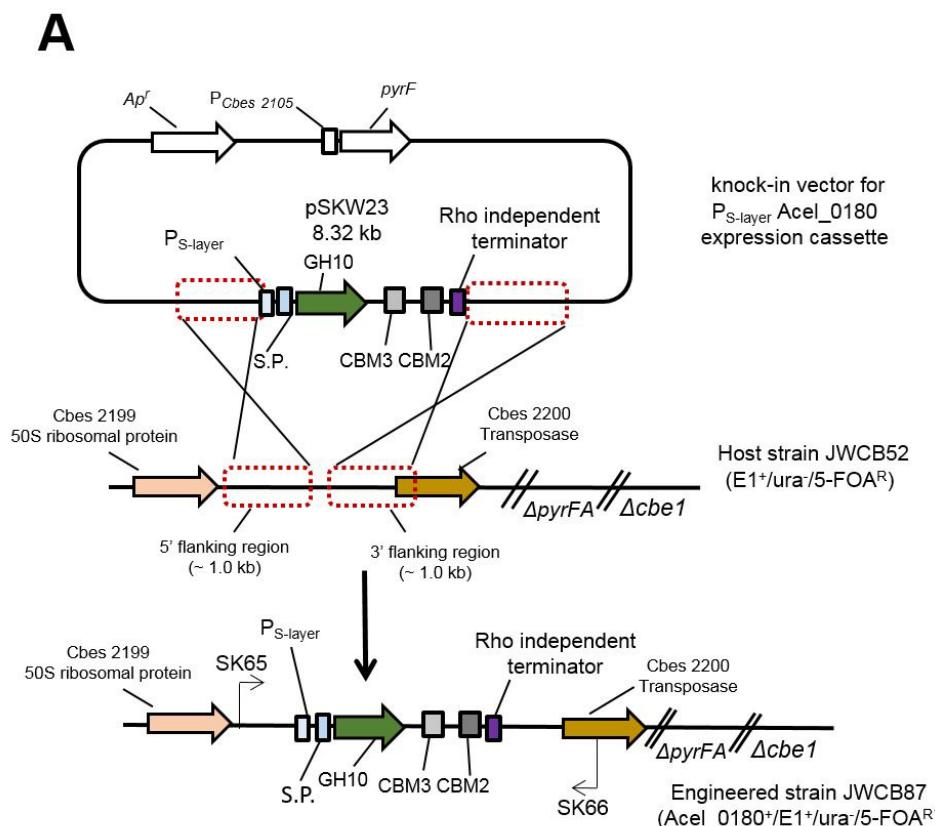
610 **Figure 5. Growth of *C. bescii* strains on cellobiose (A), xylan substrates (B),**
611 **Avicel (C), or Avicel + oat spelts xylan (D).** (A) Growth as measured by OD at 680
612 nm. (B) Viable cell numbers after 36 h cultivation on xylan substrates. (C and D) Growth
613 of recombinant strains on Avicel without (C) and with the addition of xylan (D). JWCB82,
614 the parent strain used in these experiments; JWCB73, the E1 expression strain;
615 JWCB95, the E1 expression strain containing Tm_0076; JWCB102, the E1 and
616 Acel_0180 expression strain; JWCB103, the E1 and Acel_0180 expression strain

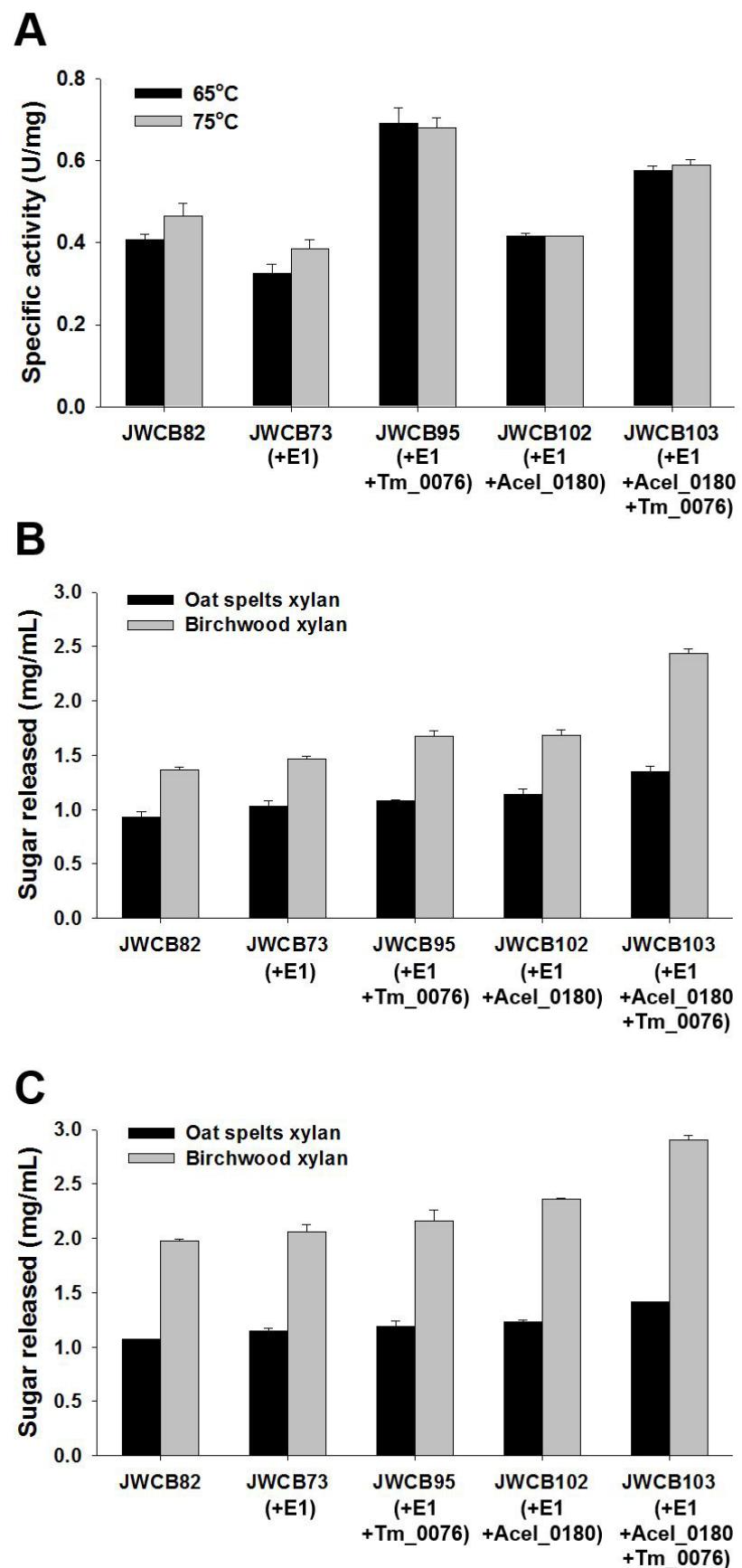
617 containing Tm_0076. Results are the mean of duplicate experiments and error bars
618 indicate standard deviation.

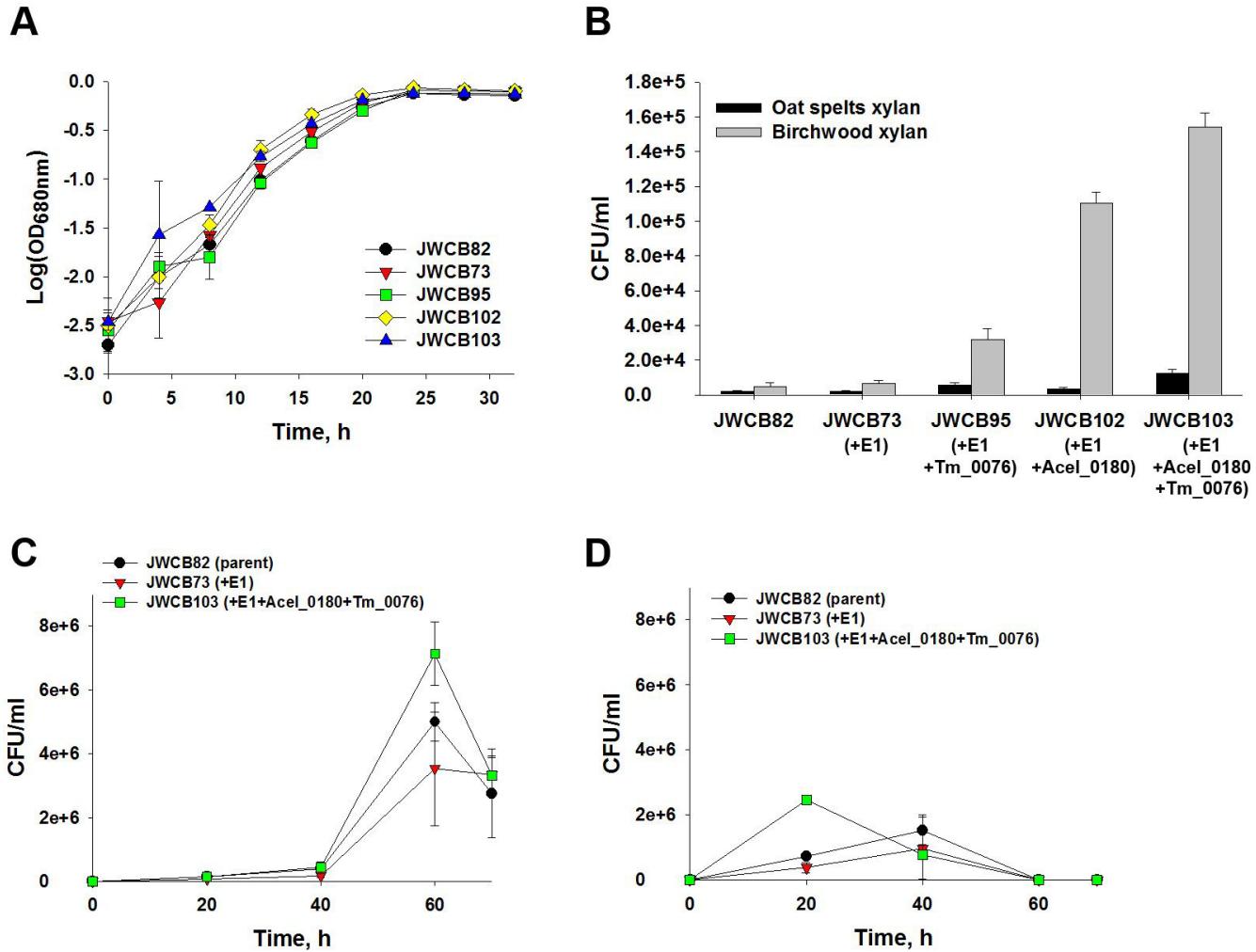
619


Table 1. Strains and plasmids used in this study


Name	Description	Reference
<i>E. coli</i>		
JW532	DH5α containing pSKW23 (Aramycin ^R)	This study
JW536	DH5α containing pSKW28 (Aramycin ^R)	This study
<i>C. bescii</i>		
JWCB18	ΔpyrFA ldh::IS _C be4 Δcbe1(ura ^r /5-FOA ^R)	(25)
JWCB52	ΔpyrFA ldh::IS _C be4 Δcbe1 CIS1::P _{S-layer} Acel0614(E1) (ura ^r /5-FOA ^R)	(5)
JWCB87	ΔpyrFA ldh::IS _C be4 Δcbe1 CIS1::P _{S-layer} Acel0614(E1) CIS2::P _{S-layer} Acel0180 (ura ^r /5-FOA ^R)	This study
JWCB73	JWCB52 containing pJGW07 (ura ^r /5-FOA ^S)	(13)
JWCB82	JWCB18 containing pJGW07 (ura ^r /5-FOA ^S)	This study
JWCB95	JWCB52 containing pSKW28 (ura ^r /5-FOA ^S)	This study
JWCB102	JWCB87 containing pJGW07 (ura ^r /5-FOA ^S)	This study
JWCB103	JWCB87 containing pSKW28 (ura ^r /5-FOA ^S)	This study
Plasmids		
pJGW07	<i>E. coli/C. bescii</i> shuttle vector containing the <i>C. thermocellum</i> pyrF gene (Aramycin ^R)	(27)
pSKW10	Source of the Acel_0180 expression cassette	(13)
pSKW22	Integrational vector for <i>C. bescii</i> CIS2 (Aramycin ^R)	(19)
pSKW23	Integrational vector containing the Acel_0180 expression cassette (P _{S-layer} Acel0180) (Aramycin ^R)	This study
pSKW28	Expression vector containing P _{S-layer} Tm0076 (Aramycin ^R)	This study



1 Table 2. List of primers used in this study. The italicized sequences indicate the recognition sites of the corresponding
2 restriction enzymes.


Name	Sequence (5' → 3')	Restriction enzyme	Description
SK74	CCGCCC GGG ATGGA ACT TACAGGGATCC TC	XmaI	
SK75	AGACCTAGGCTCCTCGCAGGCTCCGT	AvrII	To construct pSKW23
SK21	CCGCCC GGG AAACGAACCAGCC CT AC CT CT	XmaI	
DC700	AGACCTAGGCATCACC AT AC CT CACTAATAAT	AvrII	To construct pSKW23
DC460	AGAGAGCGATCGACAGTTGATTACAGTTAGTCAGAGCT	PvuI	
DC461	AGAAGAAGGCGGCCGCTGGT CC TTAAATCTAAGAGGTATGA	NotI	To construct pSKW28
SK61	AGAGAGCGATCGAGT TTT AAAAGTGGCTAAAGATTAGAAGC	PvuI	
SK62	AGAAGAAGGCGGCCG C CAGGTAAGTCTAAACTATTTAGCTGGTGAG	NotI	To construct pSKW28
DC460	AGAGAGCGATCGACAGTTGATTACAGTTAGTCAGAGCT	PvuI	To confirm transformants
DC228	ATCATCCCC TTT GCTGATG	-	containing pSKW28
SK65	ATTAAC T GCTCAAAAC CT GGCA	-	To verify the targeted
SK66	TTGCAGCAGT G AGAAAAC CT TATG	-	insertion of the Acel_0180 expression cassette


3

