Final Technical Report

DOE EERE Award Number: DE-OE0000885

Project Title:

A Probability-based Model for Cost-effective Integration of
Renewables into the Electricity Grid

Name of Recipient

Virginia Polytechnic Institute and State University

Principal Investigator

Dr. Saifur Rahman, Professor and Director
Virginia Tech - Advanced Research Institute

September 2019



Acknowledgment:

This material is based upon work supported by the Department of Energy under Award Number
DE-OE0000885.

Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



EXECUTIVE SUMMARY

Funded by the U.S. Department of Energy during 2017-2019, the resource adequacy evaluation and
production costing tool, called MATPLAN (MATIab and probability-based PLANning), was developed.
MATPLAN can take into account the variable nature of renewable energy sources (both solar PV and
wind farms), rather than considering deterministic data as in the current practice. It combines both
probabilistic and optimization techniques to allow the determination of optimal system expansion policy
and perform effective load carrying capacity (ELCC) analysis of a system with high renewable

penetration. This is in contrast to the current practice that treats these variable sources as negative loads.
This tool expects to benefit system planners by enabling them to consider renewable energy sources as
options for their expansion plans. System operators can use MATPLAN to calculate the capacity credit
for each solar/wind farm using probabilistic forecasts, thus enabling quantification of the operating
reserve requirements to cope with uncertainty and variability of solar/wind output committed in the
market.

Aiming at implementing the functionality and flexibility to deal with various production costing
problems, MATPLAN comprises the following key modules:

U LOAD-CALC module — is the load input module that requires system load during the planning
horizon (e.g., 30 years) as the input. The major goal for the LOAD-CALC module is to generate
the equivalent load duration curve (ELDC) of an existing power system, considering the forced
outage of all generators, if any.

0 EXIST-GEN module — consists of two sub-modules, EXIST-TH and EXIST-RE, that model
the characteristics of existing conventional and renewable power plants. It requires the number
of additions or retirements of each type generator and the year of such changes.

U CANDI-GEN module — consists of two sub-modules, CANDI-TH and CANDI-RE, that model
the characteristics of candidate conventional and renewable power plants. Reserve margin
requirements are also specified in this module through a JSON format file, CANDI-GEN.json.

U CONFIG module - is the expansion configuration module that generates additional constraints
for the optimization problem in the OPTIMIZE module. It narrows down possible expansion
configurations based on constraints inputted by a user. Required input data include, for example,
minimum/maximum reserve requirements, minimum/maximum numbers of a particular
expansion candidate that can be installed in a given year, and the acceptable LOLP in a given
study period. The CONFIG module is used to generate all valid configurations over the planning
horizon.

U OPTIMIZE module — is the optimization module that combines probabilistic
and optimization techniques to determine the optimal system expansion policy based on inputs
defined in other modules. The objective function has been formulated to take into account
probabilistic model of generator availability, including renewable energy sources. This module
also takes care of all economic calculation and cash flow analysis.

U ELCC module — is effective load carrying capability module responsible for calculating ELCC
value of each power plant, including renewables, selected as expansion candidates. The output



of this model is the capacity credit of each new unit as the capacity added to a system, allowing
the load to increase without compromising the generation adequacy.

These six modules when working together allows the user to consider renewable energy as options for
expansion planning using a probability-based model. They can also handle different types of user-defined
input data formats. The developed tool has been validated through comparison with another similar
software package and further tested using realistic field data. The complete code repository has been
released under the open-source license for public access.

The latest MATPLAN source code, together with its implementation and developer guides, have been
made available on an online repository at https://github.com/wasp2019/MATPLAN.

ii



Table of Content

EXECUTIVE SUMIMARY ....cuiiiiiiiiieeiieiieiieeiieiioiissiisssiosesssisssiassssssssssasssassssssasssassssssasssasssnssssssansan i
I 1 L0 00T = o | PN iii
LISE OF FiGUIES ... veeueiiieenieiieeneitennertenneetensseseeessessenssessenssessenssesssnssesssnsssssssssesssnssssssnnsssssnssssssnnne v
[T 00T - o1 [T vii
1.0 Summary of Tasks Proposed and AccompliShments ........ccceeeeereeeieieenienieenneerennereennnens 1
1.1 TASKS PrOPOSEA...uuuvieeieiiiiiieeieee e e ettt e et e e e ee et e e s e et s abab b e aeeaeeeeeeeeeeeeeesessasnnssssrseneens 1
1.2 ACCOMPIISIIMENTES wovvveeeiiieiiee e r e e e e eeeeeeeeeesesseasnssasraeneens 2
2.0 Introduction t0 IMATPLAN .........iiiiiitiiiiiiiitreneieseinesnsssssstnssssssssssssssssssssssssssnsssssssssasns 4
2.1 WAt iS IMIATPLANT ...ttt et e e eeeeeesee bbb raeeeeeeeeeeeeeeeeeessessesassbssrsarereereseeeeeeesenasnnnnns 4
2.2 MATPLAN K@Y FEATUIES ..cetuuiiieeiite et ettt e et e e e ettt e e e e e et e e s e e ertaeeeeeseaaaaaeeeesessnnneeeeenes 4
2.3 Description of MATPLAN MOAUIES .......cooieiiiiitreeeeeeeeeeeee e rer e e e e e e e e e e e e e e e s enanns 5
2.4 Summary Description of MATPLAN ComMPULEr COE....cuuiiiiiiiiiiiiiiiciiiiirreeeeeeeeeeeeeeeeeeeeenenns 6
3.0 [0 7Y 0 207 H ol 1V o T [T ] TN 8
3.1 Overview Of LOAD-CALC MOAUIE ......eeiieeiiiiee ettt e e e e e e 8
3.2 INPUtS Of LOAD-CALC MOAUIB....cceiiiiiiiieieieeeectrteteee ettt e et eeeee et rereeeeeeeeeeeeeeseesennnns 8
3.3 Outputs Of LOAD-CALC MOGUIE.........cooieeieeittiteeeeeeeeeee e e e rrrreeeeeeeeeeeeeeeessesnennnns 11
4.0 EXIST-GEN IMOAUIE........ceeeeeeieenerieencereeneetennneerenssesreasseesssssessessseesssssessssssssssnsssssennnnnns 13
4.1 Overview of EXIST-GEN MOUIE ........uvviiiieiiee ettt e e e e e e e e 13
4.2 Input of EXIST-TH SUDMOAUIE ...vvvvieeeeiiiieeeeeieee ettt e e ee e ereeeeeee e e 13
4.2 Input of EXIST-RE SUDMOAUIE ....vvviiiiieiiiieiieei ettt reere e e e e e e ee e e 16
4.3 Output of EXIST-TH and EXIST-RE SUBMOUIES ........uuvviriveiiiiiiiieeieeieeececrrreereeeee e 19
5.0 CANDI-GEN IMOAUIE ....ceeuueerrenneereeneerreneerenseereessessensseesesssesssnsssssssssesssnssssssssesssnsssssens 20
5.1 Overview of CANDI-GEN MOAUIE ......cceiiiiiiieee ettt e e e e e e e 20
5.2 Multi-state Representation for Renewable Power Plants.........cccccvvvvvvveeeeeiieeeeeeeeeiieiiennns 20
5.3 Input of CANDI-TH SUBMOAUIE........coiiiiiieeeeeeeeee e e e e e e e e e 23
5.4 Input of CANDI-RE SUBMOAUIE ....cccooiiiiiiiicteeeeeeeee e e et e e e e e e e e s s e s sanns 25
5.5 Output of CANDI-TH and CANDI-RE SUBMOAUIES.......ccoeeiieeiiiiiiiiiirieeeeeeeeee e, 28
6.0 00 1\ o [ 1Y o T [T ] PN 30
6.1 Overview of CONFIG MOUIE .......uuviiiiieeeeee et e e e e 30
6.2 INPULS OF CONFIG MOGUIE ..vveveeeeeeeieeieeee ettt e e e se e ee e et eeeeeeeeessessnnnnns 31
6.3 OULPULS Of CONFIG MOQUIE .coeeeeiiiiiiieeieeeecttteeeeeee e ree e e e e e e e e e e e e s s ensnnnnes 33
6.4 Configuration Tree Data STrUCTUIE .......oooi ettt e e e e e e e e e e s saanes 34
7.0 OPTIMIZE MOAUIE .......ceeeeeeieenniireeneeteeneerennneeeenssessensseeresssessenssessssssesssnssessssssesssnssessens 41
7.1 Overview of OPTIMIZE MOUIE .......oeiiiiiiiiiee et e e e e e e e e 41
/2 A ©o 1 A -1 o] =1 d o [ SRR 41
7.3 Maintenance MECNANISM ... ..ciii it e e e e et e e e e e e naaeeeeeeennnees 45
VA N 114 A DI 1 o T- ol o PP PUUPPRRPRRNE 47
7.5 Graph Structure and SEAICH c...ueviiii i e e e e e 48
7.6 INPUt OFf OPTIMIZE MOQUIE ...cceeeiieiieeiiee ettt et et e e s ee b reeeeeeeeeeeeeeeessensnnnnnns 52
7.7 Output Of OPTIMIZE MOQUIE ...cceiiiiiiiiee ettt e reree e e e e e e e eeeeessensnanes 52
8.0 [ Il 1V o T [ Ot 55

iii



8.1 OVEIVIEW Of ELCC MOTUIE «.eeiieeeiie ettt ettt ettt e e et ettt e e e e eeaaeesseeeeassasseesaennnnseeenes 55

8.2 Theoretical Analysis Of ELCC VAlUEBS.......ccooecuiiiiiiiieeeeeeeeee e ceecccrrreeeee e e e e e e e e s e e s e 55
8.3 INPUL OF ELCC IMOAUIB.....uutiiiiiieeeiiiiee ettt et e e e e e e e e s ee s aareeeeeeeeeeeeeeeessensnnnnnes 57
8.4 OULPUL Of ELCC MOTUIE ... uuvteeieeiieeieeieee ettt et e e e e e e e e e see b rrreeeeeeeeeeeeeeeeseensnnnnes 57
9.0 Validation and Case STUAY .....cccceierieeiereeeiereeneereenreertenseereesseereenseeseesssesssnssssssnssesssnnes 59
9.1 Validation USING WASP .....uuiiiiieeiiiiieeeee ettt e e et e e e e e e e e e e se e s s sasabbarrereeeeeeeeaeeeeeseessnnnnnes 59
9.2 Case 1: Low Penetration of Renewable Energy Sources in the Generation Mix................. 61
9.3 Case 2: High Penetration of Renewable Energy Sources in the Generation Mix ............... 64
9.4 Case 3: Accounting for Multiple Locations of Renewable Energy Sources..........ccccoeeuunnee 66
9.5 Case 4: Different Cost Structure of Different Types of Solar Panels ........cccceeveeeeeiiiiiicnnns 68
9.6 Test the Implementation using Parallel-computing ToolboX .......cccccvvvveeeeeiiieiiieiieiiiiinn, 69
10.0 MATPLAN SOftWAre ACCESS ....ccceeueriiiiiiirnnniiiiiiieenssssssismssnsssssssmsssssssssssssssnsssssssssssnnnnes 70

iv



List of Figures

Figure 1-1. Proposed tasks according to the SOPO ........ccccoviiriiieieeiiiiieeeeeeeee e 2
Figure 2-1 Organizations represented by WASP advisory committee ........cccceevvevvrrrrreveeeeeeeeeeennn. 5
Figure 2-2 MATPLAN architecture with different modules..........cceeeeevieiiiiiiiiiiiiicccrrreeeeee e, 6
Figure 2-3 The overall relationship of MATPLAB computer code files........ccccoevvvvrrrrrereeeeeeneeeennn. 7
Figure 3-1 Example of input to the LOAD-CALC MOAUIE .......uvvrrirvieeiiiiieeeeeiieeieeiccrrrrrreeeee e 9
Figure 3-2 Type [1] input (left) and WASP standard “points” input for LDC (right) .......ccceeeeeeeen.. 10
Figure 3-3 Type [2] input (left) and WASP standard “coefficients” input for LDC (right)............. 10
Figure 3-4 Normalized inverted LDC plots from three types of user inputs........ccccvvvveveeereeeeeennnn. 11
Figure 3-5 The structure of LDC data information ........ccccovviivirieeiiiiiieeee e 12
Figure 4-1 Example of input to the EXIST-TH MOAUIE .......vvvrmririeiiiiiieeieeeeeeeecrrreeeee e 14
Figure 4-2 Capacity of all 26 generators in the eXample......ccvveeeeeeeiiiiiiiiiieiicccreee e, 16
Figure 4-3 Forced outage rate of all 26 generators in the example.......cccccoevvvveviiivrveeeeeeeeeeeeenn. 16
Figure 4-4 Example of input to the EXIST-RE MOAUIE.......ccccuvrmireeeiiiiiieeieeeeeeeecireeeeeee e 18
Figure 4-5 The output structure of existing generator information.........ccccoeeveevvrvrvvereeeeeeeeeeenn. 19
FIgUre 5-1 INVEIrted V-P Chart.....cco oottt e e e e e s r e e e e eaeeeeeens 21
Figure 5-2 Example of input to the CANDI-TH submodule..........eeeeeviieiiiiiiiiiiiiiiireeeeeeeeeee e, 24
Figure 5-3 Example of input to the CANDI-RE sUbMOAUIE .......evveeveeiieeiiiiiiiiieirreeeeeeeee e, 27
Figure 5-4 The output structure of candidate generator information.........cccccevvvrvvvrereeeeeeeeeennn. 29
Figure 6-1 Example of configuration eVolULiON ..........cooeeiiiiiiiiiiiiieec e 31
Figure 6-2 Configuration of system reserve margin in the CANDI-GEN.jsoN........cccccvvevveerieeeennnn. 32
Figure 6-3 Configuration of an example candidate generator in the CANDI-GEN.json................ 32
Figure 6-4 Screen capture of generated configuration candidates index 79-100.........c.cccccc......... 33
Figure 6-5 The output structure of configuration candidate information ..........cccovvvevveeveeneennnn. 34
Figure 6-6 Tree data structure of configurations .........cccoveviiiiirieiiieiieec e 34
Figure 6-7 Class of configuration tree structure in MATLAB COd€ ........ccoovvvvvirinrrnrreeeeeeeeeeeeeeen, 35
Figure 6-8 Screen capture of generated configuration in 2017 from WASP .......cccovvvvevveeeeeeeeeennn. 40
Figure 6-9 Screen capture of generated configuration in 2017 from MATPLAN........ccccvvvveeeennnn. 40
Figure 7-1 Schematic diagram of cash flows for an expansion plan. .......ccccoeevevviirvireeeeeeieeeeeenn. 42
Figure 7-2 lllustration of maintenance schedule with energy blocks........ccccoeeevviiiriveeeeininnnnnnnn. 46
Figure 7-3 Implementation code of the maintenance mechanism........cccccoovvvecviiirveereeeeeeeeeeenn. 47
Figure 7-4 The workflow of OPTIMIZE MOdUIE ......cccoeeieeiiiirieieeeeeeeeee e 48
Figure 7-5 Screen capture of building graph struCture .......cccoveeeeeeeiieeiiiiiieiicccccreeeeeeeee e, 50
Figure 7-6 Graph structure of example configuration candidates .........ccccevevvccnvrrrrvereeeeeeeeeeeenn. 51
Figure 7-7 Screen capture of tree search code structure for optimal solution..........ccceeeveeeeeennnn. 52
Figure 7-8 The output structure of optimal generation expansion plan information.................. 53
Figure 7-9 Print-out of several example configuration evolution ..........cccccevevvciiiiirveeeeeeeeeeceeenn, 53
Figure 7-10 Print-out of the final optimal solution of expansion plan......ccccccceevviiivvveeeeeieeneeeenn. 54
Figure 8-1 ELCC calculation illUSTration ........eeeeeiieeiiiiiieiccciiirereeeeeeeeee e ee e e e e e e 56
Figure 8-2 Print-out of ELCC values for the first period over 20 years.......cccceeeevvvrrrrrereeneeeeeeeeenn. 57
Figure 8-3 The output structure of ELCC value information ........cccccceeeieiiieiiiiiciiiiirieeeeeeeeeeeeeeeen, 58



Figure 9-1 Normalized power output of PV and wind farms during one year (using a 24-hour

MOVINE AVEIaZE WINUOW) ..uvviiiiiiiiiiiieeeeeeieiiiiiieitrrrreeereeeeeeeeeseeesiessessnssssssesseseeesseeseeessennensnes 62
Figure 9-2 Optimal expansion plan — the case of low renewable energy penetration ................ 63
Figure 9-3 Optimal expansion plan — the case of high renewable energy penetration ............... 64
Figure 9-4 The total system installed capacity - the case of high renewable energy penetration

.............................................................................................................................................. 65
Figure 9-5 LOLP — the case of high renewable energy penetration .........ccccoeeveevrrrrvrereeeeeeeeeeenn. 65
Figure 9-6 Optimal expansion plan — the case of multiple locations of renewable energy sources

.............................................................................................................................................. 67
Figure 9-7 Total system installed capacity — the case of multiple locations of renewable energy

SOUPCES tuvuuuiiiereeeeeeeeeeretteterereteneessasassesessseeeeeeteneeesssssssssssssssssssesseseeseeeeeesenesesssssssssssnesessessesens 67
Figure 9-8 The increasing number of PV units in the expansion planning plan ........cccceeeveeeeeennn. 69
Figure 10-1 Screen capture of MATPLAN 1.0 page on Github .......ceeveeiiiiiiiiiiiiciiiireeeeeeeeeee e, 70
Figure 10-2 Screen capture of MATPLAN Wiki page on Github ............ccccevvvviiciiiinnieeeeeeeeeeeeee, 71

vi



List of Tables

Table 1-1 Summary of aCCOMPISNMENTS ...eveviiiiiiiiiiiiee e e eee e 2
Table 4-1 Parameters of thermal plants required for EXIST-TH .......ccooeiiiiiiiiiiiiiiiirereeeeeeeeeeeeeeeen, 15
Table 5-1 Information needed to model wind generation, specified as the inputs in the ‘CANDI-
L VN Yo T M 1 (=TT OO PPPRTT 22
Table 5-2 Parameters of thermal plants required for CANDI-TH .........cooovieiiiiiiiiiirereereeeeeeeeeeeeen, 25
Table 6-1 Configuration example for @ SPECIfIC YA .....ccccuvvrivireiiiieiiie e 30
Table 6-2 Inputs and outputs of the CONFIG MOdUIE .........uuviiirieiiiiiiiieieeieecccrreereeee e 31
Table 9-1 Important parameters of the existing conventional power plants .........cccceveeeeeeeeeennn. 59
Table 9-2 Yearly information for the studied SyStemM ........ccccvvevieeiiiiiiiiieeccccereeee e 60
Table 9-3 Optimal solutions from MATPLAN VS. WASP........iiiieiiieieeeeeeeeeeeeecccrrrrreeeeereeeeeeeeeens 60
Table 9-4 Time period division for renewable ENErgy.......cccovveeeeeeieiiiiiiiiiieeeeccccerreee e 61
Table 9-5 Characteristics of candidate renewable energy generators.......ccccocvvvvrvvveeeeeeneeeeeeennn. 62
Table 9-6 ELCC of candidate generators in different periods........cccccceeeeeeeeieeiccciiinereeeeeeeeeeeeeeen, 63
Table 9-7 Multiple locations of selected renewable energy SOUrces........cccoeevvvvrrrrrveereeeeeeeeeeenn. 66
Table 9-8 Cost structures (2017) of different types of solar panel .........ccceoeeeviiviveeeeeeiieeneeenn. 68

vii



1.0 Summary of Tasks Proposed and Accomplishments

This section summarizes project tasks based on the statement of project objective (SOPO) and the overall
accomplishments, as well as the success toward meeting the project technical requirements.

1.1 Tasks Proposed

This project was divided into three phases, where Phase 1 (September 2017-September 2018) involved all
the module development; Phase 2 (October 2018-March 2019) involved validation and software
enhancement; and Phase 3 (April 2019-September 2019) involved case studies for functionality tests and
result evaluation.

Figure 1-1 summarizes all tasks of this project, which is the excerpt from the SOPO as proposed by the
Virginia Tech team.

PHASE 1: Develop the proposed expansion planning tool

Task 1: Develop the LOAD-CALC module

The key LOAD-CALC capability is to convert the hourly load input into an equivalent load duration curve (ELDC)
seen by each possible generator for each study period. This can be derived by first, constructing the Load Duration
Curve (LDC) based on the hourly forecasted load input data.

Task 2: Develop the EXIST-TH and CANDI-TH modules

Under this task, both EXIST-TH and CANDI-TH modules will be developed. Both modules will take user inputs
about thermal and hydro units (e.g., capacity of existing power plants, fuel types, minimum and maximum
capacity, FOR and maintenance requirements) and generates output files that summarize characteristics of

these plants. While EXIST-TH focuses on existing power generating units, CANDI-TH focuses on candidates for
power system expansion during the planning horizon. These modules also generate constraints for thermal and
hydro units for use in the optimization module, such as: rating capacity of power plants that limit their generation
output, a minimum generation requirement that indicates, if a plant is in operation, it has to operate at least a
certain percentage of its installed capacity, etc.

Task 3: Develop the EXIST-RE and CANDI-RE modules

The EXIST-RE module will be developed takes user inputs about renewable energy units (e.g., the hourly output
data, either historical or forecasted, FOR and maintenance requirements). They generate output files that
summarize characteristics of existing renewable plants. While EXIST-RE focuses on existing renewable units,
CANDI-RE focuses on renewable candidates for power system expansion during the planning horizon. These
modules also generate constraints for renewable generating units for use in the optimization module, such as the
limit of their generation output, depending on historical/forecasted data for each period.

Task 4: Develop the CONFIG module

Under this task, the CONFIG module will be developed to translate additional system-related inputs to additional
constraints for the optimization module. These constrains are for example, the required reserve during each study
period; the annual emission cap; and the reliability requirement of the system (LOLP). With these constraints, it
allows the OPTIMIZE module to only consider allowable system configurations or possible expansion
configurations based on constraint inputs form a user.

Task 5. Develop the OPTIMIZE module
Under this task, the OPTIMIZE module will be developed that combines probabilistic and optimization techniques
to determine the optimal system expansion policy based on inputs defined in other modules. All economic




calculations are included, such as present-value calculations and escalation of fuel prices.

Task 6. Develop the ELCC module

The ELCC module is responsible to calculate ELCC of each existing and candidate power plants. This module will
determine the ELCC of a power plant by measuring the contribution of an individual generator to system capacity
with and without the generator of interest. This method can be explained as follows: first, take a note of the
original system installed capacity (MW) and LOLP from the OPTIMIZE module as benchmark values. Second,
remove the generator of interest and rerun the OPTIMIZE module with a new constraint to keep the original
LOLP. Then, take a note of the revised system installed capacity (MW). The difference between the benchmark
capacity and the revised system capacity is the ELCC of the generator in question. The module is rerun to obtain
ELCC of all power plants.

PHASE 2: Validate the proposed tool

Task 7. Validate the proposed tool with a well-known expansion planning software, like WASP

Under this task, we will compare the resulting optimal solution of the proposed tool with that of a well-known
expansion planning software, like WASP. This will allow us to verify the validity of the proposed tool for the
expansion planning with traditional power plants, like thermal and hydro. However, the model’s applicability to
integrate renewables will need another step (task 8) for validation.

Task 8. Validate the proposed tool based on uncertainty parameters in the forecast

Under this task, the team will develop several possible solutions based on the confidence intervals of solar/wind
forecasts while meeting all constraints. Solutions will be listed with confidence intervals explicitly stated to be
used by ISOs/RTOs and marketers depending on their risk appetite.

PHASE 3: Run a case study based on a real-world data

Task 9. Run a case study

Once the tool is validated, it will be run using field data to showcase its applicability in a real-world environment.
The team will have access to real-world data for our case studies from our industry partners, as indicated in the
letters of support.

Figure 1-1. Proposed tasks according to the SOPO

1.2 Accomplishments

Accomplishments are summarized by Task, as shown in the table below.

Table 1-1 Summary of accomplishments

Tasks Summary of accomplishments Details in
Task 1: Develop the LOAD- LOAD-CALC module was developed and tested individually Sections 3.0
CALC module with adopting LDC data.
Task 2: Develop the EXIST-TH | EXIST-TH and CANDI-TH sub-modules were developed and Section 4.0
and CANDI-TH modules combined with EXIST-RE and CANDI-RE respectively. and 5.0
Task 3: Develop the EXIST-RE | EXIST-RE and CANDI-RE sub-modules were developed and Section 4.0
and CANDI-RE modules combined with EXIST-TH and CANDI-TH respectively. and 5.0

Task 4: Develop the CONFIG CONFIG module was developed and verified individually with Sections 6.0

module outputs of CONGEN functionality of WASP.
Task 5. Develop the OPTIMIZE module was developed. Section 7.0
OPTIMIZE module




Task 6. Develop the ELCC ELCC module was developed. Section 8.0
module
Task 7. Validate the proposed Validation of the developed tool, MATPLAN, was performed by | Section 9.0
tool with a well-known comparison with the WASP package.
expansion planning software,
like WASP
Task 8. Validate the proposed Validation of the developed tool, MATPLAN, considering Section 5.0
tool based on uncertainty uncertainty and probabilistic model of renewable energy sources, | and 9.0
parameters in the forecast was performed.
Task 9. Run a case study Case studies were performed under different scenarios: Section 9.0
(1) low penetration rate of renewable energy sources,
(2) high penetration rate of renewable energy sources,
(3) multi-location of renewable energy sources, and
(4) different year-by-year cost structures of solar panels.
Task 14: Project Management * Quarterly progress reports were submitted every quarter. This
and Reporting (all Phases) * Peer review progresses were presented in June 2018 and June | document

2019.
* Final report was submitted in September 2019 (This report).




2.0 Introduction to MATPLAN

2.1 What is MATPLAN?

MATPLAN stands for MATlab and probability-based PLANning tool that was developed for resource
adequacy evaluation and production costing. MATPLAN was engineered to provide lightweight and
flexible modules to deal with generation expansion planning (GEP) problems with consideration of
renewable energy sources. MATPLAN offered: scalability, modularization, flexibility, interoperability, as
well as parallel computing capability. Built on the widely used MATLAB, MATPLAN’s source codes
are available for public access.

2.2 MATPLAN Key Features

MATPLAN offers the following key features:

a

Flexibility - MATPLAN can account for different types of thermal generator plants, as well as
the variable nature of renewable energy sources (both solar PV and wind farms). It combines
both probabilistic and optimization techniques to allow the determination of optimal system
expansion policy and is in contrast to the current practice that treats these variable sources as
negative loads. MATPLAN can also handle different input data formats, different cost structures
of renewable energy sources, different time-division manners, and multiple renewable locations.

Modularization - MATPLAN comprises six modules to reduce its computation complexity.
These modules can work either coordinately or independently to provide useful intermediate
results for expansion planning. This kind of modularization design allows users to reorganize
and modify the decoupled modules for their own implementation purpose.

Scalability —- MATPLAN can handle up to 8760 time-division intervals, thousands of generation
expansion planning configuration candidates and long-term planning time horizon (e.g., 15-30
years). If powered by its optional parallel computing capability, MATPLAN can handle even
larger case studies with a large number of existing power generating units and candidates and
longer-term planning horizon.

Source code available for public access - MATPLAN’s source codes — built on top of the
widely used MATLAB — have been made available for public access.

Parallel Computing Capability - MATPLAN provides an optional parallel computing version
that allows the users to leverage the MATLAB Parallel Computing Toolbox ™ for higher
computational efficiency and speed up the calculation process. By using this feature,
MATPLAN can handle larger-scale study cases without compromise for the running time.

Support from the Advisory Committee - MATPLAN was developed in consultation with an
advisory committee from the beginning of the project. MATPLAN advisory committee
comprised representatives from the following organizations: Policy and Economic Studies
MISO, Dominion Virginia Power (DOM), Utility Variable-generation Integration Group,
Operational Analytics NaturEner, and Renewable Energy Integration California ISO. See Figure
2-1.



& . . g
=3 Calif 1ISO NP
S alrornia O

UVIG
=

J§00minim

xTa
- =
N

Naturkner

Figure 2-1 Organizations represented by WASP advisory committee

2.3 Description of MATPLAN Modules

MATPLAN has been designed to perform power system expansion planning considering renewable
energy sources using a probability-based model. Its software architecture is modular and is similar to that
of a well-known generation expansion planning tool, Wien Automation System Planning (WASP). The
MATPLAN architecture is depicted in Figure 2-2, comprising six modules - LOAD-CALC, EXIST-GEN
(including EXIST-TH and EXIST-RE), CANDI-GEN (including CANDI-TH and CANDI-RE),
CONFIG, OPTIMIZE and ELCC. These modules when working together allow the user an ability to
consider renewable energy sources as options for expansion planning using a probability-based model.
LOAD-CALC collects electrical load information at the system level and builds equivalent load duration
curves. EXIST-GEN consists of two sub-modules, EXIST-TH and EXIST-RE, that model the
characteristics of existing conventional and renewable power plants, respectively. CANDI-GEN consists
of two sub-modules, CANDI-TH and CANDI-RE, that model the characteristics of candidate
conventional and renewable power plants, respectively. CONFIG generates all candidate configurations
(i.e., mix of power plants) with consideration of various constraints. OPTIMIZE generates the optimal
solution or the most cost-effective generation expansion plan. ELCC calculates capacity credit of each
scheduled conventional and renewable power plant. Their detailed functionalities are introduced
individually in subsequent Chapters.



Input Data
Hourly load

forecast for the
planning horizon;
study period.

Net ELDC for each
study period

RS

Candidate plant

characteristics

e.g., number of identical
units, min/max capacity,
heat rate, fuel, FOR,

maintenance req.

R

Existing plant

E_

Candidate plant
characteristics

1

e.g., number of identical
units, min/max capacity,
heat rate, fuel, FOR,

maintenance req.

Input Data
e.g., plant capacity,
hourly forecast data

of plant output, FOR,
maintenance req.

Input Data
e.g., plant capacity,
hourly forecast data
of plant output, FOR,
maintenance req.

Existing RE plant
characteristi

Additional
constraints

Input Data
e.g., min/max reserve
req., min/max
number of units,
required LOLP

Figure 2-2 MATPLAN architecture with different modules

2.4 Summary Description of MATPLAN Computer Code

MATPLAN consists of various computer files that are responsible for different functionalities. All of
these modules should run sequentially to obtain the optimal expansion planning configurations and ELCC
values. The successful implementation of selected modules may depend on the outputs of other modules
and user-defined input data specified in setting files. The overall relationship of MATPLAB computer
code files is depicted in Figure 2-3.



Auxiliary Files

Utility Function Files

_—
s

s

s

~
e \

~ =~ - - ‘

Module Files

=

calculateLOLP.m

]
------- —u
[ toap_cacm -4
o)
1 \ '
no
er 1y
calculateSolarProbabilities.m K :_
Iy,

1
1
LA
v T ,l':,,'
N
‘-—--l-\il’ - e
\ 1oAY js[ calculateWindProbabilities.m
\ ll , ll \“, RN
\‘ '/ Y 2N , ’l n
\ N S ",'\\
Xy iy /{ get_LDC.m k\ / AN
N ot 7 ~
Py N
H Xk’" J/ ,a[ getAcceptableGenAdditionRange.m ] P AN
7’ N
iy ;o L wCdamas ]
e I
! 'l, "( 7 !
{ K /"";'l—“'"—‘[ getCapacityAndProbability.m T I','
[ cowom ¥ i
1, / 1 o
N I - Script
}’ A ‘y—{ getEnergy.m ] K
-\ 1
yN TN [ : Class
’ l\\ e : 1!
L g \ . oy !
v PN { getFixGenTotalCapacities.m Y ! :] Function
s
1 \ 1
T~ A I
SRR i Input data
I \\~~~ i
[ N ‘[ getlO.m ]"
! RN B =——p Program flow
1 ~ N !
1 A 1
b —————————————————~ === -+ Dependency
{ getPeaklLoads.m } relationship

v
Figure 2-3 The overall relationship of MATPLAB computer code files



3.0 LOAD-CALC Module

The key LOAD-CALC capability is to convert the hourly load input into an equivalent load duration
curve (ELDC) seen by each possible generator for each study period. This can be derived by first,
constructing the Load Duration Curve (LDC) based on the hourly forecasted load input data.

3.1 Overview of LOAD-CALC Module

LOAD-CALC is the load input module that requires power demand during the planning horizon (e.g., 30
years) as the input. While WASP allows the maximum of 12 study periods in a year, the developed tool
allows up to 8,760 study periods per year (hourly simulation for the whole year). This enables the study to
be granular taking into account variations in renewable energy output. Forecasted load data from
commercially or publically available software can be used as an input. The major goal for the LOAD-
CALC module is to generate the equivalent load duration curve (ELDC) of an existing power system,
considering the forced outage of all generators, if any. Three types of inputs are needed to determine
ELDC: 1) original hourly load curve/data; 2) generator information such as thermal plant capacity and
forced outage rate (FOR); 3) generation profiles of wind or solar plants and penetration rate. Similar to
the LOADSY module in WASP, the LOAD-CALC module transforms the user inputs into the desired
data format, and generates system load profiles for future usage. The LOAD-CALC module has been
developed in MATLAB, called ‘LOAD_CALC.m’.

3.2 Inputs of LOAD-CALC Module

The LOAD-CALC module accepts user inputs in a JSON format. The inputs of LOAD-CALC module
have been designed to include:

* Planning start year

* Planning end year

* Peak load of each year

* One of the three types of data representing the system load duration curve

A user can specify the above information in the path of ‘root/projects/project 1/user_input/LOAD-
CALC.json’. An example of this file is demonstrated in Figure 3-1.



"start": [2020],
"end": [2035],

"peak": [6000, 6333, 6725.65, 7109.01, 7496.45, 7897.51, 8304.23,
8702.83, 9120.57, 9558.36, 10017.2, 10488, 10980.9, 11497, 12025.9, 12579.1],

"ldc_data": {
"o": {
"year"
"type":
"path":"
b
1": {
"year":
"type":
"path":"
b
2" {
"year":
"type":
"path":"
¥

: [2020],

[e],
projects/project_1/user_input/data/dom_2016.csv"

[2025],
[1],

projects/project_1/user_input/data/ldc_points.csv"

[2030],
[2],

projects/project_1/user_input/data/ldc_coefficients.csv

Figure 3-1 Example of input to the LOAD-CALC module

In the example above:

e “start” and “end” specify the start and end years of the planning horizon.
- In this example, the planning horizon is from 2020 to 2035.

¢ “peak” specifies the annual peak load during the planning horizon in MW.
- In this example, the annual peak load in years 2020, 2021,..., 2035 are 6000MW, 6333MW,...,
12,579.1MW, respectively.

*  “Idc_data” specifies load duration curves (LDC) during the planning horizon.
- In this example, three sets of “Idc_data” inputs are provided.

o ldc data(0) specifies the load of years 2020-2024 that are of input "

"path":"projects/project_1/user_input/data/dom_2016.csv"

o ldc_data(1) specifies the load of years 2025-2029 that are of input "

"path":"projects/project_1/user_input/data/ldc_points.csv"

o ldc_data(2) specifies the load of years 2030-2035 that are of input "

"path":"projects/project_1/user_input/data/ldc_coefficients.
- Notice that, the “Idc_data” can be provided according to a “year” range based on different

input types.

type": [0] and
type": [1] and

type": [2] and
csv”

- The “ldc_data” has three input types [0], [1] and [2], which can be explained as follows:
"type": [@] - indicates that a user provides ‘hourly load data’ as the input. The input file
must be in CSV file format, and its data have the dimension of 365*%24. Each row contains
the load data (in MW) of each day in a year (from Jan 1 to Dec 31), and each column contains
the load data (MW) of each hour (from 00:00 to 23:00) in a day. These input data (i.e.,
hourly load) is sorted in the LOAD-CALC module to create the inverted load duration curve.
In this case, the user is allowed to directly provide the hourly load profile as the input to the
software without having to preprocess the data.



"type": [1] - indicates that a user provides ‘points representation of load duration curve’ as
the input. This input is provided as a set of two-column data, specifying any number of
points on the LDC with X-axis as load and Y-axis as duration (in a CSV file). See Figure 3-
2(left). This is similar to the WASP standard “points” input for LDC, as shown in Figure 3-
2(right).

Type [1] input example:

i
Load Duration
0.4 1
0.4138 0.98
0.424 0.96
kit
0.9964 0.001
1 0

Figure 3-2 Type [1] input (left) and WASP standard “points” input for LDC (right)

"type": [2] - indicates that a user provides ‘coefficient representation of load duration
curve’ as the input. This input is provided as a single row of data with 6 elements (A0, Al,
A2, A3, A4 and A5), representing the 5™ order polynomial fitting of the load duration curve
(in a CSV file). The first column is the coefficient of the intercept and the last column is the
coefficient of the 5™ order component. See Figure 3-3(left). This is similar to the WASP
standard “coefficients” input to represent LDC using the 5™ order polynomial expression, as
shown in Figure 3-3(right).

Type [2] input example:

A0 Al A2 A3 A4 AS

1 3.6 16.6 -36.8 36 -12.8 oo o T ovoor Ponony

[For he year:| 199 |

Figure 3-3 Type [2] input (left) and WASP standard “coefficients” input for LDC (right)



The input file format is required to be in the CSV format. These raw input files can be anywhere in the
computer system as long as the paths are correctly given, however, it is a good practice to organize them
in the project data folder:

projects/project_1/user_input/data/

3.3 Outputs of LOAD-CALC Module

The developed LOAD-CALC module has been tested with publically available system load data (from
PJM metered load data (URL: http://www.pjm.com/markets-and-operations/ops-analysis/historical-load-
data.aspx). Figure 3-4 illustrates the normalized inverted load duration curves using Types [0], [1] and
[2] inputs.

12 , ‘ .

—Type 0 Input
—Type 1 Input
1 Type 2 Input
0.8
2
%
8 0.6
<]
o
0.4+ al
0.2+ 4
0\ L = Il
0 0.2 0.4 0.6 0.8 1 1.2

Normalized Load Ratio

Figure 3-4 Normalized inverted LDC plots from three types of user inputs

By executing the ‘LOAD-CALC.m’ module, the inverted normalized LDC data are ready to use in the
‘ldc_data’ variable.

Outputs of the LOAD-CALC module:
In addition to the inverted normalized LDC, outputs of the LOAD-CALC module include:

* Planning period: an array of all years in the planning horizon, e.g., [2020, 2021, ..., 2034, 2035].

* Annual peak load of each year in array

* LDC Year: the years when the type of LDC profile changes, e.g., [2020, 2025, 2030] in the
example above.

* LDC data: the X-Y points depicting the normalized inverted load duration curves, one for each
LDC year. This variable is a struct in MATLAB, according to the specified number of LDC
years.

The variables above are used in other modules, and are saved in structure variable system_info and a
“mat’ file under the path of ‘root/projects/project 1/project data/LOAD CALC.mat’. The variable
names are ‘study year’, ‘annual_load peak’, ‘Idc_year’ and ‘Idc_data’, respectively. The structure of
LDC data information stored in the structure variable system_info is depicted in Figure 3-5.

11



Ve

other system parameters J

s

|dc_ratio

system_info

Idc_year

Figure 3-5 The structure of LDC data information

fild

X axis data

Y axis data

Designed verification for user input in case of invalid configuration:

User input validation is also developed for checking the dimension mismatch. For example, the code
example below checks if the number of years in the planning horizon matches with the number of annual
load peak provided. When a dimension mismatch is detected, the program is suspended and an error
message is displayed.

if length(study_year) ~= length(annual_load_peak)

error('Year number and annual load peak configuration do not match!")
end

12



4.0 EXIST-GEN Module

EXIST-GEN module is responsible for collecting user-defined input data and various types of parameters
to characterize the existing power plants (both thermal plants and renewables).

4.1 Overview of EXIST-GEN Module

EXIST-GEN consists of two sub-modules, EXIST-TH and EXIST-RE, that model the characteristics of
existing conventional and renewable power plants. It requires the number of additions or retirements of
each type generator and the year of such changes. The characteristics of conventional generating units are
kept in the EXIST-TH sub-module. In the EXIST-RE sub-module, on the other hand, a renewable energy
unit is also defined with some parameters modified. For instance, a renewable energy unit usually has no
heat rate and zero fuel cost, as well as a different operation and maintenance (O&M) cost structure.

4.2 Input of EXIST-TH Submodule

Inputs of the EXIST-TH:
The inputs of EXIST-TH module have been designed to include:

* Generator type code

¢ Unit number of such generator type

* Parameters used to describe such generator type

* Existing addition and retirement plan for the planning horizon

A user can specify these input parameters in a JSON format file in the path of
‘root/projects/project 1/user_input/EXIST-GEN json’. An example of this file is demonstrated below in
Figure 4-1. These six different types of generators are from the WASP demonstration case study.

{"type": "thermal",
"code": "FLG1",
"unit number": 4,

"forced outage rate":10,

"capacity": [270, 270, 270, 270, 270, 270, 270, 270],

"para": [150, 270, 1, 3300, 2850, 10, 10, 56, 270, 600, 0, 4.06, 4.9, 1800,
2.5, 1.07,

"existing plan": {"number": [-1, -1], "year": [2003, 2014]}},

{"type": "thermal",
"code": "FLG2",
"unit number": 9,

"forced outage rate":8.9,

"capacity": [276, 276, 276, 276, 276, 276, 276, 276],

"para": [150, 276, 2, 2900, 2550, 10, .9, 56, 280, 495, 0, 1.91, 2.0,
1800, 2.5, 1.01,

"existing plan": {"number": [-1, -1, -1], "year": [2006, 2009, 2014]}},

(00]

{"type": "thermal",
"code": "FCOA",
"unit number": 1,



"forced outage rate":8.0,
"capacity": [580, 580, 580, 580, 580, 580, 580, 580],
"para": [400, 580, 3, 2800, 2300, 10, 8.0, 48, 600, 800, 0, 2.92, 5.0,

6000, 1.0, 2.0],

"existing plan": {"number": [1], "year": [1999]}},

{"type": "thermal",
"code": "FOIL",
"unit number": 7,

"forced outage rate":7.3,
"capacity": [145, 145, 145, 145, 145, 145, 145, 145],
"para": [80, 145, 4, 2450, 2150, 10, 7.3, 42, 140, 0, 833, 4.57, 1.6,

10000, 1.0, 3.01,

"existing plan": {"number": [-1, -1], "year": [2012, 2013]}},

{"type": "thermal",
"code": "F-GT",
"unit number": 4,

"forced outage rate":6.0,

"capacity": [50, 50, 50, 50, 50, 50, 50, 507,

"para": [50, 50, 5, 3300, 3300, O, 6.0, 42, 50, 420, 0, 8.35, 1.6, 10000,
.5, 0.57,

"existing plan": {"number": [-1], "year": [2009]}},

{"type": "thermal",
"code": "F-CC",
"unit number": 1,

"forced outage rate":15,

"capacity": [174, 174, 174, 174, 174, 174, 174, 1747,

"para": [87, 174, 6, 2048, 2048, 0, 15, 28, 180, 0, 1266, 2.1, 5.0, 11000,
.0, 0.57,

"existing plan": {"number": [1, 1], "year": [2000, 2001]},

}

Figure 4-1 Example of input to the EXIST-TH module

In the example above, the user specifies six types of generators. For each generator type, the following
information is specified:

e “code”: specifies the generator code, which can be any string. This example uses “FLG1”,
“FLG2”, “FCOA”, “FOIL”, “F-GT” and “F-CC” to represent different types of generators.

*  “unit number” specifies the total number of a specific generator type in the system;
* “para” specifies parameters describing the generator, as shown in Table 4-1. These parameters

are always follow the same order of sequence in variable matrix for keeping the physical
meaning.



Table 4-1 Parameters of thermal plants required for EXIST-TH

Plant's Names/Codes

Fuels' Types/Names

Number of units

Plant's features

Category Variable Example
. : . 200
Electricrelated Mml.mal operatm.g power of a umt.(MW)
Maximal generating power of a unit (MW) 580
Fuel costs ($/million kcals) 800
Cost-related Fixed O&M costs (in $/kW Month) 2.92
Variable O&M costs (in $/MWh) 5.00
Forced outage rate 8%
. o . . 10
Reliability-related Splemg reserve (/0. of unit capacity)
Maintenance class size (MW) 600
Scheduled maintenance days of a year 48
Heat rate at minimal operating level 2300
| (kcal/kWh)
Heat-related Average incremental heat rate (kcal/kWh) 2300
Heat value of the fuel used (kcal/kg) 6000
TN . 1
Polution-related Pollutant I (SO2) emls.s1o.r1 (% Welght of fuel)
Pollutant II (NOx) emission (% weight of fuel) 2

e “existing_plan” has two attributes: number and year, with a negative number representing a unit

retirement (for existing thermal power plants) and positive number representing a power plant
addition (for the planned addition of thermal power plants). In the example, two out of four

‘FLG1’ units are retired in years 2023 and 2024.

Tested the module with data from the WASP demo case study:

The generator information in the WASP demonstration case study are used for testing the developed

EXIST-TH module. Inputs are provided in the ‘EXIST-GEN json’ file shown in Figure 4-1. By executing

the ‘EXIST GEN.m’ module, all 26 generators’ capacities and forced outage rates are read, as shown in

Figures 4-2 and 4-3, respectively.



600

500
= 400
=
=3
>
Z 300
©
Q.
8
200
100
0
0 5 10 15 20 25
Generators
Figure 4-2 Capacity of all 26 generators in the example
0.16
0141 .

0.12

o
N

Forced Outage Rate
o o
o o
[} [e5]

0.04

0 5 10 15 20 25
Generators

Figure 4-3 Forced outage rate of all 26 generators in the example

4.2 Input of EXIST-RE submodule

Inputs of the EXIST-RE submodule:
The inputs of the EXIST-RE module for a wind farm include:

* Generator type code

* Existing generating capacity

*  Wind speeds (i.e., cut-in speed, rated wind speed and cut-off speed)
¢ State number (to be explained below)

¢ Feature (to be explained below)

* Existing addition and retirement plan for the planning horizon

The inputs of the EXIST-RE module for a solar farm include:

16



* Generator type code

* Existing generating capacity

¢ State number (to be explained below)

¢ Feature (to be explained below)

* Existing addition and retirement plan for the planning horizon

A user can specify this information in a JSON format file in the path of

‘root/projects/project_1/user_input/EXIST-GEN.json’, following the similar format of EXIST-TH

submodule. An example is demonstrated in Figure 4-4, exemplify the case with two wind farms and one

solar generator.

"wind": {
"O":
"code": "WIND1",
"capacity": [500],
"speed": [3.5, 12.5, 30],
"state number": [10],
"feature": {
"type": [0],
"path":
"projects/project 1/user input/data/wind examplel 5min.csv"
1y
"existing plan": {
"capacity": [100],
"year": [2025]
}
b
"ive
"code": "WIND2",
"capacity": [250],
"speed": [3.5, 12.5, 30],

"state number": [10],
"feature": {
"type": [1]

"ksigma": [1.87393780943606 7.38164769483493]
11,
"existing plan": {
"number": [50],
"year": [2030]
}
}
}y
"solar": {
"O": |
"code": "SOLARL",
"capacity": [500],
"state number": [10],
"feature":{
"type": [0],
"path":
"projects/project 1l/user input/data/solar examplel 5min.csv"
11,

"existing plan": {



"number": [1],
"year": [2025]
}

Figure 4-4 Example of input to the EXIST-RE module

In the example above, the user specifies two types of wind power plants “0” and “1”’; and one type of
solar power plant “0”. This can be explained as follows:

For wind farms:

“code”: specifies a generator code, which can be any string. This example uses “WIND1” and
“WIND2”.

“capacity”: specifies the capacity of each generator (in MW). In this example, the capacity of
“WIND1” is 500 MW and that of “WIND2” is 250MW. Note that: compared with thermal power
plants, renewable energy units (i.e., solar panels and wind turbines) have much smaller generating
capacity. Hence, instead of treading them as individual units like in the case of thermal power
plants, these renewable sources are treated at the aggregated level (i.e., wind farm and solar
farm). Therefore, renewable power plants are specified using the site capacity (MW) instead of
the number of generating units as in the thermal plants configuration.

“speed”: specifies the cut-in speed, rated wind speed and cut-off speed (m/s). In the above
example, these speeds of “WIND1” are 3.5 m/s, 12.5 m/s and 30 m/s, respectively.

“state_number”: specifies the number of intervals according to the wind/solar farm capacity. The
larger state number can be used to represent larger wind/solar farm capacity. The larger the state
number, the more accurate it is in the follow-on analysis, but with more time-consuming
computation.

“feature”: specifies the input used to describe the renewable energy probabilistic distribution
feature. Two input types are acceptable to describe output characteristics of wind/solar power
plants. They are explained in detail below.

"type": [@] - means the solar/wind output is provided as time-series fixed-interval data (e.g.
hourly data or 5-min interval data). The path to the data input file is required. The input file must
be in the CSV file format.

- For wind, the data have the dimension of N*2; where N is the data size depending on the
interval data used. For example, N=8,760 if hourly data are provided; N=105,120 if 5-
minute interval data are used. The first column is the wind speed and the second column
is the corresponding power generation.

- For solar, the data only need to have a single column for the power generation. This data
set has the dimension of N*1.

"type": [1] - means the wind output is provided as a probability function.
- For wind, the Ksi (&) and Sigma ( o) parameters representing the Weibull distribution

of the wind speed data are required.



- Type [1] cannot be used for solar generation as no widely accepted probability
distribution exists.

* “existing_plan”: specifies the capacity of generation and the year for installation. For example,
this example specifies “WIND1”, a 5S00MW wind farm, has additional 100 MW wind generation
capacity installed in the year of 2025 according to some existing plan.

4.3 Output of EXIST-TH and EXIST-RE Submodules

Outputs of the EXIST-TH and EXIST-RE submodules are combined and unified as outputs of the
EXIST GEN module, which include:

* Generation capacity: an array containing the capacity of all generators in the system.

* Availability rate: an array containing the availability rates of all generators (including both
thermal and renewable generators) in the system.

* Generation configuration information: generator characteristics and various cost parameters

The variables above are used in other modules (e.g., OPTIMIZE, ELCC), and are saved in a ‘.mat’ file
under the path of 7root/projects/project 1/project_data/EXIST-GEN.mat’ for the EXIST-GEN module.
The output information is also stored in the structure variable system_info as existing gen_info and
existing gen_conf, which are depicted in Figure 4-5. The variable names are ‘capacities’ and

‘availability rate’. Availability rates are actually “one minus outage rate” for thermal generators, and
availability probability for renewable energy sources. The thermal generator characterized by the outage
rate, in this way, is equivalent to two-states representation similar to multi-states representation renewable
energy sources. The detailed analysis of multi-states representation and generator probabilistic model is
introduced in Chapter 5.0 CANDI-GEN Module.

other system parameters J

capacities

yearly_number_of_units

existing_gen_info } L

availability_rate

type
pRLAJN
code
P
unit_number

existing_gen_conf J

para

retirement/addition

Figure 4-5 The output structure of existing generator information

19



5.0 CANDI-GEN Module

CANDI-GEN module is responsible for collecting user-defined input data and various types of
parameters to characterize the candidate power plants (both thermal plants and renewables).

5.1 Overview of CANDI-GEN Module

Similar to the EXIST-GEN module, CANDI-GEN consists of two sub-modules, CANDI-TH and
CANDI-RE, that model the characteristics of candidate conventional and renewable power plants,
respectively. Reserve margin requirements are also specified in this module through a JSON format file,
CANDI-GEN json. It is noteworthy that each wind/solar farm is treated as one single giant unit because
their power production variation is fully correlated. The consideration of renewable energy sources as
normal candidate generators with probabilistic modeling instead of treating the renewable generator
output as negative loads are also highlights of this project.

5.2 Multi-state Representation for Renewable Power Plants

In order to help understanding how the renewable energy sources are modeled, we introduce a commonly
used multi-state representation method that can take into account the variable nature of renewable energy
sources. And in this way, these renewable energy sources can be treated as normal generation candidates
in a power system expansion planning. This is unlike considering these variable resources as negative
loads as being used in the current practice. Previously, when calculating the loss of load probability
(LOLP) and expected energy not supplied (EENS) of a system with renewable energy, many methods
treat renewable energy generation as negative loads. However, the negative load approach requires a
time-series annual system load profile, as well as an annual renewable energy generation profile. In case
of the absence of such data, the analysis cannot be conducted. Therefore, a probabilistic method is
developed to represent renewable energy generation in the system.

Based on the wind power generation input file, the developed tool derives the relationship between wind
power generation and wind speed - as shown in Figure 5-1. In the figure, P__represents for the maximum

max

generation of the wind farm (in MW); and V_, is the minimum wind speed (m/s) to generate P, __ .

20



Wind
Speed

Cut-out
Speed

Vminf——————————

|
|
|
|
v2 | |
vi g |
& '
R '
| |
| | |
| | |
Cut-in H [ ]
Speed | | | Wind Power
} | | Generated

»
»

P1 P2 Pmax

Figure 5-1 Inverted V-P Chart

Considering the Weibull distribution, the probability of wind power generation between P1 and P2 can be
calculated as:

Pr(pE(R,B)) =Pr(V €V, V) =F,()-F,(V)=e 7 -e ° (1)

F, (x)is the Cumulative Distribution Function (CDF) of the Weibull distribution; & is the shape
parameter; and o is the scale parameter.

_(1).5
F(x)=l-e ° (2)
Assuming a mapping function }' = g(p) maps the power generation in the range of [0, P ] to the
corresponding wind speed.
Then, (1) can be written as:
_ @)5 _(LPZ))S
Pr(pER,B)=¢ ¢ -e © 3)

Assume P =P, - APand AP is a small step, the probability that the wind generation is around B, can be

calculated using the following equation:
_ g(Pl))g _(g(Pl+AP))§

Pr(p=B)=e ° -e ¢ “4)

For fossil-fuel generators, to calculate Equivalent Load Duration Curve (ELDC), the following formula is
used:

f{)=pfTx)+q,f " (x-c) (5)

21



For wind power plants, the power range [0, P, ]can be divided into N equal steps, each step size is AP .
This relationship can be expressed in (6). Typically, N can be set at 10 or 20, depending on the size of the
renewable power plant.

P =N-AP (6)

For k as specified, there is:
_(g(lvAP))_; _(g(k-AP+AP) &

Pri(p=~k-AP)=e ©° -e © kE[LN -1] (7

Otherwise, when k =0 and k = N, there are:
Vc E Vm/—in E

_( ut—out \& —(

or V > I/cul out )) F ( cut— m) + 1 ( cut— out) 7 + 1 —-e 7 (8)

Pr(p=0)=Pr(V <V,

cut—in

V. 3
mm ) _( cut—out ).,
Pr(p max ) Pr(V e( min ° Cul out )) F ( cut —out ) Ev( ) e —-e 7 (9)

As aresult, to calculate the ELDC considering the variation of wind generation, the following equation
can be used:

f1x)= ZPr(p ~k-Ap)- [ (x = (P — k- Ap))

=Pi(p=0)f"(x-P,)+Pi(p=PF,) (%) (10)
(g(k AP) (g(k AP+AP) £

Z(e - T ) ST - (N =K)-Ap))

In summary, variables in the following table are needed to represent wind power generation in the
developed tool, which are provided by the user in the ‘EXIST-GEN.json’ and ‘CANDI-GEN json’ files.

Table 5-1 Information needed to model wind generation, specified as the inputs in the ‘CANDI-
GEN.json’ files

Variable Name Description
P Wind farm capacity (MW)
max

cht —in? Vmin i I/cut—oul‘ Wind speeds (m/s)

N State number

- "type": [0] feature: the wind speed-power profile, specified as a path to a
CSV file (e.g., in the above example, the path is
"projects/project_1/user_input/data/wind_examplel_5min.csv").
This wind speed-power profile is used to derive the mapping function (i.e.,
V = g(p)) representing the relationship between the wind speed and wind
power output profile.

g, o "type": [1] feature: shape and scale parameters for Weibull distribution,
respectively

22



For solar power plants, the power generation probability is represented by the statistical frequency as
shown in (11). Since the volume of solar generation data is large enough (at least 8760 data points for
annual hourly data, and even more data points if the data set is in higher granularity, e.g., in 1-min
intervals), it is reasonable to use occurrence frequency to represent probability.

Number of data points with power between (k - AP) and (k- AP + AP)

Pr(p=k-AP)=
(P ) Number of all data points

kE[0,N -1](11)

This model was tested and compared with the negative load approach in the case studies.

5.3 Input of CANDI-TH Submodule

The inputs of CANDI-TH submodule have been designed to include:

* Generator type code

¢ Unit number of such generator type

* Parameters used to describe such generator type

* Existing addition and retirement plan for the planning horizon

A user can specify these input parameters in a JSON format file in the path of
‘root/projects/project _1/user_input/CANDI-GEN .json’. An example of this file is demonstrated below in
Figure 5-2.

"reserve margins": {
"margins":[[-50,50], [20,40]1,
"year":[1998,2004]

b

"generators": [
{
"type": "thermal",
"code": "v-CC",

"depreciable capital cost": [318, 477, 11.92, 25, 3],
"forced outage rate":10,
"capacity": [600, 600, 600, 600, 600, 600, 600, 600],
"para":[300, 600, 6, 1950, 1950, O, 10, 28, 600, O, 1200, 2.1, 4.0,
11000, 0.0, 0.57,
"plans": {
"number": [[0,2],([1,2], [2,2]],
"year": [2001, 2003, 2004]
}
b

{

"code": "VLG1",

"type": "thermal",

"depreciable capital cost": [594, 891, 19.2, 25, 5],

"forced outage rate":10,

"capacity": [280, 280, 280, 280, 280, 280, 280, 280],

"para":[150, 280, 1, 3100, 2700, 10, 10, 56, 280, 710, 0, 2.7, 6.0,
1800, 2.5, 1.01,

"plans": {

23



Figure 5-2 Example of input to the CANDI-TH submodule

In the example above, the user specifies five types of generators. For each generator type, the following
information is specified:

* “code”: specifies the generator code, which can be any string. This example uses “VCC”,
“VLG17”, “VLG2”, “VCOA”, “NUCL” to represent different types of generators.

*  “type” specifies the type of candidate generators, thermal or renewable;




* “depreciable capital cost” specifies the construction cost and related information, such as plant

life, depreciation rate and construction years.

* “forced outage rate” specifies the forced outage rate.

* “capacity” specifies the generator unit capacity in different time periods.

* “para” specifies parameters describing the generator, as shown in Table 5-2. These parameters
are always following the same order of sequence in variable matrix for keeping the physical

meaning.

Table 5-2 Parameters of thermal plants required for CANDI-TH

Plant's Names/Codes

Fuels' Types/Names

Number of units

Plant's features

Pollutant II (NOx) emission (% weight of fuel)

Category Variable Example
Electric-related Minimal operating power of a unit (MW) 200
Maximal generating power of a unit (MW) 300
Fuel costs ($/million kcals) 600
Cost-related Fixed O&M costs (in $/kW Month) 2.42
Variable O&M costs (in $/MWh) 4.00
Forced outage rate 12%
Reliability-related Spinning reserve (% of unit capacity) 10
Maintenance class size (MW) 300
Scheduled maintenance days of a year 53
Heat rate at minimal operating level 2300
(kcal/kWh)
Heat-related Average incremental heat rate (kcal/kWh) 2100
Heat value of the fuel used (kcal/kg) 5800
Polution-related Pollutant I (SO2) emission (% weight of fuel) ;

¢ “plans” has two attributes: number and year, which are used to constraint the minimal and

maximal number of generator units allowed to be installed in the specified year. Some years that
are not indicated follows the previous ones.

5.4 Input of CANDI-RE Submodule

The inputs of the CANDI-RE submodule for a wind farm include:

25



Generator type code

Generating maximum capacity

Wind speeds (i.e., cut-in speed, rated wind speed and cut-off speed)
Characteristic generation parameters

State number (to be explained below)

Feature (to be explained below)

Depreciable capital cost

Yearly specified construction cost (to be explained below)

Plan tunnels (to be explained below)

The inputs of the CANDI-RE submodule for a solar farm include:

Generator type code

Generating maximum capacity

Characteristic generation parameters

State number (to be explained below)

Feature (to be explained below)

Depreciable capital cost

Yearly specified construction cost (to be explained below)
Plan tunnels (to be explained below)

A user can specify this information in a JSON format file in the path of
‘root/projects/project_1/user_input/CANDI-GEN.json’, following the similar format of CANDI-TH
submodule. An example is demonstrated in Figure 5-3, exemplify the case with one wind farm and one
solar generator.

880,

{
"code": "WIND CANDI 1",

"type": "wind",
"capacity": [30,30,30,30,30,30,30,301,
"para":[30, 30, O, O, O, O, 5, 40, 50, 0, 0, 3.67, 4.0, 0, O, 0],
"depreciable capital cost": [1094, 0, 26.0, 20, 5],
"construction cost yearly specific": [1094, 1080, 1000, 980, 900,
870, 850, 840, 820, 800, 780, 770, 760, 740, 720, 700, 690, 680, 600],
"forced outage rate":5,
"speed": [3.5, 12.5, 30],
"state number": [10],
"plans": {
"number": [[1,0],(2,0],(4,01,[7,01,[9,011,
"year": [2001,2006,2010,2013,2016]
b
"feature": {
"type": [0],
"path":

"projects/project 1/user input/data/wind2/winda 2007 5min.csv"

}
}y
{
"type": "solar",
"code": "SOLAR CANDI 1",
"capacity": [50,50,50,50,50,50,50,50],
"para":[50, 50, O, O, O, O, O, O, 50, O, O, O, O, O, O, O],

26



"depreciable capital cost": [1400, 0, 26.0, 25, 5],
"construction cost yearly specific": [1400, 1280, 1110, 1080, 990,
890, 870, 850, 840, 820, 800, 780, 770, 750, 740, 720, 700, 696, 680, 650],

"forced outage rate":0,
"state number": [10],
"plans": {

"number": [[1,0],[2,0],[5,0],[8,011,

"year": [1999,2003,2007,2015]

b

"feature": {
"type": [0],
"path":
"projects/project 1/user input/data/solarl/solar 5min 1.csv"
}
}
Figure 5-3 Example of input to the CANDI-RE submodule

In the example above, the user specifies two types of wind power plants “0”’; and one type of solar power
plant “0”. This can be explained as follows:

For wind or solar farms:

*  “code”: specifies a generator code, which can be any string. This example uses
“WIND_CANDI_1” and “SOLAR_CANDI 1”.

*  “capacity”: specifies the maximum capacity of each generator (in MW) in different time periods.

¢ “speed” (only for wind): specifies the cut-in speed, rated wind speed and cut-off speed (m/s). In
the above example, these speeds of “WIND CANDI 1 are 3.5 m/s, 12.5 m/s and 30 m/s,
respectively.

*  “state_number”: specifies the number of intervals according to the wind/solar farm capacity. The
larger state number can be used to represent larger wind/solar farm capacity. The larger the state
number, the more accurate it is in the follow-on analysis, but with more time-consuming
computation.

*  “feature”: specifies the input used to describe the renewable energy probabilistic distribution
feature. Two input types are acceptable to describe output characteristics of wind/solar power
plants. They are explained in detail below.

"type": [@] - means the solar/wind output is provided as time-series fixed-interval data (e.g.
hourly data or 5-min interval data). The path to the data input file is required. The input file must
be in the CSV file format.

- For wind, the data have the dimension of N*2; where N is the data size depending on the
interval data used. For example, N=8,760 if hourly data are provided; N=105,120 if 5-
minute interval data are used. The first column is the wind speed and the second column
is the corresponding power generation.

- For solar, the data only need to have a single column for the power generation. This data
set has the dimension of N*1.

"type": [1] - means the wind output is provided as a probability function.
- For wind, the Ksi (&) and Sigma ( o) parameters representing the Weibull distribution

of the wind speed data are required.

27



- Type [1] cannot be used for solar generation as no widely accepted probability
distribution exists.

e “plans” has two attributes: number and year, which are used to constraint the minimal and
maximal number of generator units allowed to be installed in the specified year. Some years that
are not indicated follows the previous ones.

*  “depreciable capital cost” specifies the construction related information, such as plant life,
depreciation rate and construction years.

*  “forced outage rate” specifies the forced outage rate.
*  “capacity” specifies the generator unit capacity in different time periods.

*  “para” specifies parameters describing the generator, as shown in Table 5-2. These parameters
are always following the same order of sequence in variable matrix for keeping the physical
meaning.

*  “construction_cost yearly specific” specifies the year-by-year construction cost of renewable
energy sources since this cost usually keep decreasing rapidly in the future

5.5 Output of CANDI-TH and CANDI-RE Submodules

Outputs of the CANDI-TH and CANDI-RE submodules are combined and unified as outputs of the
CANDI_GEN module, which include:

* Generation capacity: an array containing the capacity of all generators in the system.

* Availability rate: an array containing the availability rates of all generators (including both
thermal and renewable generators) in the system.

* Generation configuration information: reserve margin information, generator characteristics and
various cost parameters

The variables above are used in other modules (e.g., CONFIG, OPTIMIZE, ELCC), and are saved in a
“mat’ file under the path of ‘root/projects/project 1/project data/CANDI-GEN.mat’ for the CANDI-
GEN module. The output information is also stored in the structure variable system_info as
candi_gen_info and candi_gen_conf, which are depicted in Figure 5-4. The variable names are
‘capacities’ and ‘availability rate’. Availability rates are actually “one minus outage rate” for thermal
generators, and availability probability for renewable energy sources. The candidate thermal generator
characterized by the outage rate, in this way, is equivalent to two-states representation similar to multi-
states representation renewable energy sources. This capacity availability information, together with
reserve margin requirement information, is used by CONFIG module to produce the available candidate
configurations of generation expansion planning. The cost information and characteristic parameters are
used by OPTIMIZE module to calculate the total cost and cash flow of the potential candidate
configuration of specific expansion plans. This is explained in Chapter 7.

28



other system parameters J

capacities

candi_gen_info availability_rate

reserve_ma rgins

type
Pl

candi_gen_conf code

depreciable_capital_cost

generators [
maximum capacity

h.

para
N—

plans

Figure 5-4 The output structure of candidate generator information

29



6.0 CONFIG Module

CONFIG is the expansion configuration module that generates additional constraints for the optimization
problem in the OPTIMIZE module. It narrows down possible expansion configurations based on the
constraint inputs form a user. Required input data include, for example, minimum/maximum reserve
requirements, minimum/maximum number of units of a particular expansion candidate that can be
installed in a given year, and the acceptable LOLP in the given study period.

6.1 Overview of CONFIG Module

The CONFIG module is used to generate all valid configurations over the planning years. For a specific
year, a configuration shows the cumulative number of installed candidate plants of each kind in this year
since the start. Error! Reference source not found. demonstrates an example of a configuration in a
specific year. in this year, the accumulative number of Generator G1 is four starting from the first year of
the planning period.

Table 6-1 Configuration example for a specific year

Candidate Generator Gl G2 G3 G4
Number 4 5 3 2

In general, configurations have the following features:

1) Evolving: Configurations are related to years, and each configuration must be able to evolve from at
least one configuration of the previous year. Error! Reference source not found.-1 shows an
example of configurations in Year k and k+1. The evolving feature of configuration gives them a
parent-child relationship: ‘Config 1@k’ is the parent configuration of ‘Config 1@(k+1)’ and ‘Config
2@(k+1)’. In addition, a configuration can have multiple different parent configurations and even
itself as a parent configuration, as shown in Error! Reference source not found.-1. The root
configuration ‘Config 1@0’ is always a 1-by-N vector, with N representing the total number of
generators.

Config 1@k Config 2@k
(0010) (0001)

NN

Config 1@(k+1)
(1010)

Config 2@(k+1)
(0011)

Config 3@(k+1)
(0001)

30



Config 1@k Config 2@k

(0010) (0001)
Config 1@(k+1) Config 2@(k+1) Config 3@(k+1)
(1010) (0011) (0001)

Figure 6-1 Example of configuration evolution

2) Cumulative: The number of each generation unit in a configuration represents how many such unit
has been built since the first year of the planning period. As a result, the number can only be equal or
larger than its parent configuration in the previous year. For example, (G1, G2, G3,G4)=(111 0)
might be a possible child configuration of ‘Config 1@(k+1)’ while (G1, G2, G3,G4)=(0110)
cannot be since the number of Generator G1 is decreasing.

In addition to these features, there are also other requirements for a configuration to be valid (See Table
6-2). Configurations that satisfied the system reserve requirement are called valid configuration. All
invalid configurations are discarded. In summary, the functionality of the CONFIG module is to generate
valid configurations of all years during the planning period.

6.2 Inputs of CONFIG Module

The inputs and outputs of the CONFIG module are briefly summarized in Error! Reference source not
found..

Table 6-2 Inputs and outputs of the CONFIG module

Inputs Outputs
1) Reserve requirements Valid configurations in a well-organized data structure
2) Minimum number of units installation that can be conveniently accessed by the following
3) Tunnel width of units installation modules.

Since configuration is related to the installation of candidate generators, it makes sense to put all required
inputs in the CANDI-GEN.json configuration file.

e Input I: Reserve requirements

System generation reserve are specified by two numbers: lower bound and upper bound. If the generation
reserve is lower than the lower bound, the system reliability is jeopardized due to generation capacity

31



shortage; on the other hand, if it is over the upper bound, unnecessary asset investment incurs. As a result,
at each year the total generation capacity from existing generators and candidate generators should fall
between these boundaries.

In the CANDI-GEN json, the reserve requirement is specified by the key ‘reserve _margins’ with two key-
value pairs as the contents: they are ‘margins’ and ‘year’, as shown in Figure 6-2. The values for
‘margins’ and ‘year’ should have the same length. In the example, it shows that the upper and lower
bound of reserve margin is 15(%) and 50(%) since year 1998. This margin remains the same for the
following years until new change specified: starting in 2004, the margin should be within 20(%) and
40(%).

"reserve_margins":{
"margins":[[15,50],[20,40]],
"year":[1998,2004]

Figure 6-2 Configuration of system reserve margin in the CANDI-GEN.json

e Input 2: Minimum and maximum number of units installation

Human experts can specify the range of generators’ number every year: for a specific type of generator,
the number should fall within certain range. The ranges can be changed in the candidate generators’
configuration file, with the key name ‘plans’ in the candidate generator’s hash map data structure. This
module inherits a feature from WASP, so most of the users are familiar: the range is specified as
minimum number of units and the tunnel width, which refers to how many more units can be added to the
minimum number.

For instance, 6-3 shows an example of one candidate thermal generator. For this generator, according to
the user defined configuration, the number should be between [0, 2] in the year 2001 and 2002; starting
2003, there should be at least one unit of this generator and the maximum number can be 3; starting in
2004, there should be at least two units and can reach up to 4 units, this remains the same till the end of
the planning period. Before 2001, since there is no specification, it is assumed [0, 0] in place, that means
this generator is unable to be installed prior to 2001

"type": "thermal",
"code": "V-CC",

"para":[300, 600, 6, 1950, 1950, 0, 10, 28, 600, 0, 1200, 2.1, 4.0, 11000, 0.0, 0.5],
"plans":{

“number”: [[0,2],[1,2], [2,2]],

"year": [2001, 2003, 2004]
¥

Figure 6-3 Configuration of an example candidate generator in the CANDI-GEN json

32



6.3 Outputs of CONFIG Module

The output of the CONFIG module is an indexed matrix that stores all valid configurations over the
planning period in the variable CT.pStore (CT is an instantization of class ConfigurationTree). Some
examples of generated configuration candidates are depicted in Figure 6-4. Each column is corresponding
to a specific generator type. These configuration candidates with indexes also form a tree-like structure
that contains all possible system evolution paths, which is evaluated later to identify the optimal plan. In
this fashion, the CONFIG module does not only generate the individual configuration candidate (e.g., 4 3
3 6 1) but also the evolution relationship of these configuration candidates through HaspMap and a sparse
connection matrix. This kind of information is also stored in the instantization variable of class
ConfigurationTree as shown in Figure 6-5.

CT.pStore
1 2 3 4 5
79 4 3 3 6 1
80 4 3 1 6 1
81 4 3 4 6 1
82 4 3 2 6 2
83 4 3 3 6 2
84 4 3 4 6 2
85 4 3 4 7 1
86 4 3 4 6 2
87 4 3 4 7 2
88 4 3 2 7 2
89 4 3 3 7 2
90 4 4 4 8 1
91 4 3 5 8 1
92 4 4 5 8 1
93 4 4 4 7 2
94 4 3 5 7 2
95 4 4 5 7 2
96 4 3 4 8 2
97 4 4 4 8 2
98 4 3 5 8 2
99 4 4 5 8 2
100 4 3 3 8 2

Figure 6-4 Screen capture of generated configuration candidates index 79-100

33



-~

other auxiliary information ]

-

configuration
pStore index

ConfigurationTree

indexMap

connections

I

yearlyConfigurationsMap J

-

Figure 6-5 The output structure of configuration candidate information

6.4 Configuration Tree Data Structure

In order to keep the configuration candidate evolution information, all the valid generation expansion
planning configurations candidates are kept connected and stored in a tree-like data structure. We do care
about this evolution relationship because the path of evolution determine the different newly construction
cost involved in the different generation expansion plans. This custom tree data structure is defined to
hold all the permutations of configurations for each year and indicate their evolution relationship (i.e.,
parent configuration and child configuration connections). The basic structure of the configuration tree is
presented as shown in Figure 6-6.

X X
-® © &

Yearn

Figure 6-6 Tree data structure of configurations

34



For each year, starting the first year, we need to generate a set of valid configurations that can be reached
from each configuration in the previous year, called the parent configuration. Valid configurations are
those configurations which meet the reserve margin for that year, as previously discussed.

The basic class definition of our configuration tree data-structure is as follows:

classdef ConfigurationTree < handle

properties
pStore
indexMap
yearlyConfigurationsMap
totalYears
totalCandiGenerators

end

methods (Access = public)
function obj = ConfigurationTree (studyYear,totalCandiGenerators)

%$constructor

end

function obj = addConfiguration (obj, year,parentIndex,configuration)
%add a new configuration to the tree

end

function obj = addConfigurationList (obj,year,parentIndex,configurationList)
%generalization of addConfiguration to add a list of
configurations
end
end
methods (Access = protected)
function addChild (obj,parentIndex,childIndex)
%set a specific configuration as a child to a parent config
end
end
end

Figure 6-7 Class of configuration tree structure in MATLAB code

Each of the member variables and the functions are explained below:

pStore
type: 2-d numeric matrix
size: NxC (N = number of nodes in the tree, C = number of candidate generators)

It is a 2-D matrix to hold all of the configurations (nodes) in the tree. Each row is a new configuration,
and the columns is for number of units of different candidate generators. A typical value of pStore might
look like this:

Which means, there are three configurations in total at the configuration tree. The first configuration, is 0,
0, 0, 0, 0. Which means, all five candidate generators are not included in this configuration. The second
configuration is 2, 2, 0, 1, 0. Which means, 2 of the first, 2 of the second, and 1 of the fourth candidate
generator are included in this configuration.

35



indexMap

type: hash-map

size: N (equal to number of unique yearly configurations)
key: string, configuration + year

value: int, index of the configuration in pStore

It is a hash map linking a particular configuration to its index in the pStore. A hash map of configuration
is needed so that duplicate configurations aren’t added to the configuration tree. Every time a new
configuration is generated for a particular year, a test is done to check if that configuration already exists
in indexMap, in which case, it is considered a duplicate and is not added to pStore. Instead, it’s index at
pStore is retrieved from indexMap, and that configuration is marked as a child of the configuration for
which new configurations was being generated. Since configurations need to be unique for a given year
only, the year number is appended to the configuration vector and converted to a string before adding to
indexMap as a key.

yearlyConfigurationMap

type: hash-map

size: total number of study years

key: string, year

value: list of int, indices of the configurations in pStore for that year

It is a hash map to store and retrieve all the valid configurations for each year.

connections
type: matrix
size: NxN

This is the adjacency matrix to store the parent-child relationships of all the configuration nodes in the
tree. It’s size is equal to the total nodes in the configuration tree.

totalYears
type: int

Stores the total simulation years

totalCandiGenerators
type: int

Stores the total number of candidate generators.

Methods including:

ConfigurationTree (studyYear, totalCandiGenerators)
Input:
studyYear: list of int, the list contigious years to conduct the study
totalCandiGenerators: int, total number of candidate generators

Output:
obj: A new configuration tree object, with the root configuration

36



This is the constructor method to initialize an empty configuration tree. It takes in studyYear, which is the
list of study years, and totalCandiGenerators which is the total number of candidate generators. It then
places the first configuration, which is just a zero vector as the root of the configuration tree.

addConfiguration (year,parentIndex, configuration)
Input:
year: int, the year for which configuration is being added
parentIndex: int, the index of the parent configuration in pStore
configuration: vector, the configuration vector (1xC)

Output:
obj: Modified configuration tree object, with the new configuration added

All configuration (except the root, which is automatically created by the constructor) needs to have a
parent configuration from which it is derived. This function allows to add a configuration to the
configuration tree, as a child of a certain existing configuration. If a configuration identical to the
configuration being added alreay exists for the same year, no new configuration is added to the
pStore. Instead, the existing duplicate configuration is marked as the child of the parentIndex
configuration.

addConfigurationlList (year,parentIndex, configurationList)
Input:
year: int, the year for which configuration is being added
parentIndex: int, the index of the parent configuration in pStore
configurationList: matrix of T configurations (TxC)

Output:
obj: Modified configuration tree object, with the new configurations added

This is an extension of addConfiguration function that allows to add multiple configurations at once.

addChild (parentIndex, childIndex)
Input:
parentIndex: int, the index of the parent configuration in pStore
childIndex: int, the index of the child configuration in pStore

Output:
obj: Modified configuration tree object, with the parent-child relationship
saved in the adjacency matrix

This is an internal function to mark the parent-child relationship in adjacency matrix.

Configuration tree generation:

A dynamic programming approach is used to generate the configuration tree for each of the study year.
The process starts with generating configurations for the first year, and for each of the subsequent years,
new configurations are generated based on each of the existing configuration in the previous year. Each of
these new configuration needs to be tested for meeting the reserve requirement for each periods of the
year, and if they meet the requirement, they are added into the configuration tree. The configuration tree
data structure takes care of duplicate configurations.

The pseudo-code for configuration tree generation can be written as follows:

37



1. CT = new ConfigurationTree()

2. for each year in studyYears:

3. prev_year = year — |

4. prev_configs € configurations in prev_year. (Root config if year is starting year)

5 for each config in prev_configs:

6. new_configs = getNewConfigs(config, candidateGeneratorRangesForThisY ear)
7 configCapacities = getConfigCpacities(new_configs,candi_gen capacities)

8 minimum_capacity = getMinimumAditionCapacity(year)

9. validConfigIndices = getValidIndices(configCapacities , minimum_capacity)
10. acceptable configs € new_configs(validConfigIndices)

11 CT.addConfigurationList(year, index _of config, acceptable configs)

Here is the description of the functions:

getNewConfigs (config, candidateGeneratorRangesForThisYear)
Input:
config:1xC numeric vector, the parent configuration
candidateGeneratorRangesForThisYear: 1xC cell-array. Element i gives is a list
of acceptable number of units for the candidate generatior 1i.
#example: {[0,1,2],(01,[0],[1,2], [0]}. Candidate generator 1 can have 0, 1 or
two units for this year and candidate generator 4 can have 1 or 2 units

Output:
new configs: TxC numeric matrix, where T is the number of new configurations
generated

The function generates new configurations based on an input (parent) configuration and the user
specified ranges for the number of units of candidate generators.

Example
Input:
candidateGeneratorRangesForThisYear = {[0,1,2],([0],[0],[1,2], [0]}
Config = ([1,0,0,0,0]
Output:

#remove units in the ranges which are less than that in config

new candidateGeneratorRangesForThisYear = {[1,2],[0],[0],([1,2], [0]}
new configs = cartesianProduct({[1,2],([01,[01,[1,2]1, [01})
0;

[ 4 I l l
2,0,0,1,0;
1,0,0,2,08
2,0,0,2,0]

getConfigCpacities (new_configs,candi_gen capacities)
Input:
new configs:TxC numeric matrix, the new T configurations
candi gen capacities: CxP numeric matrix of generator capacities, where P is the
number of periods in a year.

Output:

configCapacities: TxP numeric matrix of total generator capacities for each
configuration and each period

The function performs matrix multiplication of the configurations and the capacities, to return a matrix of
total generator capacity for each configuration for each period.

38



Example
getNewConfigs([1,1,0,0,0; 2,1,0,0,0], [100,120;30,40;120,110;50,55;20,22])

Input:
new configs = [1,1,0,0,0; 2,1,0,0,0] (T = 2, C = 5)
candi gen capacities = [100,120;30,40;120,110;50,55;20,22] (C =5, P = 2)

Output:

configCapacities = new configs * candi gen capacities
[130, 160;

230, 280]

getMinimumAditionCapacity (year)
Input:
year: int, the year for which minimum capacity is to be determined

Output:
minimum capacity: 1xP double, the minimum value of total candidate generator
capacity to be added this year to meet reserve margin for each period

The function determines the amount of new candidate generator capacity that needs to be added in a given
year to meet the reserve requirement. For this the function takes help of the load-calc module to determine
the peak load for the given year (for different periods), and the different existing generator plans to
determine existing generation capacity for that year. Then, the unmet generation to meet the minimum
reserve margin is returned as the minimum_capacity.

getValidIndices (configCapacities , minimum capacity)
Input:
configCapacities: TxP numeric matrix of config capacities
minium capacity: 1xP double, the minimum total candidate generator capacity
required to meet the reserve requirement for each period

Output:
validConfigIndices: 1xT logical array of indices in configCapacities, which
meet the minium capacity

The function performs a basic logical comparison to determine which of the configuration meet the
minimum reserve requirement.

Example
Input:
configCapacities = [130, 160; 230, 280]
minium capacity = [140, 150]
Output:
#all makes sure all columns passes the test
validConfigIndices = all (configCapacities > minium capacity)
= [0, 1] (logical array)

#0nly the second row passes the test

39



Verification with WASP:

The developed CONFIG module was run with a test case (without renewables) to verify the output with

WASP. The used test case was the default demonstration case study with variable expansion plan in
WASP, with the hydro plants removed from fixed, existing and candidate plans.

For the year 2017, the configurations generated by WASP is:

STATE IC CAP ACCEPTED CONFIGURATION
66 1 18113. 4 5 7 10 3 0
67 2 18133. M 5 7 9 M 0
68 3 18153. 4 5 5 10 4 0
69 4 18153. 4 4 e 10 4 0
70 5 18433. = 5 6 10 = 0
71 6 18153. 4 3 7 10 4 0
72 7 18433. M M 7 10 M 0
73 8 18713. 4 5 7 10 4 0

CONFIGURATIONS THIS YEAR 8

CONFIGURATIONS THROUGH THIS YEAR 73

Figure 6-8 Screen capture of generated configuration in 2017 from WASP

For the same year 2017, the configuration generated by CONFIG muddle is:

>> CT.pStore (CT.yearlyConfigurationsMap ('2017"),:)

ans =

10

10
10
10
10
10
10

[ Y S Y Y SR S )
W s s 0 n
e I L B PR B R IS |
[ Y Y S LT I VS

Figure 6-9 Screen capture of generated configuration in 2017 from MATPLAN

It can thus be seen that the configurations match exactly with WASP.

40



7.0 OPTIMIZE Module

7.1 Overview of OPTIMIZE Module

OPTIMIZE is the optimization module that combines probabilistic and optimization techniques to
determine the optimal system expansion policy based on inputs defined in the other modules. The
objective function of minimal generation expansion cost is optimized with taking into account
probabilistic model of generator availability, including renewable energy sources, and different types of
cost. All economic and cash flow calculations are included, such as present value calculations and
escalation of fuel prices. OPTIMIZE module provides users the final decision-making reference of
optimal generation expansion plan in different years.

7.2 Cost Calculation
Once all the configurations satisfying given constraints are generated, a cost function is evaluated to find
the optimal (least cost) sequence of configurations throughout the study period.

This cost function is an objective function be minimized. It comprises of the followings:

*  Depreciable capital investment costs: equipment, site installation and construction costs (1)
*  Salvage value of investment costs (S)

*  Fuel costs (F)

*  Non-fuel operation and maintenance costs (OM)

*  Cost of the energy-not-served (ENS)

The objective function is expressed in Equation (7-1):
Minimize C; = Xi-allje — Sjc + Fjr + OM;, + ENS; ;| (7-1)
Here,
C; : objective function attached to an expansion plan j.
t :time inyears (1,2, ..., T).

T :total length of the study period, given in years.

The bars given above each term in Equation (7-1) mean that these are discounted values based on a
reference date and discount rate i.

Therefore, the optimization problem can be formulated as:
Minimum C; for Vj (7-2)

The distribution of expenses throughout the entire expansion plan is depicted, as shown in Figure 7-1.

41



ACj
[} 4
! [}
A \ R
- ) |
O] (V]
| Z d 2 q 2 H 2
=l - = = =
HEREE 2| 2
2l o o a
Slo| 8| 8| 3| o S| &
H
Reference t=1 t=2 t=3 i t=T
date for w
discounting g
2y
————————  Yearsofstudy 2
%)
tO > < T —

Figure 7-1 Schematic diagram of cash flows for an expansion plan.

In the figure above,

CAPITAL, : sum of the investment costs of all units added in the first year of study.
OPERATING; : sum of all system operating costs (fuel, O&M, energy not served) in the first year of
study.
SALVAGE :sum of the salvage values at the horizon, of all plants added during the study period.
to : number of years between the reference date for discounting and the first year of the
study.
T : total length of the study period, given in years.

a. Depreciable capital investment costs

L =1+ )~V s S [UL, « MW,] (7-3)

Here,

> :sum calculated considering all units added in year t by expansion plan j.

Ul : capital investment cost of unit &, expressed in monetary units per MW.

MW, : capacity of unit £ in MW,

i :discount rate.

t :time inyears (1, 2, ..., T).

tp :number of years between the reference date for discounting and the first year of the study.

Equation (7-3) was implemented in our optimization module using the code given below:

42



108 configuration_parent = system_info.CT.pStore(parents(k),:);

109 new_added = configuration - configuration_parent;
110 COST_CON_vector = new_added .* unitCapacity_candi .* UI;
111 COST_CON{countConfig}(k) = (1+discount)”(-tt) * sum(COST_CON_vector);

For a given year of the study (line 108), the parent nodes of a particular acceptable configuration are
traced back. Using this information (line 109), the difference between the parent configuration and newly
generated configuration is calculated to find which generator units are added into the new configuration.
Lines 110-111 implement Equation (3), where COST_CON = depreciable capital investment costs
(construction costs) . The cost for each new plant added in a given year is then calculated and the values
are stored in the vector COST_CON. The process is repeated for all possible configurations in that year.

b. Salvage value of investment costs

Sie = (L+ D) T+« F[8,, « Ul x MW, ] (7-4)
Where,
11—+ ek
8k,t - 1—(1+i)_l‘k (7_5)
Here,
Ok, : salvage value factor at the horizon for unit £.
T :total length of the study period, given in years.
Ly :Life of unit & in years.
Vi : T — (t + 1)
Using the costs calculated in the previous section, the salvage costs are calculated next.
100 for k = 1:1ength1plant_1ifej
101 salvageFactor(k) = (1-(1+discount)”(-plant_life(k)+(length(study_years)-offset+l)))/(1-(1+discount)”(-plant_life(k)));
102 end

The first step is to calculate the salvage factor, which is done by implementing Equation (5) in our
optimization module. This is shown in the code snippet above (lines 100-102), where a for loop is used to
calculate the salvage factor of each of the plants, for each year during the study period.

113 COST_SAL_vector = salvageFactor .* COST_CON_vector;
114 COST_SAL{countConfig}(k) = (1+discount)”(-length(study_years)) * sum(COST_SAL_vector);

Once the salvage factor has been calculated, it is used to calculate the salvage value of each of the plants
in a configuration for a particular year. This is the implementation of Equation (4) in our Matlab module
shown in lines 113-114. The variable COST_SAL{countConfig}(k) is the output, which represents the
salvage cost for each new plant added in a particular configuration year. This calculation is repeated for
each of the newly added plants in each of the possible configurations for that year, and the values for each
plant are stored in the vector COST_SAL.

43



c. Fuel costs

Fir =@+ D)7« (FC, + 1075) « Xy [HP = EP « HE + (Ex—ED)] (7-6)

FCy, : Fuel Cost of unit £, given in cents/million kcals.

H ,’c7 : Heat rate at minimum operating level (kcal/kWh) of unit £.
Hy : Average incremental heat rate (kcal/lkWh) of unit £.

E, : Total energy (GWh) generated by unit .

E ,Ic’ : Base energy (GWh) of unit £.

Fuel costs are calculated for each possible configuration in a given year by implementing Equation (6) in
our optimization module as shown in the code snippet below:

COST_FUEL_vector = (heatRate .* sum(baseEnergy_config{countConfig}) + heatRate_increase .*
sum(energy_config{countConfig}-baseEnergy_ config{countConfig})) .* fuelCost;

91 COST_FUEL(countConfig) = (1l+discount)”(-tt-0.5) * sum(COST_FUEL_vector); % Discounting by year

Lines 88-91 implement Equation (7-6) in two steps for each possible configuration in a given year, with
the variable COST_FUEL(countConfig) storing the value. Once this calculation is repeated for all the
possible configurations, the fuel costs for each of them is stored in the COST_FUEL vector.

d. Non-fuel operation and maintenance costs
OM;; = (1+ )75 « X[UFO&M;, + UVO&M;, * E;] (7-7)

Here,
UFO0&Mj, : Unitary fixed O&M cost of unit &, expressed in monetary units per MW-year.
UVO&M,, : Unitary variable O&M cost of unit k, expressed in monetary units per KkWh.

Using information from the possible configurations for a given year and calculating the total generation
capacity for each configuration, the operation and maintenance costs can then be calculated as follows:

93 totalCapacity = [number_of_units configuration] .* unitCapacity;
94 COST_OM_vector = FOM .* totalCapacity *12*1000 + VOM .* sum(energy_config{countConfig})*1000;
95 COST_OM(countConfig) = (1l+discount)”(-tt-0.5) * sum(COST_OM_vector);

The code snippet lines 93-95 show the steps involved in the calculation of operation and maintenance
costs. The first step is shown in line 93, where the total generation capacity of a possible configuration is
calculated. Using this information in lines 94-95, Equation (7-7) is implemented where the variable FOM
in the code represents the variable UFO&M), and the variable VOM in the code represents the variable
UVO&M|, from the original equation. The vector totalCapacity on line 93 is multiplied by 12 to account
for each month of the year and then multiplied by 1000 to convert from $/kW to $/MW. The sum of the
entry in vector energy_config is multiplied by 1000 to account for the energy generated in GWh instead
of MWh. The calculations are repeated for each possible configuration in a particular year and the results
are stored in the energy_config vector.

44



e. Cost of the energy-not-served

no ~—t'—0.5 b N¢n c Ntn 2
ENS;. = (1+10) * [a +2 (E—At) + S (Fe2) ]* Nep (8)

Here,
N¢ p, : Amount of energy-not-served in year ¢.
EA; : Energy demand (kWh) of the system in year ¢.
a, b and c : Polynomial coefficients for incremental cost of ENS defined by the user input.

The final component of the objective function is the energy-not-served cost. This has been implemented
in our optimization module using the code snippet given below:

COST_ENS_vector = CF1 .* system_info.CT.eensStore(countConfig+l,:) .* periodHours' .* system_info.load_conf.peak(offset);
COST_ENS(countConfig) = (1+discount)”(-tt-0.5) * sum(COST_ENS_vector) * 10°3; % $/kiwh --> $/Mih

In our model, we used only one polynomial coefficient a which is represented by CF1 in our code, line
97. As we consider the coefficients b and ¢ to be zero, part of Equation (7-8) simplifies to the expression
shown in line 97. Using calculated values of energy not served (kWh), period hours and peak load values
for each possible configuration in a given year, the total ENS cost is calculated. This calculation is carried
out for all possible configurations and is stored in the vector COST_ENS.

Once all the different cost components of Equation (1) have been calculated for each possible
configuration of a given year, the optimization module moves onto the next year in the study and repeats
these set of calculations. This process is repeated until the final year of the study is reached, and the costs
for all possible configurations starting from the first year of the study are calculated.

7.3 Maintenance Mechanism

Prior to performing actual production costing, an estimated maintenance schedule must be prepared since
it affects equipment availability in each of the time periods. It is not reasonable to ignore maintenance
since the maintenance of units has a significant effect on the system's operating cost. To a large extent,
the maintenance of generation equipment can be scheduled at times when system capacity reserves are
greatest. The time requirements for scheduled maintenance outages depend on the type and size of a unit.
A reasonable procedure is to schedule maintenance for the largest items of equipment when reserves are
the greatest, schedule maintenance for the next largest items of equipment when remaining reserves are
the greatest, etc. This procedure tends to levelize the operable equipment reserves for the system during
the year. The approach to schedule the maintenance energy block is illustrated in Figure 7-2.

45



//JNSTALLED CAPACITY

I .

N

CAPACITY AND LOAD (MW)
N
N

7
7

MAXIMUM LOAD

| 2 3 4
PERIOD

Figure 7-2 Illustration of maintenance schedule with energy blocks

The general steps can be summarized as follows:

» Determine the maintenance space in each period and maintenance class for each generator;

» Categorize all generating units in different sizes and classes with maintenance requirements
organized as energy block;

» Schedule the energy block in each maintenance space slot with the principle: Largest energy
block scheduled to largest maintenenace space in the rest unsatisfied maintenance requirements;

» Convert maintenance days and energy amount into availability (%).

The code snippet to perform the above steps are presented below:

function availability = getAvailability(year, configuration, system info)
getAvailability Summary of this function goes here

The calculation procedure follows the mechanism described in pp.43-49
https://www.osti.gov/servlets/purl/5208341 to consider maintenance schedule.

o° oo

o\

Do some initialization and parameter retriving HERE

mainSpace = installedCapacity - maxLoad;

46



mainSize = para(9,:);
[class,~,ic] = unique (mainSize);

for i = l:length(class)
largest = length(class)-i+1;
classSize = class(largest);

MWDAYS =
sum (para (2,ic==largest) .*para(8,ic==largest) .*number of gens(ic==largest))
MAINBK = classSize * 91; o
NO = MWDAYS/MAINBK;
NO periods = zeros(l,number periods);

REMAIN = MWDAYS;
while REMAIN > MAINBK

[~, 1dx] = max(mainSpace) ;
NO periods (idx) = NO periods(idx)+1;
mainSpace (idx) = mainSpace (idx)- MAINBK/days (idx) ;
REMAIN = REMAIN - MAINBK;
end
[~, 1dx] = max(mainSpace) ;
NO periods (idx) = NO periods(idx) + REMAIN/MAINBK;
mainSpace (idx) = mainSpace (idx)- REMAIN/days (idx) ;

main prob = NO periods / NO;

units = find(ic==largest);
for k = l:length(units)
main days = main prob * para(8,units(k));
main rate = main days ./ days;
availability(:,units(k)) = (l-para(7,units(k))/100) * (l-main rate)';
end
end

availability = repmat (availability,2,1);

end
Figure 7-3 Implementation code of the maintenance mechanism

The above partial code snippet works for transforming the energy block shifting into availability of each
generator unit. In other words, their capacity is discounted by this availability probability (%).

7.4 Energy Dispatch

The energy dispatch information is key to calculate all associated cost related to fuel and O&M
determined by total energy generation (MWh or GWh).

function [LOLP, EENS, baseEnergy, energy] =
getEnergy (year,periodHours, system info, loadingOrder, configuration)

The energy dispatch is calculated using the function getEnergy following some integral procedure for
load duration curves. It is noteworthy that the energy integral should consider two-block representation
similar to WASP, which distinguishes base energy and peak energy in the overall calculation. The loading

47



order is only valid among each sub category, implying all base energy with base capacity are preceeding
peak energy and peak capacity scheduling.

7.5 Graph Structure and Search

Using the calculated cost results, we associated the total cost for each candidate configuration and
mapped the expansion planning cost of generator configuration evolution to a graph structure that
contains nodes and edges. In the graph structure mapping, each node stands for the destination
configuration of that year, and each edge stands for the generator configuration evolution path from
parent configuration to child configuration as described in the CONFIG module. The overall workflow of
OPTIMIZE module can be presented in Figure 7-4 and summarized as follows.

Generator information from EXIST-GEN and CANDI-GEN Modules

— OPTIMIZE Module
Get availability from

maintenance mechanism / \
Map to Graph structure

A4

Calculate discounted ¢ Cost associated with edge
capacity and get energy

® Configuration indexed by vertex

¥ ®  Add root and virtual ending node
Cost calculation: CONCST,
SALVAL, OPCOST and ENSCST \‘ Search shortest path /

\

L Get optimal solution of generator candidate J

configuration for all the planning years

Figure 7-4 The workflow of OPTIMIZE module

* STEP I: Determine the loading order (through calculation of full-load-cost, FLC) and get the
availability according to the maintenance mechanism, preparing this information for later energy
dispatch calculation;

* STEP2: Calculate the energy and base energy generated by each unit in each type of power
plant, including renewables, using discounted capacity (considering availability) and shifted LDC
curve (considering loading order) in each period;

48



* STEP3: Process the cost calculation using the formulas presented in the last section, assign the
cost for each possible configuration evolution rather than configuration itself. The same
configuration coming from different parents does have different costs involved;

e STEP4: Map the cost and configuration index to a graph structure, the cost is weight for edge
and the configuration index is for node;

* STEPS5: Perform the dynamic programming or tree search algorithm to find the optimal solution
that can be retrieved and stored for ELCC module.

The reason why the total cost of each configuration is associated with each edge, as weight, instead of
each node is that we do care about the evolution path of each configuration rather than the simple
configuration destination. Because in some parts of the cost calculation, for example CONSTRUCTION
COST and SALVAGE VALUE, the cost or value should be calculated based on the newly added units.
Only the added units in child configuration that are different from the parent configuration are considered
and discounted in that year. In orther words, the same configuration may have different
CONSTRUCTION COST and SALVAGE VALUE if it evolves from different configurations in the
previous year.

In the following code snippet (lines 143-183), we built the graph structure by using the MATLAB built-in
function digraph and track configuration in each layer (depth) of year. The method addedge is also used
to assign the cost as weight to each edge linking parent-child configurations.

G = digraph creates an empty directed graph object, G, which has no nodes or edges

G = addedge (G, s, t) adds an edge to graph G between nodes s and t. If a node specified
by s or t is not present in G, then that node is added. The new graph, H, is equivalent to G, but includes
the new edge and any required new nodes.

49



143 %% Print the cost calculation results & build graph of the configuration tree
144 G = digraph;

145

146 countConfig = 0;

147 [Hfor year = study_years

148 offset = year-starting year+.;

149 pStoreIndex = system info.CT.yearlyConfigurationsMap (num2str (year)) ;

150 yearlyConfig = system info.CT.pStore(pStorelIndex,:);

IGH

152

153 © for iConfig = !:length(pStoreIndex)

154 countConfig = countConfig+.;

155 configuration = yearlyConfig(iConfig,:);

156

157 fprintf ("YEAR %d: PRESENT WORTH C ( KS ) FOR C ", year) ;
158 disp(configuration) ;

159

160 parents = find(system_info.CT.connections (:,countConfig+l)==1);

16l for k = l:length(parents)

162 configuration parent = system info.CT.pStore(parents(k),:);

163 fprintf("If evolving from configura S

164 disp(configuration_parent);

165 =] fprintf ("CONCST %.0f, SALVAL %.0f, OP( 0f, TOTA 0f \n\n",
166 COST_CON{countConfig} (k) /1000,...

167 COST_SAL{countConfig} (k) /1000,...

168 (COST_FUEL (countConfig) +COST_OM(countConfig)) /1000, ...

169 COST_ENS (countConfig) /1000,...

170 = (COST_CON{countConfig} (k) -COST_SAL{countConfig} (k) ...

171 +COST_FUEL (countConfig) +COST_OM (countConfig) +COST_ENS (countConfig)) /1000) ;
172 -

173 O G = addedge (G,parents (k) ,countConfig+.,...

174 E (COST_CON{countConfig} (k) -COST_SAL{countConfig} (k) ...

HEEE. - +COST_FUEL (countConfig) +COST_OM(countConfig)+COST_ENS (countConfig))/1000) ;
176 end

177

178 % Add the virtual ending node to facilitate the tree search

179 © if year == ending_year

1 + G = addedge (G,countConfig+.!,size(system info.CT.pStore,l)+1,1);

181 - end

182 = end

183 end

Figure 7-5 Screen capture of building graph structure

It is also noteworthy that we added a virtual ending node after the last year in order to facilitate the tree
search process introduced in the code snippet (lines 179-181). All the evolved configuration candidates at
the last year are assumed to connected to this virtual ending node. The resultant graph structure is as
shown in Figure 7-6. The numbers (1-79) are the index of each valid configuration candidate. The
configurations at the same layer belong to the same year.

50



25 T T T T

20 r

07T

-5 0 5 10 15 20

Figure 7-6 Graph structure of example configuration candidates

After the graph structure is built, the least cost expansion plan (configuration evolution) across all the
studied years can be mathematically equivalent to finding a shortest path with the least distance that
represents the total weight (cost) over all the pass-by edges. Again, we used the MATLAB built-in
function shortestpathtree to help us achieve such a goal.

TR = shortestpathtree (G, s, t) computes the tree of shortest paths between multiple source
or target nodes.

The functionality is shown in the following code snippet (lines 190-210) to check the final cost results.

The start node is node 1 (i.e., the first study year), and the destination node is the virtual ending node
(indexed as #last configuration + 1).

51



e

e

solution mapping analogous to searching the shortest path

192 [TR, D] = shortestpathtree(G,.,size(system_info.CT.pStore,l)+1);

193 $figure (2)
154 $pTR = plot (TR, 'Layout', 'layered');

203 optimal configuration = zeros(length(study_ years) , totalCandiType) ;

204 sucID =

205 for year = study_ years

206 fprintf ("THE OPTIMAL CONFIGURATION FOR YEAR %d: ",year);
207 disp(system_info.CT.pStore(sucID,:));

208 optimal_configuration(year-starting year+l,:) = system info.CT.pStore(suclID,:);

209 sucID = successors (TR,sucID) ;
210 end

Use the graph structure and MATLAB built-in function to find the optimal

Figure 7-7 Screen capture of tree search code structure for optimal solution

The returned variable TR (line 192) is also a graph structure that can be further retrieved by method
successors for the optimal solution (line 209). It is noteworthy that we begin retrieving our expansion
plan from configuration ID=2 since it is actually the first valid configuration at first study year after root

(ID=1) configuration.

7.6 Input of OPTIMIZE Module

Inputs to OPTIMIZE module are all the outputs from previous introduced modules, and can be listed as

follows:

Energy-not-served penalty cost information from LOAD-CALC module
Existing generator capacity information from EXIST-GEN module
Existing generator configuration information from EXIST-GEN module
Candidate generator capacity information from CANDI-GEN module
Candidate generator configuration information from CANDI-GEN module

¢ Valid configuration candidates and their construction & operation cost information from

CONFIG module

7.7 Output of OPTIMIZE Module
Outputs of the OPTIMIZE module include:

* Optimal generation expansion plans in different years

* The total cost and separate cost elements for each configuration evolution in different years

¢ All the associated LOLP and ENS information for further decision-making

The variables above is saved in a ‘.mat’ file under the path of

‘root/projects/project _1/project_data/OPTIMIZE.mat’ for the OPTIMIZE module. The output

52



information is also stored in the structure variable system_info as optimal configuration that is depicted

in Figure 7-8.

other system parameters J

output information from other modules J

optimal_configuration ]»

optimal_config_plan

-
optimal_index
L
LOLP
P
COST_CON
—_—
COST_FUEL
. -
L cost COST_ENS
COST_OM
N—

COST_SAL
- -

Figure 7-8 The output structure of optimal generation expansion plan information

The following Figure 7-9 also shows the cost calculation result for several example configurations,
considering five types of conventional power plants and two types of renewables (solar PV and wind
farm). It is noteworthy that even the single one configuration (4 4 59 3 1 2) at year 2015 can have

different cost values (CONCST, SALVAL) if it evolves from different parent configurations (44492 1
2),(4459212)0r(4359212).

YEAR 2015: PRESENT WORTH COST ( K$ )

If evolving from configuration:

CONCST 288814, SALVAL 212624, OPCOST

YEAR 2015: PRESENT WORTH COST ( K$ )

If evolving from configuration:

CONCST 288814, SALVAL 212624, OPCOST

YEAR 2015: PRESENT WORTH COST ( K$ )

If evolving from configuration:

CONCST 364208, SALVAL 267362, OPCOST

If evolving from configuration:

CONCST 288814, SALVAL 212624, OPCOST

If evolving from configuration:

FOR CONFIGURATION:

4 4 3 8

348720, ENSCST €051,

FOR CONFIGURATION:

4 4 4 9

347776, ENSCST 5884,

FOR CONFIGURATION:

4 4 4 9

349702, ENSCST 3352,

4 4 5 9

349702, ENSCST 3352,

4 3 5 9

4

2

TOTAL 430961

4

2

TOTAL 429850

4

2

TOTAL 449900

2

TOTAL 429244

2

4

1

4

1

4

1

1

1

8 3
9 3
9 3

1 2
1 2
1 2

Figure 7-9 Print-out of several example configuration evolution

53



The Figure 7-10 shows the final optimal generation expansion planning solution that stands for the least

cost expansion plan over studied years (1998-2017). The seven columns indicate five types of

conventional power plants and two types of renewables (solar PV and wind farm). The numerical values

are actually cumulative results. For instance, compared with year 2016, one unit of third type (column)
and one unit of fifth type (column) are installed at the final studying year 2017.

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

Figure 7-10 Print-out of the final optimal solution of expansion plan

PRESENT WORTH COST OF THE YEAR ( K$

OPCOST
355689

38031e

397112

429349

445816

464159

488192

522448

546480

563519

611988

638362

663883

701371

730130

758152

€94902

727081

757964

758300

ENSCST
13420

18016

25131

21989

19476

22917

15201

30814

32681

32379

40197

50725

32208

22026

35727

61121

€199839

5066751

3844066

€216943

0.

17.499%

14.055%

10.700%

15.717%

LOLP
269%

.327%

.411%

.345%

.292%

.318%

.209%

.367%

.365%

.342%

.392%

.456%

.290%

CONFIGURATICN
S S 10
5 4 10
4 4 9
4 4 9
3 3 8
3 2 7
3 2 €
3 1 €
3 1 S
3 0 4
3 0 4
3 0 3
3 0 2
2 0 2
2 0 2
1 0 2

0 0

0 0

0 0

0 0

54



8.0 ELCC Module

8.1 Overview of ELCC Module

ELCC is effective load carrying capability module that is responsible to calculate ELCC value of each
power plant, including renewables selected as expansion planning candidates. The general idea is to
define the capacity credit of each new unit as the capacity added to a system, allowing the load to increase
without compromising the generation adequacy. For implementation, the functionality of this module can
be explained as follows: first, take a note of the original system installed capacity (MW) and LOLP from
the OPTIMIZE module as benchmark values; second, remove the generator unit of interest and rerun the
OPTIMIZE module to locate the revised system installed capacity (MW) that is able to keep the original
LOLP. The difference between the benchmark capacity and the revised system capacity is the ELCC of
the generator in question. The module is rerun to obtain ELCC of all the studied generation units.

8.2 Theoretical Analysis of ELCC values

ELCC stands for effective load carrying capability module. ELCC represents the generator’s contribution
to system reliability. It is the additional firm load that can be met by an incremental generator while
maintaining the same level of system reliability. ELCC measures the contribution of an individual
generator to system capacity with and without the generator of interest. This module is responsible for
calculating ELCC value of each power plants, including renewable generation units, that are selected as
expansion candidates. Theoretically, the most well-known method for ELCC calculation is Garver's
method. The general idea is to define the capacity credit of each new unit as the capacity added to a
system, allowing the load to increase without compromising the generation adequacy. When unit g is
added to the system, the risk of power deficit decreases from LOLP,.; to LOLP,. The load carrying
capability of unit g is defined as the largest constant load, Cgrcc, which can be added to the system
without the risk of power deficit exceeding the earlier level LOLP,.,. The equivalent load duration curve
including unit g and the constant load is given by the following Equation (8-1) and (8-2) and illustrated in
Figure 8-1.

FELC(,'(I) = P(Eg + CgLcc > )
=P(Eg >z —Cgrec) = Fg,(x — CgLec) (8-1)

Ceroc = Giot + Gy — FE;(L()LPQ—I) 8-2)

55



1.0 =
\ ELCC
\
0.8 - Fpen
Cerec
0.6 4 (S
0.4 4 :
0.2 4 !
IOLP, (4---------------- o x
g-1 I )
Gml Glot B Gg MW

Figure 8-1 ELCC calculation illustration

In the implementation, the ELCC calculation process can be explained as follows: first, take a note of the
original system installed capacity (MW) and LOLP from the OPTIMIZE module as benchmark values.
Second, remove the generator of interest and rerun the OPTIMIZE module with a new constraint to keep
the original LOLP. Then, take a note of the revised system installed capacity (MW). The difference
between the benchmark capacity and the revised system capacity is the ELCC of the generator in
question. The module is rerun to obtain ELCC of all power plants.

84 - ldccurves{period} = ldccurves{period}.process(normalized capacities{period,columnEnd},...
85 probabilities{period,columnEnd}, STEP);

86 — xi = 0:STEP:2;

87 — [vi, index] = unique (ldccurves{period}.poly(xi)):

88 - newCap = interpl(yi,xi(index),lolp, 'spline’);

89 — ELCC_periods(period) = totalCapacity - newCap;|

In the above code snippet (lines 84-89), the MATLAB built-in function interpl was used to retrive x
value by setting y value in a functional relationship.

vg = interpl (x,v,xq) returns interpolated values of a 1-D function at specific query points using
linear interpolation.

In line 89, the totalCapacity is the actual installed total capacity including newly added generator, and
newCap is the newly obtained capacity by satisfying the same reliability level. Finally, all the generator
unit’s ELCC value were printed out in different years and different periods under the optimal
configuration scenario. For renewables, like wind (second last column) and solar (last column), they may
have significant different ELCC values in different periods due to the change of weather conditions.
These are shown in Figure 8-2.

56



o o o o

475.868¢6
482.8511
473.4623
470.7748
477.2142
474.8579
476.8271
476€.9975
478.3492
477.7957
477.6978
477.2022
479.8316
481.6077
479.9194
479.1508

239.
.2949
.2112

238

240

238.
240.
239.
239.
240.
240.
239.
240.
240.
240.
240.

o OO0 o oo

5317

9931
0053
3873
9817
0484
5623
9507
8548
3337
1997
1345

239.
239.
240.
240.
239.
240.
240.
240.
240.

OO0 000000 o oo

3873
9817
0484
5623
9507
8548
3337
1997
1345

485.
490.
482.
480.
485.
483.
485.
48S5.
486
485.
485.
485.
487.

88
487.
486.

o o o o

1103
1450
4943
5402
6368
5143
3450
1225

.2825

5640
8177
1745
1181

.5301

2954
6511

476.
476.
478.
477.
477.
477.
479.
481.
479.
479.

O 0O 000 oo o oo

0
[§]
-
st

o

9975
3492
7957
6978
2022
8316
6077
9194
1508

13.
13.
13.
13.
13.
13.
13.
13.

OO0 00000 oo ooo

0833
0992
1283
0952
1273
0699
0864
0968

26.
26.
26.
26.
26.
26.
25.
26.
26.
26.
26.
26.
26.
26.
26.
26.

o o o

0
3021
2348
3335
2204
3317
1026
9891
1080
1148
1552
0083
1831
1191
1169
051e
0348

Figure 8-2 Print-out of ELCC values for the first period over 20 years

Additionally, because of the ELCC of each incremental resource depends on the whole portfolio of

renewable resources, the ELCC function in WASP including renewable parts is actually a

multidimensional surface. According to some studies, the marginal ELCC of one renewable resource
technology declines as its penetration increases. For solar PV, high capacity credit at low penetrations

while this rapidly decreases as additional capacity is added. A renewable portfolio that contains a diverse
set of power technologies, such as thermal, hydro, wind can mitigate the decline in ELCC.

8.3 Input of ELCC Module

Inputs to ELCC module are outputs from previous introduced modules, and can be listed as follows:

e LDC curve information from LOAD-CALC module

* Existing generator capacity information from EXIST-GEN module

* Candidate generator capacity information from CANDI-GEN module

* Valid configuration information from CONFIG module

8.4 Output of ELCC Module

Outputs of the ELCC module are the ELCC values calculated for each valid configuration candidate in
each time period in different years. The variables above is saved in a ‘.mat’ file under the path of

‘root/projects/project _1/project _data/ELCC.mat’ for the OPTIMIZE module. The output information is
also stored in the structure variable system_info as ELCC that is depicted in Figure 8-3.

57



other system parameters

other output information

system_info

Period

ELCC value

Figure 8-3 The output structure of ELCC value information

58



9.0 Validation and Case Study

9.1 Validation using WASP

The developed MATPLAN package was validated with the well-known Wien Automatic System
Planning (WASP) package. To validate MATPLAN, results from MATPLAN were compared with that
of WASP. This allowed us to verify the validity of MATPLAN in performing power system expansion
planning with traditional power plants. All studies were carried out in a PC — Intel i5 with 8§GB RAM
running Windows 10. The newest version of WASP-IV package was used.

Validation results confirm that MATPLAN is able to deal with expansion planning with conventional
power plants. The WASP demo example was used as the validation case study. Under this case study, the
characteristics of six existing conventional power plants in the case study are listed in Table 9-1. These
existing conventional power plants are: two lignite plants (FLG1 and FLG2), one coal plant (FCOA), one
oil plant (FOIL), one gas turbine plant (FGT) and one natural gas plant (F-CC). Table 1 also summarizes
the characteristics of five candidate power plants. These candidate power plants include the following
types: natural gas plant (VCC), lignite plant (VLG1 and VLG2), coal plant (VCOA) and nuclear power
plant (NUCL).

Table 9-1 Important parameters of the existing conventional power plants

Name of plants FLGl FLG2 FCOA FOIL FGT F-CC | V-CC VLGl VLG2 VCOA NUCL
No. of units 4 9 1 7 4 1 - - - - -
Base capacity (MW) 150 150 400 80 50 87 300 150 150 400 300
Max capacity (MW) 270 276 580 145 50 174 600 280 280 580 600
Forced outage rate (%) 10.0 8.9 8.0 7.3 6.0 15.0 10.0 10.0 10.0 8.0 10.0
Maintenance days 56 56 48 42 42 28 28 56 56 48 42
Fixed O&M cost ($/kW-month) | 4.06 1.91 2.92 457 835 210 2.10 2.70 2.70 2.92 2.50
Variable O&M cost ($/MWh) 4.90 2.00 5.00 1.60 1.60  5.00 4.00 6.00 6.00 5.00 0.50
Fuel cost (cent/million kcals) 600 495 800 833 420 1266 1200 710 1100 800 194

During the 20-year planning horizon from 1998 to 2017, Table 9-2 summarizes the unit
retirement/addition information of generating plants, together with their tunnel width and yearly peak
load. The unit retirement/addition is indicated by -1/+1, respectively, in each year of the planning
horizon. The tunnel width restricts the minimum and maximum number of units allowed to be installed.
For example, [1,2] for VLG in year 2005 implies that the minimum number of VLG1 to be added is one
(1) and the maximum increment is two (2) — this means in 2005, the number of VLGI that can be added
are 1, 2 and 3. If not specified, the tunnel width is as the same as that of the previous year.

59



Table 9-2 Yearly information for the studied system

Year

FLGI

FLG2 FCOA FOIL  FGT F-CC

Retirement/Addition

VLGI

Tunnel width

VLG2 VCOA  NUCL  Peak load (MW)

1998

/ /

6000.00

1999
2000

/
+1

+1
/

6333.00
6725.00

2001

+1

/
/
/
/

/
/
/
/

2002
2003

~ =~~~

[0,2)

7496.45
7897.51

[0.2]

2004

/ 8304.23

2005
2006

/
/
/
/ 7109.01
/
/
/
/

/ 8702.83
[1.2] [0.1] 9120.57

2007

0.2] 2.2] 955836

2008
2009

=== s =~~~

10017.20

2010

/
/

/ [3.2] / 10488.00
/ 10980.90

2011

[ [P N [N [ [ DA [P P P D (PR P P

2.2] 7 [0.2] 11497.00

2012

[ [P [N [P A P [P P P P

BN RN RN BN e

/ [5.2] ] 1202590

2013

3.2] [6.2] ] 12579.10

2014

[42] [7.2] 7 13157.70

2015
2016

~ =~

P N [ T [P Ny P (Y DN [N [P Y N [P Y Y R ) Y Y

[N BN BN P D B B B BN R BN NS BN BN BN BN B
BN BN R N DN RN Y B R N B RS B R N B

~ == ===~

~ =~~~

/ (12] 13749.80
/ [8.2] / 14368.50

2017

5.2] 7 2.2] 15015.10

Considering only conventional power plants, each year was divided into four periods according to
different seasons. Peak load in each period has a different peak load ratio, which is 0.90, 0.87, 0.93, 1.00

of the annual peak loads for each season. By using the same constraints on reserve margin and LOLP,

MATPLAN can produce the same feasible candidates and the same optimal solution as WASP, as shown

in Table 9-3.

Hence, it can be concluded that the developed MATPLAN has been successfully validated with WASP,
and both of which generate the same optimal configurations in different study years. Some slight
mismatch of LOLP values was observed, which was expected to be caused by numerical issues associated
with different LDC representation methods. This can be improved by using a detailed modeling of LDC

curves with more accurate point-wise load data.

Table 9-3 Optimal solutions from MATPLAN vs. WASP

MATPLAN WASP

Year | V-CC  VLGI VLG2 VCOA NUCL LOLP (%) | Vv-CC VLGl VLG2 VCOA NUCL LOLP (%)
1998 0 0 0 0 0 15.717 0 0 0 0 0 14.924
1999 0 0 0 0 0 10.700 0 0 0 0 0 10.485
2000 0 0 0 0 0 14.055 0 0 0 0 0 12.899
2001 2 0 0 0 0 3.599 2 0 0 0 0 3.349
2002 2 0 0 1 0 2.766 2 0 0 1 0 2.595
2003 3 0 0 1 0 3.062 3 0 0 1 0 2.905
2004 4 1 0 2 0 0.397 4 1 0 2 0 0.537
2005 4 3 0 2 0 0.332 4 3 0 2 0 0.459
2006 4 3 0 3 1 0.116 4 3 0 3 1 0.212
2007 4 3 0 3 1 0.427 4 3 0 3 1 0.555
2008 4 3 0 4 1 0.384 4 3 0 4 1 0.510
2009 4 3 1 5 1 0.407 4 3 1 5 1 0.525
2010 4 3 1 6 1 0.407 4 3 1 6 1 0.517
2011 4 3 2 6 2 0.234 4 3 2 6 2 0.337
2012 4 3 2 7 2 0.353 4 3 2 7 2 0.458
2013 4 3 3 8 2 0.323 4 3 3 8 2 0.421
2014 4 4 4 9 2 0.380 4 4 4 9 2 0.472
2015 4 4 5 9 3 0.277 4 4 5 9 3 0.369
2016 4 -4 5 10 3 0.359 4 4 5 10 3 0.449
2017 4 5 5 10 4 0.296 4 5 5 10 4 0.384

60



In addition, MATPLAN was also tested using realistic field data to showcase its applicability in a real-
world environment considering renewable energy (both solar PV and wind farms) in the generation mix.
This is discussed below.

9.2 Case 1: Low Penetration of Renewable Energy Sources in the Generation Mix
This case study describes the use of MATPLAN for generation expansion planning with low penetration
of renewable energy, including wind and solar power. The study years were from 2019 to 2038. In order
to fully consider the volatile contribution of renewable energy to the overall system capacity in different
periods, especially for solar plants (which produce no output during the nighttime), year-division-by-day
and day-division-by-hour attributes were added in the setting file to let the user define how a year/a day
could be divided into different sections. For example, a year could be divided into four different sections,
as follows: days 1-91, days 92-183, days 184-274, and lastly days 275-365. Currently, there is no limit on
the number of sections but higher number of sections result in longer computation time. On the other
hand, the day-division-by-hour attribute is intended to let users split each day into two different periods:
day and night. For instance, for the first section of the year (days 1-91), the daytime period is 07:00 to
18:00, and the nighttime period is 18:00 to 07:00 of the next day. The above division results in eight
periods, as summarized in Table 9-4. Each period has different LDC representations and different
renewable generation profiles.

Table 9-4 Time period division for renewable energy

Index No. | Time period

Period 1 07:00 - 18:00 in days 1 - 91
Period 2 06:00 - 19:00 in days 92 - 183
Period 3 07:00 - 20:00 in days 184 - 274
Period 4 08:00 - 17:00 in days 275 - 365
Period 5 18:00 - 07:00 in days 1 - 91
Period 6 19:00 - 06:00 in days 92 - 183
Period 7 20:00 - 07:00 in days 184 - 274
Period 8 17:00 - 08:00 in days 275 - 365

In the case study, the annual wind production data were obtained from the U.S. National Renewable
Energy Laboratory (NREL) wind integration data sets. The solar production data were collected through
realistic field measurements for on-site PV panels. Their normalized power output in a typical example
year is depicted in Figure 9-1. Their cost characteristics are provided in Table 9-5. The parameters of
conventional generators are kept the same as those in the validation case.

61



Table 9-5 Characteristics of candidate renewable energy generators

Wind | Solar
Capacity (MW) 30 50
Forced-outage-rate (%) 5.0 5.0
Plant life (years) 20 25
Constructions cost ($/MW) 1094 1400
Fixed O&M cost ($/kW-month) 3.67 0
Variable O&M cost ($/MWh) 4.0 0

S ; r ‘1 l k ‘ Solar |
go.s V ‘ r \ l l r |’| i
R 06 . M | ' | r ‘
L ',M !
2 \ , [ if ' . Wil o f

02 W' hifL | IL M ]lﬂ W“ T h‘

Time

Figure 9-1 Normalized power output of PV and wind farms during one year (using a 24-hour moving
average window)

Using MATPLAN, the optimal solution of the generation expansion evolution path is presented in Figure

9-2. We can observe that the renewable energy generators are incorporated into the expansion plan in
early years due to their economic advantages, including low maintenance costs and no fuel cost.

62



45 T T T T T T T T T T T T T T T T T T T T
B V-cc ]
40 - | I VL G1 7
N v G2 ]
35 + | VCOA L
[CNucL —
30_I:IWind L J
i :Solar
R
en
.8
= 20
o
5
50 15
G
o
g 10
g
=
Z 5
0
O O NV a* @ ® A DD O N DD 0 A D
NPRL WL L LR PP D BV P D P &
S S P S T S S PP T P T TS
Year

Figure 9-2 Optimal expansion plan — the case of low renewable energy penetration

The ELCC values of each candidate generator in different periods of the last study year 2038 are provided
in Table 9-6.

Table 9-6 ELCC of candidate generators in different periods

ELCC V-CC VLG1 VLG2 VCOA NUCL Wind Solar
MW % MW % MW % MW % MW % MW % MW %
Period1 | 4483 | 74.7 | 216.9 | 77.5 | 216.9 | 77.5 | 451.3 | 77.8 | 4483 | 74.7 | 10.2 | 34.0 | 21.3 | 42,6
Period2 | 432.3 | 72.1 | 209.3 | 74.8 | 209.3 | 74.8 | 435.6 | 75.1 | 432.3 | 72.1 | 8.9 29.6 | 20.0 | 40.0
Period3 | 465.9 | 77.7 | 225.6 | 80.6 | 225.6 | 80.6 | 468.5 | 80.8 | 4659 | 77.7 | 11.6 | 38.7 | 23.2 | 464
Period4 | 503.9 | 84.0 | 243.7 | 87.1 | 2439 | 87.1 | 505.7 | 87.2 | 503.9 | 84.0 | 15.0 | 50.1 | 25.7 | 51.5
Period5 | 449.4 | 74.8 | 218.0 | 77.7 | 218.0 | 77.6 | 4519 | 77.8 | 4494 | 747 | 10.2 | 340 | O 0
Period6 | 433.1 | 72.2 | 209.1 | 74.7 | 209.1 | 74.7 | 436.3 | 75.2 | 433.1 | 72.2 | 8.9 29.6
Period7 | 466.1 | 77.7 | 227.6 | 81.6 | 225.6 | 80.6 | 468.5 | 80.8 | 4659 | 77.7 | 116 | 38.7
Period8 | 504.0 | 84.0 | 244.2 | 87.1 | 2439 | 87.1 | 506.7 | 87.3 | 504.9 | 84.1 | 15.0 | 50.1

o|Oo|Oo
o|Oo|Oo

It can be observed that the renewable energy generators usually have much less ELCC values compared
to those of conventional generators due to their intermittent nature. This is especially for solar power
plants that have no capacity credit at nighttime. Most generators also have different ELCC values in
different periods due to the different shapes of ELDC curves in these periods while considering the same
reliability levels. It is noteworthy that the ELCC values of conventional generators during the daytime
(Period 1 - Period 4) and nighttime (Period 5 - Period 8) are not necessarily the same if LDC curves are
modeled separately, and hence they are different during daytime and nighttime.

63



9.3 Case 2: High Penetration of Renewable Energy Sources in the Generation Mix
This case scenario accounts for 30%-35% of the total system capacity at the end of the planning
horizon. In this case study, MATPLAN was used to determine the optimal expansion plan with
high level (30-50%) of renewable energy penetration. Meanwhile, the LOLP was kept at the
same level or less by calibrating the reasonable capacity contribution of renewable energy
generators. The resulting MATPLAN’s optimal expansion plan is depicted in Figure 9-3. Figure
9-4 shows how the 30-35% renewable energy penetration target has been reached in the final
study year of 2038.

300 T T T T T T T T T T T T T T T T T T T T
I V-CC
I VL G1 _
250 [ | vLG2 T
[ vcoa
[CNucL
200 I:]Wind — i
" |:] Solar
= |
o0 150 | E
g — |
= |
5) _
=] —
& 100 .
‘-0—4 —
o I
)
E
g 50 .
Z

Figure 9-3 Optimal expansion plan — the case of high renewable energy penetration

64



B0

T T T T
L G1
G2
5 | I FcoAa ]
[ FoIL ]
P FeT o
N F-cc —
20 Emv-cc ] =l |
VLG
T vieG2
15 ] vcoa
[—InNucL
[ Iwind
1 :I Solar

Capacity (GW)

10

Year

Figure 9-4 The total system installed capacity - the case of high renewable energy penetration

It is observed in Figure 9-5 that even with the increase in renewable energy penetration over the study

years, the LOLP values were still kept at a quite low level if all renewable energy sources were treated as

positive power output generators (not using negative load methods). It can also be observed that the
nighttime LOLP values were larger than the daytime LOLP values due to the volatile capacity
contribution of solar power.

1 6 T T T T T T T T T T T T T T T T T T T 40
—#— LOLP (daytime)

14| ==§=-=LOLP (nighttime) 135
—E— Penetration rate

LOLP (%)
N
o
Penetration rate of renewable energy (%)

Figure 9-5 LOLP — the case of high renewable energy penetration

65



9.4 Case 3: Accounting for Multiple Locations of Renewable Energy Sources.

In this test case, different installed capacities of wind/solar power plants located in multiple locations
were studied to showcase the flexibility of MATPLAN in dealing with diverse input datasets. The
datasets came from (i) the NREL Grid Modernization project that provides national-wide wind/solar
datasets; (ii) the Eastern Wind Integration Data Set and Western Wind Integration Data Set
(https://www.nrel.gov/grid/wind-integration-data.html) that include meteorological conditions and
turbine power for more than 126,000 sites in the continental United States for the years 2007-2013; and
(iii) the Solar Power Data for Integration Studies (https://www.nrel.gov/grid/solar-power-
data.html), which consist of 1 year (2006) of 5-minute solar power and hourly day-ahead
forecasts for approximately 6,000 simulated PV plants.

The renewable energy sources, including their locations and characteristics used in this case study, are
summarized in Table 9-7.

Table 9-7 Multiple locations of selected renewable energy sources

Name WINDI WIND2 SOLARI1 SOLAR2

Type Wind Wind Solar Solar
Coordinate 38.477, -79.675 38.174, -84.408 36.650, -78.250 36.350,-115.950
State Virginia Kentucky Virginia Nevada

County Highland Fayette Albemarle Nye

Capacity (MW) 30 20 50 150

The result of MATPLAN’s optimal expansion planning considering multiple locations of renewable
energy sources is presented in Figure 9-6, in which renewable energy sources, including two wind farms
(WIND1 30MW and WIND2 20MW) and two solar farms (SOLAR1 50MW and SOLAR2 150MW)
dominate the newly added generating units. Since thermal plants usually have larger capacity than
renewable energy sources, they make up majority of the system capacity, which can be observed in Figure
9-7.

66



250

I v-cc _
I VLG1
N vLG2
200 | g veoa T
N NucL
[ IWIND1
[ IwIND2 ==
150 | ] soLAR" iy
[ 1soLAR2 — —

100

Number of generating units

50

Figure 9-6 Optimal expansion plan — the case of multiple locations of renewable energy sources

45

I FLG1
40 | I FLG2 i
I FcoA
|| I FoIL |
5 T

I F-cc
30 [ v-cc ]
T vLG1
25 - VLG2
[Cvcoa
20 HEZZTINuCL
[ IwIND1
15 | [ JwIND2
[ ISOLARH1
[ 1SOLAR2

Capacity (GW)

10

Figure 9-7 Total system installed capacity — the case of multiple locations of renewable energy sources



9.5 Case 4: Different Cost Structure of Different Types of Solar Panels
Different cost structures of different types of solar panels (e.g., monocrystalline, polycrystalline, fixed-tilt,
one-axis-tracking) were considered by taking into account different cost specifications. In order to see

the impact of different types of solar panels (e.g., monocrystalline, polycrystalline, fixed-tilt,
one-axis-tracking) with different cost structures on MATPLAN’s output, specifications of year-
by-year construction costs were added as one of the inputs to MATPLAN. The cost data were
extracted from NREL technical report: Cost-Reduction Roadmap for Residential Solar

Photovoltaics (PV), 2017-2030. (https://www.nrel.gov/docs/fy180sti/70748.pdf). Some general
cost information associated with different types of solar panels are summarized in Table 9-8.

Table 9-8 Cost structures (2017) of different types of solar panel

Type Residential Commercial Fixed-tilt utility- One-axis-tracking
scale utility-scale

Size Range 3-10kW 10kW-2MW >2MW >2MW

Cost 2.80 /W 1.85 §/W 1.03 /W 1.11 /W

Soft costs portion (e,g, 65% 50% 30% 32%

land acquisition, tax)

Labor costs portion 10% 5% 10% 8%

Hardware 10% 20% 25% 25%

Inverter 5% 5% 5% 5%

Module 10% 20% 30% 30%

Thus, by considering the different cost structures of different types of PV panels and the year-by-year cost
values, the increasing number of fixed-tilt PV units and one-axis tracking PV units in the expansion
planning plans could be seen in Figure 9-8. However, it is worth mentioning that the cost is not the only
factor that determines the final optimal expansion plan, which is also affected by various other factors,
such as specific tunnel width, relative cost of other energy sources and PV capacity size.

68



35 T T T T T T T T T T T T T T

—*— Fixed-tilt
—O— One-axis-tracking

30

= N N
)] [=) [$)]

Number of PV units

-
o

Figure 9-8 The increasing number of PV units in the expansion planning plan

9.6 Test the Implementation using Parallel-computing Toolbox

In some case studies, very long computational time was required to run MATPLAN in order to complete
the iteration involving a large amount of expansion configuration options. Hence, parallel computing
toolbox in MATLAB was used in loops to run independent iterations in parallel on multi-core CPUs.
Specifically, parfor loops were used, in which parfor automates the creation of parallel pools and
manages file dependencies.

parfor loopVar = initVal:endVal; statements; end executes the loop body commands in statements
for values of loopVar between initVal and endVal. loopVar specifies a vector of integer values
increasing by 1. If we have Parallel Computing Toolbox™, the iterations of statements can execute on
a parallel pool of workers on your multi-core computer or cluster.

For example, in one case study of 1205 candidate configurations in total (including wind1, wind2, solarl,
solar2), four working cores were used in parallel pool to reduce the total computing time from 150 min to
49min on a desktop with Intel Core i5-3340 CPU @ 3.10GHz and 8.00 GB RAM.

69



10.0 MATPLAN Software Access

The latest version of MATPLAN source code (version 1.0) has been made publically available on Github,
URL: https://github.com/wasp2019/MATPLAN, together with its Wiki that provides description
about MATPLAN overview, features, use guides as well as developer resources.

The screen capture of MATPLAN 1.0 page on Github is shown in Figure 10-1.

EJ wasp2019 / MATPLAN Private Y Fork 0
<> Code D Issues 0 1) Pull requests 0 i1 Insights
No description, website, or topics provided. Edit

Manage topics

D 2 commits

¥ 1branch

Branch: master v

..:.. wasp2019 Add files via upload

Create new file = Upload files = Find File Clone or download v

Latest commit 2ac948a 1 minute ago

I cartprod Add files via upload 1 minute ago
Bl projects/project_1/user_input Add files via upload 1 minute ago
il utils Add files via upload 1 minute ago
[E) CANDI_GEN.m Add files via upload 1 minute ago
E) CONFIG.m Add files via upload 1 minute ago
E) ELCC.m Add files via upload 1 minute ago
[E) EXIST_GEN.m Add files via upload 1 minute ago
E) LOAD_CALC.m Add files via upload 1 minute ago
E) OPTIMIZEm Add files via upload 1 minute ago
[E) README.md Add files via upload 1 minute ago
[E) configcounts.m Add files via upload 1 minute ago
[E) initiator.m Add files via upload 1 minute ago
E) instructions.txt Add files via upload 1 minute ago
[E) settings.json Add files via upload 1 minute ago

Figure 10-1 Screen capture of MATPLAN 1.0 page on Github

70



The screen capture of MATPLAN wiki page on Github is shown in Figure 10-2.

Welcome to the MATPLAN wiki!

MATPLAN stands for MATlab and probability-based PLANNing tool that is developed for resource
adequacy evaluation and production costing. As an open-source open-architecture software tool,
MATPLAN was engineered to provide lightweight and flexible modules to deal with generation
expansion planning (GEP) problems with consideration of renewable energy sources.

MATPLAN offers the following key features:

well as the variable nature of renewable energy sources (both solar PV and wind farms). It
combines both probabilistic and optimization technigues to allow the determination of optimal
system expansion policy and is in contrast to the current practice that treats these variable
sources as negative loads.

I

LJ

. I Modularization — MATPLAN comprises six modules to reduce its computation
complexity. These modules can work either coordinately or independently to provide useful
intermediate results for expansion planning. This kind of modularization design allows users to
reorganize and modify the decoupled modules for their own implementation purpose.

R A

K N
. Scalability - MATPLAN can handle up to 8760 time-division intervals, thousands of

generation expansion planning configuration candidates and long-term planning time horizon
(e.g., 15-30 years).

. .! Source code available for public access - MATPLAN's source codes — built on top of

the widely used MATLAB - have been made available for public access.

. - Parallel Computing Capability - MATPLAN provided an optional parallel computing
version that allows the users to leverage the MATLAB Parallel Computing Toolbox ™ for higher
computational efficiency and speed up the calculation process.

Developer Resources

Figure 10-2 Screen capture of MATPLAN Wiki page on Github

71



Appendix

Publications List

1. Zhang, X., Pipatanasomporn, M. and Rahman, S. (2018, October). A Comprehensive
Analysis of Renewable Energy Representations in Power System Generation Expansion
Planning. In 2018 International Conference and Ultility Exhibition on Green Energy for
Sustainable Development (ICUE) (pp. 1-6). IEEE.

2. Chen, T., Pipatanasomporn, M., Rahman, |., Jing, Z., Adhikari. R., Zhang, X. and
Rahman, S. (2019) MATPLAN: A Probability-based Planning Tool for Cost-effective

Integration of Renewable Energy into the Electricity Grid. IEEE Transactions on
Sustainable Energy. (under review)

3. Chen, T., Pipatanasomporn, M. and Rahman, S. (2019) Mainstreaming Renewable
Energy Sources into Generation Expansion Planning Using MATPLAN. (in preparation)

72



