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EXECUTIVE SUMMARY 
 
Funded by the U.S. Department of Energy during 2017-2019, the resource adequacy evaluation and 
production costing tool, called MATPLAN (MATlab and probability-based PLANning), was developed. 
MATPLAN can take into account the variable nature of renewable energy sources (both solar PV and 
wind farms), rather than considering deterministic data as in the current practice. It combines both 
probabilistic and optimization techniques to allow the determination of optimal system expansion policy 
and perform effective load carrying capacity (ELCC) analysis of a system with high renewable 
penetration. This is in contrast to the current practice that treats these variable sources as negative loads. 
This tool expects to benefit system planners by enabling them to consider renewable energy sources as 
options for their expansion plans. System operators can use MATPLAN to calculate the capacity credit 
for each solar/wind farm using probabilistic forecasts, thus enabling quantification of the operating 
reserve requirements to cope with uncertainty and variability of solar/wind output committed in the 
market. 

Aiming at implementing the functionality and flexibility to deal with various production costing 
problems, MATPLAN comprises the following key modules:  

q LOAD-CALC module – is the load input module that requires system load during the planning 
horizon (e.g., 30 years) as the input. The major goal for the LOAD-CALC module is to generate 
the equivalent load duration curve (ELDC) of an existing power system, considering the forced 
outage of all generators, if any.  

q EXIST-GEN module – consists of two sub-modules, EXIST-TH and EXIST-RE, that model 
the characteristics of existing conventional and renewable power plants. It requires the number 
of additions or retirements of each type generator and the year of such changes. 

q CANDI-GEN module – consists of two sub-modules, CANDI-TH and CANDI-RE, that model 
the characteristics of candidate conventional and renewable power plants. Reserve margin 
requirements are also specified in this module through a JSON format file, CANDI-GEN.json. 

q CONFIG module – is the expansion configuration module that generates additional constraints 
for the optimization problem in the OPTIMIZE module. It narrows down possible expansion 
configurations based on constraints inputted by a user. Required input data include, for example, 
minimum/maximum reserve requirements, minimum/maximum numbers of a particular 
expansion candidate that can be installed in a given year, and the acceptable LOLP in a given 
study period. The CONFIG module is used to generate all valid configurations over the planning 
horizon. 

q OPTIMIZE module – is the optimization module that combines probabilistic 
and optimization techniques to determine the optimal system expansion policy based on inputs 
defined in other modules. The objective function has been formulated to take into account 
probabilistic model of generator availability, including renewable energy sources. This module 
also takes care of all economic calculation and cash flow analysis. 

q ELCC module – is effective load carrying capability module responsible for calculating ELCC 
value of each power plant, including renewables, selected as expansion candidates. The output 
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of this model is the capacity credit of each new unit as the capacity added to a system, allowing 
the load to increase without compromising the generation adequacy. 

These six modules when working together allows the user to consider renewable energy as options for 
expansion planning using a probability-based model. They can also handle different types of user-defined 
input data formats. The developed tool has been validated through comparison with another similar 
software package and further tested using realistic field data. The complete code repository has been 
released under the open-source license for public access. 

The latest MATPLAN source code, together with its implementation and developer guides, have been 
made available on an online repository at https://github.com/wasp2019/MATPLAN.   
 
 
 
  



 iii 

Table of Content 
	
 
EXECUTIVE	SUMMARY	.............................................................................................................	i	
Table	of	Content	.....................................................................................................................	iii	
List	of	Figures	..........................................................................................................................	v	
List	of	Tables	.........................................................................................................................	vii	
1.0	 Summary	of	Tasks	Proposed	and	Accomplishments	.....................................................	1	
1.1	Tasks	Proposed	.....................................................................................................................	1	
1.2	Accomplishments	.................................................................................................................	2	

2.0	 Introduction	to	MATPLAN	............................................................................................	4	
2.1	What	is	MATPLAN?	...............................................................................................................	4	
2.2	MATPLAN	Key	Features	........................................................................................................	4	
2.3	Description	of	MATPLAN	Modules	.......................................................................................	5	
2.4	Summary	Description	of	MATPLAN	Computer	Code	............................................................	6	

3.0	 LOAD-CALC	Module	......................................................................................................	8	
3.1	Overview	of	LOAD-CALC	Module	.........................................................................................	8	
3.2	Inputs	of	LOAD-CALC	Module	...............................................................................................	8	
3.3	Outputs	of	LOAD-CALC	Module	..........................................................................................	11	

4.0	 EXIST-GEN	Module	.....................................................................................................	13	
4.1	Overview	of	EXIST-GEN	Module	.........................................................................................	13	
4.2	Input	of	EXIST-TH	Submodule	............................................................................................	13	
4.2	Input	of	EXIST-RE	submodule	.............................................................................................	16	
4.3	Output	of	EXIST-TH	and	EXIST-RE	Submodules	..................................................................	19	

5.0	 CANDI-GEN	Module	...................................................................................................	20	
5.1	Overview	of	CANDI-GEN	Module	.......................................................................................	20	
5.2	Multi-state	Representation	for	Renewable	Power	Plants	..................................................	20	
5.3	Input	of	CANDI-TH	Submodule	...........................................................................................	23	
5.4	Input	of	CANDI-RE	Submodule	...........................................................................................	25	
5.5	Output	of	CANDI-TH	and	CANDI-RE	Submodules	...............................................................	28	

6.0	 CONFIG	Module	.........................................................................................................	30	
6.1	Overview	of	CONFIG	Module	.............................................................................................	30	
6.2	Inputs	of	CONFIG	Module	..................................................................................................	31	
6.3	Outputs	of	CONFIG	Module	...............................................................................................	33	
6.4	Configuration	Tree	Data	Structure	.....................................................................................	34	

7.0	 OPTIMIZE	Module	......................................................................................................	41	
7.1	Overview	of	OPTIMIZE	Module	..........................................................................................	41	
7.2	Cost	Calculation	..................................................................................................................	41	
7.3	Maintenance	Mechanism	...................................................................................................	45	
7.4	Energy	Dispatch	..................................................................................................................	47	
7.5	Graph	Structure	and	Search	...............................................................................................	48	
7.6	Input	of	OPTIMIZE	Module	.................................................................................................	52	
7.7	Output	of	OPTIMIZE	Module	..............................................................................................	52	

8.0	 ELCC	Module	..............................................................................................................	55	



 iv 

8.1	Overview	of	ELCC	Module	..................................................................................................	55	
8.2	Theoretical	Analysis	of	ELCC	values	....................................................................................	55	
8.3	Input	of	ELCC	Module	.........................................................................................................	57	
8.4	Output	of	ELCC	Module	......................................................................................................	57	

9.0	 Validation	and	Case	Study	..........................................................................................	59	
9.1	Validation	using	WASP	.......................................................................................................	59	
9.2	Case	1:	Low	Penetration	of	Renewable	Energy	Sources	in	the	Generation	Mix	................	61	
9.3	Case	2:	High	Penetration	of	Renewable	Energy	Sources	in	the	Generation	Mix	...............	64	
9.4	Case	3:	Accounting	for	Multiple	Locations	of	Renewable	Energy	Sources.	........................	66	
9.5	Case	4:	Different	Cost	Structure	of	Different	Types	of	Solar	Panels	..................................	68	
9.6	Test	the	Implementation	using	Parallel-computing	Toolbox	.............................................	69	

10.0	 MATPLAN	Software	Access	........................................................................................	70	
 
  



 v 

List of Figures 
	
Figure	1-1.	Proposed	tasks	according	to	the	SOPO	........................................................................	2	
Figure	2-1	Organizations	represented	by	WASP	advisory	committee	...........................................	5	
Figure	2-2	MATPLAN	architecture	with	different	modules	............................................................	6	
Figure	2-3	The	overall	relationship	of	MATPLAB	computer	code	files	...........................................	7	
Figure	3-1	Example	of	input	to	the	LOAD-CALC	module	................................................................	9	
Figure	3-2	Type	[1]	input	(left)	and	WASP	standard	“points”	input	for	LDC	(right)	.....................	10	
Figure	3-3	Type	[2]	input	(left)	and	WASP	standard	“coefficients”	input	for	LDC	(right)	.............	10	
Figure	3-4	Normalized	inverted	LDC	plots	from	three	types	of	user	inputs	.................................	11	
Figure	3-5	The	structure	of	LDC	data	information	.......................................................................	12	
Figure	4-1	Example	of	input	to	the	EXIST-TH	module	..................................................................	14	
Figure	4-2	Capacity	of	all	26	generators	in	the	example	..............................................................	16	
Figure	4-3	Forced	outage	rate	of	all	26	generators	in	the	example	.............................................	16	
Figure	4-4	Example	of	input	to	the	EXIST-RE	module	...................................................................	18	
Figure	4-5	The	output	structure	of	existing	generator	information	.............................................	19	
Figure	5-1	Inverted	V-P	Chart	.......................................................................................................	21	
Figure	5-2	Example	of	input	to	the	CANDI-TH	submodule	...........................................................	24	
Figure	5-3	Example	of	input	to	the	CANDI-RE	submodule	...........................................................	27	
Figure	5-4	The	output	structure	of	candidate	generator	information	.........................................	29	
Figure	6-1	Example	of	configuration	evolution	............................................................................	31	
Figure	6-2	Configuration	of	system	reserve	margin	in	the	CANDI-GEN.json	................................	32	
Figure	6-3	Configuration	of	an	example	candidate	generator	in	the	CANDI-GEN.json	................	32	
Figure	6-4	Screen	capture	of	generated	configuration	candidates	index	79-100	........................	33	
Figure	6-5	The	output	structure	of	configuration	candidate	information	...................................	34	
Figure	6-6	Tree	data	structure	of	configurations	.........................................................................	34	
Figure	6-7	Class	of	configuration	tree	structure	in	MATLAB	code	...............................................	35	
Figure	6-8	Screen	capture	of	generated	configuration	in	2017	from	WASP	................................	40	
Figure	6-9	Screen	capture	of	generated	configuration	in	2017	from	MATPLAN	..........................	40	
Figure	7-1	Schematic	diagram	of	cash	flows	for	an	expansion	plan.	...........................................	42	
Figure	7-2	Illustration	of	maintenance	schedule	with	energy	blocks	...........................................	46	
Figure	7-3	Implementation	code	of	the	maintenance	mechanism	..............................................	47	
Figure	7-4	The	workflow	of	OPTIMIZE	module	............................................................................	48	
Figure	7-5	Screen	capture	of	building	graph	structure	................................................................	50	
Figure	7-6	Graph	structure	of	example	configuration	candidates	...............................................	51	
Figure	7-7	Screen	capture	of	tree	search	code	structure	for	optimal	solution	............................	52	
Figure	7-8	The	output	structure	of	optimal	generation	expansion	plan	information	..................	53	
Figure	7-9	Print-out	of	several	example	configuration	evolution	................................................	53	
Figure	7-10	Print-out	of	the	final	optimal	solution	of	expansion	plan	.........................................	54	
Figure	8-1	ELCC	calculation	illustration	........................................................................................	56	
Figure	8-2	Print-out	of	ELCC	values	for	the	first	period	over	20	years	.........................................	57	
Figure	8-3	The	output	structure	of	ELCC	value	information	........................................................	58	



 vi 

Figure	9-1	Normalized	power	output	of	PV	and	wind	farms	during	one	year	(using	a	24-hour	
moving	average	window)	.....................................................................................................	62	

Figure	9-2	Optimal	expansion	plan	–	the	case	of	low	renewable	energy	penetration	................	63	
Figure	9-3	Optimal	expansion	plan	–	the	case	of	high	renewable	energy	penetration	...............	64	
Figure	9-4	The	total	system	installed	capacity	-	the	case	of	high	renewable	energy	penetration

	..............................................................................................................................................	65	
Figure	9-5	LOLP	–	the	case	of	high	renewable	energy	penetration	.............................................	65	
Figure	9-6	Optimal	expansion	plan	–	the	case	of	multiple	locations	of	renewable	energy	sources

	..............................................................................................................................................	67	
Figure	9-7	Total	system	installed	capacity	–	the	case	of	multiple	locations	of	renewable	energy	

sources	.................................................................................................................................	67	
Figure	9-8	The	increasing	number	of	PV	units	in	the	expansion	planning	plan	...........................	69	
Figure	10-1	Screen	capture	of	MATPLAN	1.0	page	on	Github	.....................................................	70	
Figure	10-2	Screen	capture	of	MATPLAN	Wiki	page	on	Github	...................................................	71	
	 	



 vii 

List of Tables 
	
Table	1-1	Summary	of	accomplishments	.......................................................................................	2	
Table	4-1	Parameters	of	thermal	plants	required	for	EXIST-TH	...................................................	15	
Table	5-1	Information	needed	to	model	wind	generation,	specified	as	the	inputs	in	the	‘CANDI-

GEN.json’	files	.......................................................................................................................	22	
Table	5-2	Parameters	of	thermal	plants	required	for	CANDI-TH	.................................................	25	
Table	6-1	Configuration	example	for	a	specific	year	....................................................................	30	
Table	6-2	Inputs	and	outputs	of	the	CONFIG	module	..................................................................	31	
Table	9-1	Important	parameters	of	the	existing	conventional	power	plants	..............................	59	
Table	9-2	Yearly	information	for	the	studied	system	...................................................................	60	
Table	9-3	Optimal	solutions	from	MATPLAN	vs.	WASP	................................................................	60	
Table	9-4	Time	period	division	for	renewable	energy	..................................................................	61	
Table	9-5	Characteristics	of	candidate	renewable	energy	generators	.........................................	62	
Table	9-6	ELCC	of	candidate	generators	in	different	periods	.......................................................	63	
Table	9-7	Multiple	locations	of	selected	renewable	energy	sources	...........................................	66	
Table	9-8	Cost	structures	(2017)	of	different	types	of	solar	panel	..............................................	68	



 1 

1.0 Summary of Tasks Proposed and Accomplishments 
 
This section summarizes project tasks based on the statement of project objective (SOPO) and the overall 
accomplishments, as well as the success toward meeting the project technical requirements.  
 
1.1 Tasks Proposed  
 
This project was divided into three phases, where Phase 1 (September 2017-September 2018) involved all 
the module development; Phase 2 (October 2018-March 2019) involved validation and software 
enhancement; and Phase 3 (April 2019-September 2019) involved case studies for functionality tests and 
result evaluation.  
 
Figure 1-1 summarizes all tasks of this project, which is the excerpt from the SOPO as proposed by the 
Virginia Tech team.   
	
 
PHASE 1: Develop the proposed expansion planning tool 
 
Task 1: Develop the LOAD-CALC module 
The key LOAD-CALC capability is to convert the hourly load input into an equivalent load duration curve (ELDC) 
seen by each possible generator for each study period. This can be derived by first, constructing the Load Duration 
Curve (LDC) based on the hourly forecasted load input data. 
 
Task 2: Develop the EXIST-TH and CANDI-TH modules 
Under this task, both EXIST-TH and CANDI-TH modules will be developed. Both modules will take user inputs 
about thermal and hydro units (e.g., capacity of existing power plants, fuel types, minimum and maximum 
capacity, FOR and maintenance requirements) and generates output files that summarize characteristics of 
these plants. While EXIST-TH focuses on existing power generating units, CANDI-TH focuses on candidates for 
power system expansion during the planning horizon. These modules also generate constraints for thermal and 
hydro units for use in the optimization module, such as: rating capacity of power plants that limit their generation 
output, a minimum generation requirement that indicates, if a plant is in operation, it has to operate at least a 
certain percentage of its installed capacity, etc. 
 
Task 3: Develop the EXIST-RE and CANDI-RE modules 
The EXIST-RE module will be developed takes user inputs about renewable energy units (e.g., the hourly output 
data, either historical or forecasted, FOR and maintenance requirements). They generate output files that 
summarize characteristics of existing renewable plants. While EXIST-RE focuses on existing renewable units, 
CANDI-RE focuses on renewable candidates for power system expansion during the planning horizon. These 
modules also generate constraints for renewable generating units for use in the optimization module, such as the 
limit of their generation output, depending on historical/forecasted data for each period. 
 
Task 4: Develop the CONFIG module 
Under this task, the CONFIG module will be developed to translate additional system-related inputs to additional 
constraints for the optimization module. These constrains are for example, the required reserve during each study 
period; the annual emission cap; and the reliability requirement of the system (LOLP). With these constraints, it 
allows the OPTIMIZE module to only consider allowable system configurations or possible expansion 
configurations based on constraint inputs form a user. 
 
Task 5. Develop the OPTIMIZE module 
Under this task, the OPTIMIZE module will be developed that combines probabilistic and optimization techniques 
to determine the optimal system expansion policy based on inputs defined in other modules. All economic 
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calculations are included, such as present-value calculations and escalation of fuel prices. 
 
Task 6. Develop the ELCC module 
The ELCC module is responsible to calculate ELCC of each existing and candidate power plants. This module will 
determine the ELCC of a power plant by measuring the contribution of an individual generator to system capacity 
with and without the generator of interest. This method can be explained as follows: first, take a note of the 
original system installed capacity (MW) and LOLP from the OPTIMIZE module as benchmark values. Second, 
remove the generator of interest and rerun the OPTIMIZE module with a new constraint to keep the original 
LOLP. Then, take a note of the revised system installed capacity (MW). The difference between the benchmark 
capacity and the revised system capacity is the ELCC of the generator in question. The module is rerun to obtain 
ELCC of all power plants. 
 
PHASE 2: Validate the proposed tool 
Task 7. Validate the proposed tool with a well-known expansion planning software, like WASP 
Under this task, we will compare the resulting optimal solution of the proposed tool with that of a well-known 
expansion planning software, like WASP. This will allow us to verify the validity of the proposed tool for the 
expansion planning with traditional power plants, like thermal and hydro. However, the model’s applicability to 
integrate renewables will need another step (task 8) for validation. 
 
Task 8. Validate the proposed tool based on uncertainty parameters in the forecast 
Under this task, the team will develop several possible solutions based on the confidence intervals of solar/wind 
forecasts while meeting all constraints. Solutions will be listed with confidence intervals explicitly stated to be 
used by ISOs/RTOs and marketers depending on their risk appetite. 
 
PHASE 3: Run a case study based on a real-world data 
Task 9. Run a case study  
Once the tool is validated, it will be run using field data to showcase its applicability in a real-world environment. 
The team will have access to real-world data for our case studies from our industry partners, as indicated in the 
letters of support. 

Figure 1-1. Proposed tasks according to the SOPO 

 
 
1.2 Accomplishments  
 
Accomplishments are summarized by Task, as shown in the table below. 
 

Table 1-1 Summary of accomplishments  
Tasks Summary of accomplishments Details in 

Task 1: Develop the LOAD-
CALC module 

LOAD-CALC module was developed and tested individually 
with adopting LDC data. 
 

Sections 3.0  

Task 2: Develop the EXIST-TH 
and CANDI-TH modules 
 

EXIST-TH and CANDI-TH sub-modules were developed and 
combined with EXIST-RE and CANDI-RE respectively.  

Section 4.0 
and 5.0 

Task 3: Develop the EXIST-RE 
and CANDI-RE modules 
 

EXIST-RE and CANDI-RE sub-modules were developed and 
combined with EXIST-TH and CANDI-TH respectively. 

Section 4.0 
and 5.0 

Task 4: Develop the CONFIG 
module 

CONFIG module was developed and verified individually with 
outputs of CONGEN functionality of WASP. 

Sections 6.0 

Task 5. Develop the 
OPTIMIZE module 
 

OPTIMIZE module was developed. Section 7.0 
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Task 6. Develop the ELCC 
module 
 

ELCC module was developed. Section 8.0 

Task 7. Validate the proposed 
tool with a well-known 
expansion planning software, 
like WASP 
 

Validation of the developed tool, MATPLAN, was performed by 
comparison with the WASP package. 

Section 9.0 

Task 8. Validate the proposed 
tool based on uncertainty 
parameters in the forecast 
 

Validation of the developed tool, MATPLAN, considering 
uncertainty and probabilistic model of renewable energy sources, 
was performed. 

Section 5.0 
and 9.0 

Task 9. Run a case study Case studies were performed under different scenarios:  
(1) low penetration rate of renewable energy sources,  
(2) high penetration rate of renewable energy sources,  
(3) multi-location of renewable energy sources, and  
(4) different year-by-year cost structures of solar panels. 
 

Section 9.0 

Task 14: Project Management 
and Reporting (all Phases) 

• Quarterly progress reports were submitted every quarter. 
• Peer review progresses were presented in June 2018 and June 

2019.  
• Final report was submitted in September 2019 (This report). 

 

This 
document 
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2.0 Introduction to MATPLAN 
 
2.1 What is MATPLAN? 
 
MATPLAN stands for MATlab and probability-based PLANning tool that was developed for resource 
adequacy evaluation and production costing. MATPLAN was engineered to provide lightweight and 
flexible modules to deal with generation expansion planning (GEP) problems with consideration of 
renewable energy sources. MATPLAN offered: scalability, modularization, flexibility, interoperability, as 
well as parallel computing capability.  Built on the widely used MATLAB, MATPLAN’s source codes 
are available for public access.  

 
2.2 MATPLAN Key Features 
 
MATPLAN offers the following key features:  

q Flexibility – MATPLAN can account for different types of thermal generator plants, as well as 
the variable nature of renewable energy sources (both solar PV and wind farms). It combines 
both probabilistic and optimization techniques to allow the determination of optimal system 
expansion policy and is in contrast to the current practice that treats these variable sources as 
negative loads. MATPLAN can also handle different input data formats, different cost structures 
of renewable energy sources, different time-division manners, and multiple renewable locations. 

q Modularization – MATPLAN comprises six modules to reduce its computation complexity. 
These modules can work either coordinately or independently to provide useful intermediate 
results for expansion planning. This kind of modularization design allows users to reorganize 
and modify the decoupled modules for their own implementation purpose. 

q Scalability – MATPLAN can handle up to 8760 time-division intervals, thousands of generation 
expansion planning configuration candidates and long-term planning time horizon (e.g., 15-30 
years). If powered by its optional parallel computing capability, MATPLAN can handle even 
larger case studies with a large number of existing power generating units and candidates and 
longer-term planning horizon. 

q Source code available for public access – MATPLAN’s source codes – built on top of the 
widely used MATLAB – have been made available for public access.  

q Parallel Computing Capability – MATPLAN provides an optional parallel computing version 
that allows the users to leverage the MATLAB Parallel Computing Toolbox	™ for higher 
computational efficiency and speed up the calculation process. By using this feature, 
MATPLAN can handle larger-scale study cases without compromise for the running time. 

q Support from the Advisory Committee – MATPLAN was developed in consultation with an 
advisory committee from the beginning of the project. MATPLAN advisory committee 
comprised representatives from the following organizations: Policy and Economic Studies 
MISO, Dominion Virginia Power (DOM), Utility Variable-generation Integration Group, 
Operational Analytics NaturEner, and Renewable Energy Integration California ISO. See Figure 
2-1.  
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Figure 2-1 Organizations represented by WASP advisory committee 

 
2.3 Description of MATPLAN Modules 
	
MATPLAN has been designed to perform power system expansion planning considering renewable 
energy sources using a probability-based model.  Its software architecture is modular and is similar to that 
of a well-known generation expansion planning tool, Wien Automation System Planning (WASP). The 
MATPLAN architecture is depicted in Figure 2-2, comprising six modules - LOAD-CALC, EXIST-GEN 
(including EXIST-TH and EXIST-RE), CANDI-GEN (including CANDI-TH and CANDI-RE), 
CONFIG, OPTIMIZE and ELCC. These modules when working together allow the user an ability to 
consider renewable energy sources as options for expansion planning using a probability-based model. 
LOAD-CALC collects electrical load information at the system level and builds equivalent load duration 
curves. EXIST-GEN consists of two sub-modules, EXIST-TH and EXIST-RE, that model the 
characteristics of existing conventional and renewable power plants, respectively. CANDI-GEN consists 
of two sub-modules, CANDI-TH and CANDI-RE, that model the characteristics of candidate 
conventional and renewable power plants, respectively. CONFIG generates all candidate configurations 
(i.e., mix of power plants) with consideration of various constraints. OPTIMIZE generates the optimal 
solution or the most cost-effective generation expansion plan. ELCC calculates capacity credit of each 
scheduled conventional and renewable power plant. Their detailed functionalities are introduced 
individually in subsequent Chapters. 



 6 

	
Figure 2-2 MATPLAN architecture with different modules 

	

2.4 Summary Description of MATPLAN Computer Code 
MATPLAN consists of various computer files that are responsible for different functionalities. All of 
these modules should run sequentially to obtain the optimal expansion planning configurations and ELCC 
values. The successful implementation of selected modules may depend on the outputs of other modules 
and user-defined input data specified in setting files. The overall relationship of MATPLAB computer 
code files is depicted in Figure 2-3. 
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Figure 2-3 The overall relationship of MATPLAB computer code files 
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3.0 LOAD-CALC Module  
 
The key LOAD-CALC capability is to convert the hourly load input into an equivalent load duration 
curve (ELDC) seen by each possible generator for each study period. This can be derived by first, 
constructing the Load Duration Curve (LDC) based on the hourly forecasted load input data. 
 
3.1 Overview of LOAD-CALC Module 
 
LOAD-CALC is the load input module that requires power demand during the planning horizon (e.g., 30 
years) as the input. While WASP allows the maximum of 12 study periods in a year, the developed tool 
allows up to 8,760 study periods per year (hourly simulation for the whole year). This enables the study to 
be granular taking into account variations in renewable energy output. Forecasted load data from 
commercially or publically available software can be used as an input. The major goal for the LOAD-
CALC module is to generate the equivalent load duration curve (ELDC) of an existing power system, 
considering the forced outage of all generators, if any. Three types of inputs are needed to determine 
ELDC: 1) original hourly load curve/data; 2) generator information such as thermal plant capacity and 
forced outage rate (FOR); 3) generation profiles of wind or solar plants and penetration rate. Similar to 
the LOADSY module in WASP, the LOAD-CALC module transforms the user inputs into the desired 
data format, and generates system load profiles for future usage.  The LOAD-CALC module has been 
developed in MATLAB, called ‘LOAD_CALC.m’.   
 
3.2 Inputs of LOAD-CALC Module 
 
The LOAD-CALC module accepts user inputs in a JSON format.  The inputs of LOAD-CALC module 
have been designed to include: 

• Planning start year 

• Planning end year 

• Peak load of each year 

• One of the three types of data representing the system load duration curve  

A user can specify the above information in the path of ‘root/projects/project_1/user_input/LOAD-
CALC.json’. An example of this file is demonstrated in Figure 3-1. 
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{ 
    "start": [2020], 
    "end": [2035], 
    "peak": [6000, 6333, 6725.65, 7109.01, 7496.45, 7897.51, 8304.23, 
        8702.83, 9120.57, 9558.36, 10017.2, 10488, 10980.9, 11497, 12025.9, 12579.1],  
    "ldc_data": { 
        "0": { 
  "year": [2020], 
  "type": [0], 
  "path":"projects/project_1/user_input/data/dom_2016.csv" 
 }, 
        "1": { 
  "year": [2025], 
  "type": [1], 
  "path":"projects/project_1/user_input/data/ldc_points.csv" 
 }, 
        "2": { 
  "year": [2030], 
  "type": [2], 
  "path":"projects/project_1/user_input/data/ldc_coefficients.csv" 
         } 
} 

Figure 3-1 Example of input to the LOAD-CALC module 

 

 

 

In the example above: 

• “start” and “end” specify the start and end years of the planning horizon.  
-   In this example, the planning horizon is from 2020 to 2035. 
 

• “peak” specifies the annual peak load during the planning horizon in MW. 
-   In this example, the annual peak load in years 2020, 2021,…, 2035 are 6000MW, 6333MW,…, 
12,579.1MW, respectively.  
 

• “ldc_data” specifies load duration curves (LDC) during the planning horizon. 
- In this example, three sets of “ldc_data” inputs are provided.  

o ldc_data(0) specifies the load of years 2020-2024 that are of input "type": [0] and 
"path":"projects/project_1/user_input/data/dom_2016.csv" 

o ldc_data(1) specifies the load of years 2025-2029 that are of input "type": [1] and 
"path":"projects/project_1/user_input/data/ldc_points.csv" 

o ldc_data(2) specifies the load of years 2030-2035 that are of input "type": [2] and 
"path":"projects/project_1/user_input/data/ldc_coefficients.csv" 

- Notice that, the “ldc_data” can be provided according to a “year” range based on different 
input types. 

- The “ldc_data” has three input types [0], [1] and [2], which can be explained as follows: 
"type": [0] - indicates that a user provides ‘hourly load data’ as the input.  The input file 
must be in CSV file format, and its data have the dimension of 365*24.  Each row contains 
the load data (in MW) of each day in a year (from Jan 1 to Dec 31), and each column contains 
the load data (MW) of each hour (from 00:00 to 23:00)  in a day. These input data (i.e., 
hourly load) is sorted in the LOAD-CALC module to create the inverted load duration curve.  
In this case, the user is allowed to directly provide the hourly load profile as the input to the 
software without having to preprocess the data. 
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"type": [1] - indicates that a user provides ‘points representation of load duration curve’ as 
the input.  This input is provided as a set of two-column data, specifying any number of 
points on the LDC with X-axis as load and Y-axis as duration (in a CSV file).  See Figure 3-
2(left).  This is similar to the WASP standard “points” input for LDC, as shown in Figure 3-
2(right).  

 

Type [1] input example: 

Load Duration 
0.4 1 

0.4138 0.98 
0.424 0.96 

… … 

0.9964 0.001 
1 0 

 

 

 

Figure 3-2 Type [1] input (left) and WASP standard “points” input for LDC (right) 

	
 "type": [2] - indicates that a user provides ‘coefficient representation of load duration 

curve’ as the input.  This input is provided as a single row of data with 6 elements (A0, A1, 
A2, A3, A4 and A5), representing the 5th order polynomial fitting of the load duration curve 
(in a CSV file).  The first column is the coefficient of the intercept and the last column is the 
coefficient of the 5th order component.  See Figure 3-3(left).  This is similar to the WASP 
standard “coefficients” input to represent LDC using the 5th order polynomial expression, as 
shown in Figure 3-3(right). 

 

 

Type [2] input example: 

A0 A1 A2 A3 A4 A5 
1 -3.6 16.6 -36.8 36 -12.8 

 

 

 
Figure 3-3 Type [2] input (left) and WASP standard “coefficients” input for LDC (right) 
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The input file format is required to be in the CSV format.  These raw input files can be anywhere in the 
computer system as long as the paths are correctly given, however, it is a good practice to organize them 
in the project data folder:  

projects/project_1/user_input/data/ 

 

3.3 Outputs of LOAD-CALC Module 
 
The developed LOAD-CALC module has been tested with publically available system load data (from 
PJM metered load data (URL: http://www.pjm.com/markets-and-operations/ops-analysis/historical-load-
data.aspx).  Figure 3-4 illustrates the normalized inverted load duration curves using Types [0], [1] and 
[2] inputs.   

	
Figure 3-4 Normalized inverted LDC plots from three types of user inputs 

 
By executing the ‘LOAD-CALC.m’ module, the inverted normalized LDC data are ready to use in the 
‘ldc_data’ variable.  
 

Outputs of the LOAD-CALC module: 

In addition to the inverted normalized LDC, outputs of the LOAD-CALC module include: 

• Planning period: an array of all years in the planning horizon, e.g., [2020, 2021, …, 2034, 2035]. 
• Annual peak load of each year in array 
• LDC Year: the years when the type of LDC profile changes, e.g., [2020, 2025, 2030] in the 

example above. 
• LDC data: the X-Y points depicting the normalized inverted load duration curves, one for each 

LDC year. This variable is a struct in MATLAB, according to the specified number of LDC 
years. 

The variables above are used in other modules, and are saved in structure variable system_info and a 
‘.mat’ file under the path of ‘root/projects/project_1/project_data/LOAD_CALC.mat’.  The variable 
names are ‘study year’, ‘annual_load_peak’, ‘ldc_year’ and ‘ldc_data’, respectively. The structure of 
LDC data information stored in the structure variable system_info is depicted in Figure 3-5. 
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Figure 3-5 The structure of LDC data information 

 

Designed verification for user input in case of invalid configuration: 
User input validation is also developed for checking the dimension mismatch. For example, the code 
example below checks if the number of years in the planning horizon matches with the number of annual 
load peak provided. When a dimension mismatch is detected, the program is suspended and an error 
message is displayed. 
if length(study_year) ~= length(annual_load_peak) 
    error('Year number and annual load peak configuration do not match!') 
end 
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4.0 EXIST-GEN Module 
 
EXIST-GEN module is responsible for collecting user-defined input data and various types of parameters 
to characterize the existing power plants (both thermal plants and renewables).  
 
4.1 Overview of EXIST-GEN Module 
 
EXIST-GEN consists of two sub-modules, EXIST-TH and EXIST-RE, that model the characteristics of 
existing conventional and renewable power plants. It requires the number of additions or retirements of 
each type generator and the year of such changes. The characteristics of conventional generating units are 
kept in the EXIST-TH sub-module. In the EXIST-RE sub-module, on the other hand, a renewable energy 
unit is also defined with some parameters modified. For instance, a renewable energy unit usually has no 
heat rate and zero fuel cost, as well as a different operation and maintenance (O&M) cost structure. 

 

4.2 Input of EXIST-TH Submodule 
	
Inputs of the EXIST-TH: 

The inputs of EXIST-TH module have been designed to include: 

• Generator type code 
• Unit number of such generator type 
• Parameters used to describe such generator type 
• Existing addition and retirement plan for the planning horizon 

A user can specify these input parameters in a JSON format file in the path of 
‘root/projects/project_1/user_input/EXIST-GEN.json’. An example of this file is demonstrated below in 
Figure 4-1. These six different types of generators are from the WASP demonstration case study. 

 
[ 
  {"type": "thermal", 
  "code": "FLG1", 
  "unit_number": 4, 
  "forced_outage_rate":10, 
  "capacity": [270, 270, 270, 270, 270, 270, 270, 270], 
  "para": [150, 270, 1, 3300, 2850, 10, 10, 56, 270, 600, 0, 4.06, 4.9, 1800, 
2.5, 1.0], 
  "existing_plan": {"number": [-1, -1], "year": [2003, 2014]}}, 
   
 {"type": "thermal", 
  "code": "FLG2", 
  "unit_number": 9, 
  "forced_outage_rate":8.9, 
  "capacity": [276, 276, 276, 276, 276, 276, 276, 276], 
  "para": [150, 276, 2, 2900, 2550, 10, 8.9, 56, 280, 495, 0, 1.91, 2.0, 
1800, 2.5, 1.0], 
  "existing_plan": {"number": [-1, -1, -1], "year": [2006, 2009, 2014]}}, 
   
 {"type": "thermal", 
  "code": "FCOA", 
  "unit_number": 1, 
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  "forced_outage_rate":8.0, 
  "capacity": [580, 580, 580, 580, 580, 580, 580, 580], 
  "para": [400, 580, 3, 2800, 2300, 10, 8.0, 48, 600, 800, 0, 2.92, 5.0, 
6000, 1.0, 2.0], 
  "existing_plan": {"number": [1], "year": [1999]}}, 
   
 {"type": "thermal", 
  "code": "FOIL", 
  "unit_number": 7, 
  "forced_outage_rate":7.3, 
  "capacity": [145, 145, 145, 145, 145, 145, 145, 145], 
  "para": [80, 145, 4, 2450, 2150, 10, 7.3, 42, 140, 0, 833, 4.57, 1.6, 
10000, 1.0, 3.0], 
  "existing_plan": {"number": [-1, -1], "year": [2012, 2013]}}, 
   
 {"type": "thermal", 
  "code": "F-GT", 
  "unit_number": 4, 
  "forced_outage_rate":6.0, 
  "capacity": [50, 50, 50, 50, 50, 50, 50, 50], 
  "para": [50, 50, 5, 3300, 3300, 0, 6.0, 42, 50, 420, 0, 8.35, 1.6, 10000, 
0.5, 0.5], 
  "existing_plan": {"number": [-1], "year": [2009]}}, 
   
 {"type": "thermal", 
  "code": "F-CC", 
  "unit_number": 1, 
  "forced_outage_rate":15, 
  "capacity": [174, 174, 174, 174, 174, 174, 174, 174], 
  "para": [87, 174, 6, 2048, 2048, 0, 15, 28, 180, 0, 1266, 2.1, 5.0, 11000, 
0.0, 0.5], 
  "existing_plan": {"number": [1, 1], "year": [2000, 2001]}, 
  } 
] 

 Figure 4-1 Example of input to the EXIST-TH module 

 
In the example above, the user specifies six types of generators.  For each generator type, the following 
information is specified:  

• “code”:  specifies the generator code, which can be any string.  This example uses “FLG1”, 
“FLG2”, “FCOA”, “FOIL”, “F-GT” and “F-CC” to represent different types of generators. 
 

• “unit number” specifies the total number of a specific generator type in the system; 
 

• “para” specifies parameters describing the generator, as shown in Table 4-1.  These parameters 
are always follow the same order of sequence in variable matrix for keeping the physical 
meaning. 
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Table 4-1 Parameters of thermal plants required for EXIST-TH 

Plant's Names/Codes 
Fuels' Types/Names 
  Number of units 

Pl
an

t's
 fe

at
ur

es
 

Category Variable Example 

Electric-related Minimal operating power of a unit (MW) 400 
Maximal generating power of a unit (MW) 580 

Cost-related 
Fuel costs ($/million kcals) 800 
Fixed O&M costs (in $/kW Month) 2.92 
Variable O&M costs (in $/MWh) 5.00 

Reliability-related 

Forced outage rate 8% 
Spinning reserve (% of unit capacity) 10 
Maintenance class size (MW) 600 
Scheduled maintenance days of a year 48 

Heat-related 

Heat rate at minimal operating level 
(kcal/kWh) 2800 

Average incremental heat rate (kcal/kWh) 2300 
Heat value of the fuel used (kcal/kg) 6000 

Polution-related Pollutant I (SO2) emission (% weight of fuel) 1 
Pollutant II (NOx) emission (% weight of fuel) 2 

 
 

• “existing_plan” has two attributes: number and year, with a negative number representing a unit 
retirement (for existing thermal power plants) and positive number representing a power plant 
addition (for the planned addition of thermal power plants).  In the example, two out of four 
‘FLG1’ units are retired in years 2023 and 2024. 

 

Tested the module with data from the WASP demo case study:  

The generator information in the WASP demonstration case study are used for testing the developed 
EXIST-TH module.  Inputs are provided in the ‘EXIST-GEN.json’ file shown in Figure 4-1. By executing 
the ‘EXIST_GEN.m’ module, all 26 generators’ capacities and forced outage rates are read, as shown in 
Figures 4-2 and 4-3, respectively. 
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Figure 4-2 Capacity of all 26 generators in the example 

 
Figure 4-3 Forced outage rate of all 26 generators in the example 

 

 

4.2 Input of EXIST-RE submodule 
	
Inputs of the EXIST-RE submodule: 

The inputs of the EXIST-RE module for a wind farm include: 

• Generator type code 
• Existing generating capacity 
• Wind speeds (i.e., cut-in speed, rated wind speed and cut-off speed)  
• State number (to be explained below) 
• Feature (to be explained below) 
• Existing addition and retirement plan for the planning horizon 

 
The inputs of the EXIST-RE module for a solar farm include: 
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• Generator type code 
• Existing generating capacity 
• State number (to be explained below) 
• Feature (to be explained below) 
• Existing addition and retirement plan for the planning horizon 

 
A user can specify this information in a JSON format file in the path of 
‘root/projects/project_1/user_input/EXIST-GEN.json’, following the similar format of EXIST-TH 
submodule.  An example is demonstrated in Figure 4-4, exemplify the case with two wind farms and one 
solar generator. 

 
{ 
    "wind": { 
        "0": { 
        "code": "WIND1", 
        "capacity": [500], 
        "speed": [3.5, 12.5, 30], 
        "state_number": [10], 
        "feature":{ 
            "type": [0], 
            "path": 
"projects/project_1/user_input/data/wind_example1_5min.csv" 
            }], 
        "existing_plan": { 
            "capacity": [100], 
            "year": [2025] 
            } 
        }, 
        "1": { 
        "code": "WIND2", 
        "capacity": [250], 
        "speed": [3.5, 12.5, 30], 
        "state_number": [10], 
        "feature":{ 
            "type": [1], 
            "ksigma": [1.87393780943606 7.38164769483493] 
            }], 
        "existing_plan": { 
            "number": [50], 
            "year": [2030] 
            } 
        } 
    }, 
    "solar": { 
        "0": { 
        "code": "SOLAR1", 
        "capacity": [500], 
        "state_number": [10], 
        "feature":{ 
            "type": [0], 
            "path": 
"projects/project_1/user_input/data/solar_example1_5min.csv" 
            }], 
        "existing_plan": { 
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            "number": [1], 
            "year": [2025] 
            } 
        } 
    } 
} 

Figure 4-4 Example of input to the EXIST-RE module 

	
In the example above, the user specifies two types of wind power plants “0” and “1”; and one type of 
solar power plant “0”.  This can be explained as follows: 

For wind farms: 

• “code”:  specifies a generator code, which can be any string.  This example uses “WIND1” and 
“WIND2”. 
 

• “capacity”: specifies the capacity of each generator (in MW).  In this example, the capacity of 
“WIND1” is 500 MW and that of “WIND2” is 250MW.  Note that: compared with thermal power 
plants, renewable energy units (i.e., solar panels and wind turbines) have much smaller generating 
capacity. Hence, instead of treading them as individual units like in the case of thermal power 
plants, these renewable sources are treated at the aggregated level (i.e., wind farm and solar 
farm).  Therefore, renewable power plants are specified using the site capacity (MW) instead of 
the number of generating units as in the thermal plants configuration. 
 

• “speed”: specifies the cut-in speed, rated wind speed and cut-off speed (m/s).  In the above 
example, these speeds of “WIND1” are 3.5 m/s, 12.5 m/s and 30 m/s, respectively. 
 

• “state_number”: specifies the number of intervals according to the wind/solar farm capacity. The 
larger state number can be used to represent larger wind/solar farm capacity. The larger the state 
number, the more accurate it is in the follow-on analysis, but with more time-consuming 
computation. 
 

• “feature”: specifies the input used to describe the renewable energy probabilistic distribution 
feature. Two input types are acceptable to describe output characteristics of wind/solar power 
plants. They are explained in detail below.   
 
"type": [0] - means the solar/wind output is provided as time-series fixed-interval data (e.g. 
hourly data or 5-min interval data).  The path to the data input file is required. The input file must 
be in the CSV file format.   

- For wind, the data have the dimension of N*2; where N is the data size depending on the 
interval data used.  For example, N=8,760 if hourly data are provided; N=105,120 if 5-
minute interval data are used. The first column is the wind speed and the second column 
is the corresponding power generation.   

- For solar, the data only need to have a single column for the power generation.  This data 
set has the dimension of N*1. 

 
"type": [1] - means the wind output is provided as a probability function.   

- For wind, the Ksi (ξ ) and Sigma (σ ) parameters representing the Weibull distribution 
of the wind speed data are required.   
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- Type [1] cannot be used for solar generation as no widely accepted probability 
distribution exists. 
 

• “existing_plan”: specifies the capacity of generation and the year for installation. For example, 
this example specifies “WIND1”, a 500MW wind farm, has additional 100 MW wind generation 
capacity installed in the year of 2025 according to some existing plan.  

 
4.3 Output of EXIST-TH and EXIST-RE Submodules 
 
Outputs of the EXIST-TH and EXIST-RE submodules are combined and unified as outputs of the 
EXIST_GEN module, which include: 

• Generation capacity: an array containing the capacity of all generators in the system. 
• Availability rate: an array containing the availability rates of all generators (including both 

thermal and renewable generators) in the system. 
• Generation configuration information: generator characteristics and various cost parameters 

The variables above are used in other modules (e.g., OPTIMIZE, ELCC), and are saved in a ‘.mat’ file 
under the path of ‘root/projects/project_1/project_data/EXIST-GEN.mat’ for the EXIST-GEN module.  
The output information is also stored in the structure variable system_info as existing_gen_info and 
existing_gen_conf, which are depicted in Figure 4-5. The variable names are ‘capacities’ and 
‘availability_rate’.  Availability rates are actually “one minus outage rate” for thermal generators, and 
availability probability for renewable energy sources. The thermal generator characterized by the outage 
rate, in this way, is equivalent to two-states representation similar to multi-states representation renewable 
energy sources. The detailed analysis of multi-states representation and generator probabilistic model is 
introduced in Chapter 5.0 CANDI-GEN Module. 

	
Figure 4-5 The output structure of existing generator information 
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5.0 CANDI-GEN Module 
	
CANDI-GEN module is responsible for collecting user-defined input data and various types of 
parameters to characterize the candidate power plants (both thermal plants and renewables). 
 
5.1 Overview of CANDI-GEN Module 
	
Similar to the EXIST-GEN module, CANDI-GEN consists of two sub-modules, CANDI-TH and 
CANDI-RE, that model the characteristics of candidate conventional and renewable power plants, 
respectively. Reserve margin requirements are also specified in this module through a JSON format file, 
CANDI-GEN.json. It is noteworthy that each wind/solar farm is treated as one single giant unit because 
their power production variation is fully correlated. The consideration of renewable energy sources as 
normal candidate generators with probabilistic modeling instead of treating the renewable generator 
output as negative loads are also highlights of this project. 
 
5.2 Multi-state Representation for Renewable Power Plants 
	
In order to help understanding how the renewable energy sources are modeled, we introduce a commonly 
used multi-state representation method that can take into account the variable nature of renewable energy 
sources. And in this way, these renewable energy sources can be treated as normal generation candidates 
in a power system expansion planning.  This is unlike considering these variable resources as negative 
loads as being used in the current practice. Previously, when calculating the loss of load probability 
(LOLP) and expected energy not supplied (EENS) of a system with renewable energy, many methods 
treat renewable energy generation as negative loads. However, the negative load approach requires a 
time-series annual system load profile, as well as an annual renewable energy generation profile. In case 
of the absence of such data, the analysis cannot be conducted. Therefore, a probabilistic method is 
developed to represent renewable energy generation in the system. 
 
Based on the wind power generation input file, the developed tool derives the relationship between wind 
power generation and wind speed - as shown in Figure 5-1. In the figure, maxP represents for the maximum 
generation of the wind farm (in MW); and minV is the minimum wind speed (m/s) to generate maxP . 
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Figure 5-1 Inverted V-P Chart 

 
Considering the Weibull distribution, the probability of wind power generation between P1 and P2 can be 
calculated as: 

	
1 2( ) ( )

1 2 1 2 2 1Pr( ( , )) Pr( ( , )) ( ) ( )
V V

w wp P P V V V F V F V e e
ξ ξ

σ σ
− −

∈ = ∈ = − = − 		 (1)	

 
( )wF x is the Cumulative Distribution Function (CDF) of the Weibull distribution; ξ is the shape 

parameter; and σ is the scale parameter. 

	
( )

( ) 1
x

wF x e
ξ

σ
−

= − 	 (2)	

 
Assuming a mapping function ( )V g p=  maps the power generation in the range of max[0, ]P  to the 
corresponding wind speed.  
 
Then, (1) can be written as: 

	
1 2( ) ( )

( ) ( )

1 2Pr( ( , ))
g P g P

p P P e e
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− −

∈ = − 	 (3)	

 
Assume 1 2P P P= − Δ and PΔ is a small step, the probability that the wind generation is around 1P can be 
calculated using the following equation: 

	
1 1( ) ( )

( ) ( )

1Pr( )
g P g P P

p P e e
ξ ξ

σ σ
+Δ

− −
≈ = − 	 (4)	

 
For fossil-fuel generators, to calculate Equivalent Load Duration Curve (ELDC), the following formula is 
used: 
	 1 1( ) ( ) ( )i i i

i i if x p f x q f x c− −= + − 	 (5)	

 
 



 22 

For wind power plants, the power range max[0, ]P can be divided into N equal steps, each step size is PΔ . 
This relationship can be expressed in (6).  Typically, N can be set at 10 or 20, depending on the size of the 
renewable power plant.  
 
	 maxP N P= ⋅ Δ 	 (6)	

For k as specified, there is: 

	
( ) ( )( ) ( )

Pr( ) [1, 1]
g k P g k P P

p k P e e k N
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− −
≈ ⋅Δ = − ∈ − 	 (7)	

 
Otherwise, when 0k =  and k N= , there are: 
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As a result, to calculate the ELDC considering the variation of wind generation, the following equation 
can be used: 
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In summary, variables in the following table are needed to represent wind power generation in the 
developed tool, which are provided by the user in the ‘EXIST-GEN.json’ and ‘CANDI-GEN.json’ files. 
 
 

Table 5-1 Information needed to model wind generation, specified as the inputs in the ‘CANDI-
GEN.json’ files 

Variable Name Description 

maxP  Wind farm capacity (MW) 

min, ,cut in cut outV V V− −  Wind speeds (m/s) 

N State number 
- "type": [0] feature: the wind speed-power profile, specified as a path to a 

CSV file (e.g., in the above example, the path is 
"projects/project_1/user_input/data/wind_example1_5min.csv").   
 
This wind speed-power profile is used to derive the mapping function (i.e.,  

( )V g p= ) representing the relationship between the wind speed and wind 
power output profile. 

ξ , σ  "type": [1] feature: shape and scale parameters for Weibull distribution, 
respectively  
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For solar power plants, the power generation probability is represented by the statistical frequency as 
shown in (11). Since the volume of solar generation data is large enough (at least 8760 data points for 
annual hourly data, and even more data points if the data set is in higher granularity, e.g., in 1-min 
intervals), it is reasonable to use occurrence frequency to represent probability.  
 

	 ( ) ( )Pr( ) [0, 1]Number of data points with power between k P and k P Pp k P k N
Number of all data points

⋅ Δ ⋅ Δ + Δ
≈ ⋅Δ = ∈ − (11)	

This model was tested and compared with the negative load approach in the case studies. 

	
5.3 Input of CANDI-TH Submodule 
	
The inputs of CANDI-TH submodule have been designed to include: 

• Generator type code 
• Unit number of such generator type 
• Parameters used to describe such generator type 
• Existing addition and retirement plan for the planning horizon 

A user can specify these input parameters in a JSON format file in the path of 
‘root/projects/project_1/user_input/CANDI-GEN.json’. An example of this file is demonstrated below in 
Figure 5-2.  

 
{ 
    "reserve_margins":{ 
        "margins":[[-50,50],[20,40]], 
        "year":[1998,2004] 
    }, 
    "generators": [ 
        { 
        "type": "thermal", 
        "code": "V-CC", 
        "depreciable_capital_cost": [318, 477, 11.92, 25, 3], 
        "forced_outage_rate":10, 
        "capacity": [600, 600, 600, 600, 600, 600, 600, 600], 
        "para":[300, 600, 6, 1950, 1950, 0, 10, 28, 600, 0, 1200, 2.1, 4.0, 
11000, 0.0, 0.5], 
        "plans":{ 
            "number": [[0,2],[1,2], [2,2]], 
            "year": [2001, 2003, 2004] 
            } 
        }, 
        { 
        "code": "VLG1", 
        "type": "thermal", 
        "depreciable_capital_cost": [594, 891, 19.2, 25, 5], 
        "forced_outage_rate":10, 
        "capacity": [280, 280, 280, 280, 280, 280, 280, 280], 
        "para":[150, 280, 1, 3100, 2700, 10, 10, 56, 280, 710, 0, 2.7, 6.0, 
1800, 2.5, 1.0], 
        "plans":{ 



 24 

            "number": [[0,2], [1,2], [2,2], [3,2]], 
            "year": [2002, 2005, 2013, 2016] 
            } 
        }, 
        { 
        "code": "VLG2", 
        "type": "thermal", 
        "depreciable_capital_cost": [544, 817, 19.2, 25, 5], 
        "forced_outage_rate":10, 
        "capacity": [280, 280, 280, 280, 280, 280, 280, 280], 
        "para":[150, 280, 2, 3000, 2600, 10, 10, 56, 280, 1100, 0, 2.7, 6.0, 
1800, 2.5, 1.0], 
        "plans":{ 
            "number": [[0,2], [1,2], [2,2], [3,2], [4,2], [5,2]], 
            "year": [2007, 2010, 2011, 2013, 2014, 2017] 
            } 
        }, 
        { 
        "code": "VCOA", 
        "type": "thermal", 
        "depreciable_capital_cost": [495, 743, 19.2, 25, 5], 
        "forced_outage_rate":8, 
        "capacity": [580, 580, 580, 580, 580, 580, 580, 580], 
        "para":[400, 580, 3, 2600, 2200, 10, 8, 48, 600, 0, 800, 2.92, 5.0, 
6000, 1.0, 2.0], 
        "plans":{ 
            "number": [[0,2], [1,2], [2,2], [3,2], [4,2], [5,2], [6,2], 
[7,2], [8,2]], 
            "year": [2002, 2006, 2007,2009,2010,2012, 2013, 2014, 2016] 
            } 
        }, 
        { 
        "code": "NUCL", 
        "type": "thermal", 
        "depreciable_capital_cost": [730, 1703, 26.0, 30, 7], 
        "forced_outage_rate":10, 
        "capacity": [600, 600, 600, 600, 600, 600, 600, 600], 
        "para":[300, 600, 0, 2600, 2340, 7, 10.0, 42, 600, 0, 194, 2.5, 0.5, 
0, 0, 0], 
        "plans":{ 
            "number": [[0,1], [0,2], [1,2], [2,2]], 
            "year": [2006, 2011, 2015, 2017] 
            } 
        } 
} 

Figure 5-2 Example of input to the CANDI-TH submodule 

 
In the example above, the user specifies five types of generators.  For each generator type, the following 
information is specified:  

• “code”:  specifies the generator code, which can be any string.  This example uses “VCC”, 
“VLG1”, “VLG2”, “VCOA”, “NUCL” to represent different types of generators. 
 

• “type” specifies the type of candidate generators, thermal or renewable; 
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• “depreciable capital cost” specifies the construction cost and related information, such as plant 
life, depreciation rate and construction years. 
 

• “forced outage rate” specifies the forced outage rate. 
 

• “capacity” specifies the generator unit capacity in different time periods. 
 

• “para” specifies parameters describing the generator, as shown in Table 5-2.  These parameters 
are always following the same order of sequence in variable matrix for keeping the physical 
meaning. 

 

Table 5-2 Parameters of thermal plants required for CANDI-TH 

Plant's Names/Codes 
Fuels' Types/Names 
  Number of units 

Pl
an

t's
 fe

at
ur

es
 

Category Variable Example 

Electric-related Minimal operating power of a unit (MW) 200 
Maximal generating power of a unit (MW) 300 

Cost-related 
Fuel costs ($/million kcals) 600 
Fixed O&M costs (in $/kW Month) 2.42 
Variable O&M costs (in $/MWh) 4.00 

Reliability-related 

Forced outage rate 12% 
Spinning reserve (% of unit capacity) 10 
Maintenance class size (MW) 300 
Scheduled maintenance days of a year 53 

Heat-related 

Heat rate at minimal operating level 
(kcal/kWh) 2300 

Average incremental heat rate (kcal/kWh) 2100 
Heat value of the fuel used (kcal/kg) 5800 

Polution-related Pollutant I (SO2) emission (% weight of fuel) 1 
Pollutant II (NOx) emission (% weight of fuel) 2 

 
 

• “plans” has two attributes: number and year, which are used to constraint the minimal and 
maximal number of generator units allowed to be installed in the specified year. Some years that 
are not indicated follows the previous ones. 

	
	
	
	
5.4 Input of CANDI-RE Submodule 
	
The inputs of the CANDI-RE submodule for a wind farm include: 
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• Generator type code 
• Generating maximum capacity 
• Wind speeds (i.e., cut-in speed, rated wind speed and cut-off speed)  
• Characteristic generation parameters 
• State number (to be explained below) 
• Feature (to be explained below) 
• Depreciable capital cost 
• Yearly specified construction cost (to be explained below) 
• Plan tunnels (to be explained below) 

 
The inputs of the CANDI-RE submodule for a solar farm include: 

• Generator type code 
• Generating maximum capacity 
• Characteristic generation parameters 
• State number (to be explained below) 
• Feature (to be explained below) 
• Depreciable capital cost 
• Yearly specified construction cost (to be explained below) 
• Plan tunnels (to be explained below) 

 
A user can specify this information in a JSON format file in the path of 
‘root/projects/project_1/user_input/CANDI-GEN.json’, following the similar format of CANDI-TH 
submodule.  An example is demonstrated in Figure 5-3, exemplify the case with one wind farm and one 
solar generator. 

 
        { 
        "code": "WIND_CANDI_1", 
        "type": "wind", 
        "capacity": [30,30,30,30,30,30,30,30], 
        "para":[30, 30, 0, 0, 0, 0, 5, 40, 50, 0, 0, 3.67, 4.0, 0, 0, 0], 
        "depreciable_capital_cost": [1094, 0, 26.0, 20, 5], 
        "construction_cost_yearly_specific": [1094, 1080, 1000, 980, 900, 
880, 870, 850, 840, 820, 800, 780, 770, 760, 740, 720, 700, 690, 680, 600], 
        "forced_outage_rate":5, 
        "speed": [3.5, 12.5, 30], 
        "state_number": [10], 
        "plans":{ 
            "number": [[1,0],[2,0],[4,0],[7,0],[9,0]], 
            "year": [2001,2006,2010,2013,2016] 
            }, 
        "feature":{ 
            "type": [0], 
            "path": 
"projects/project_1/user_input/data/wind2/winda_2007_5min.csv" 
            } 
        }, 
        { 
        "type": "solar", 
        "code": "SOLAR_CANDI_1", 
        "capacity": [50,50,50,50,50,50,50,50], 
        "para":[50, 50, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0], 
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        "depreciable_capital_cost": [1400, 0, 26.0, 25, 5], 
        "construction_cost_yearly_specific": [1400, 1280, 1110, 1080, 990, 
890, 870, 850, 840, 820, 800, 780, 770, 750, 740, 720, 700, 696, 680, 650], 
        "forced_outage_rate":0, 
        "state_number": [10], 
        "plans":{ 
            "number": [[1,0],[2,0],[5,0],[8,0]], 
            "year": [1999,2003,2007,2015] 
            }, 
        "feature":{ 
            "type": [0], 
            "path": 
"projects/project_1/user_input/data/solar1/solar_5min_1.csv" 
            } 
        } 

Figure 5-3 Example of input to the CANDI-RE submodule 

In the example above, the user specifies two types of wind power plants “0”; and one type of solar power 
plant “0”.  This can be explained as follows: 

For wind or solar farms: 

• “code”:  specifies a generator code, which can be any string.  This example uses 
“WIND_CANDI_1” and “SOLAR_CANDI_1”. 
 

• “capacity”: specifies the maximum capacity of each generator (in MW) in different time periods.   
 

• “speed” (only for wind): specifies the cut-in speed, rated wind speed and cut-off speed (m/s).  In 
the above example, these speeds of “WIND_CANDI_1” are 3.5 m/s, 12.5 m/s and 30 m/s, 
respectively. 
 

• “state_number”: specifies the number of intervals according to the wind/solar farm capacity. The 
larger state number can be used to represent larger wind/solar farm capacity. The larger the state 
number, the more accurate it is in the follow-on analysis, but with more time-consuming 
computation. 
 

• “feature”: specifies the input used to describe the renewable energy probabilistic distribution 
feature. Two input types are acceptable to describe output characteristics of wind/solar power 
plants. They are explained in detail below.   
 
"type": [0] - means the solar/wind output is provided as time-series fixed-interval data (e.g. 
hourly data or 5-min interval data).  The path to the data input file is required. The input file must 
be in the CSV file format.   

- For wind, the data have the dimension of N*2; where N is the data size depending on the 
interval data used.  For example, N=8,760 if hourly data are provided; N=105,120 if 5-
minute interval data are used. The first column is the wind speed and the second column 
is the corresponding power generation.   

- For solar, the data only need to have a single column for the power generation.  This data 
set has the dimension of N*1. 

 
"type": [1] - means the wind output is provided as a probability function.   

- For wind, the Ksi (ξ ) and Sigma (σ ) parameters representing the Weibull distribution 
of the wind speed data are required.   
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- Type [1] cannot be used for solar generation as no widely accepted probability 
distribution exists. 
 

•  “plans” has two attributes: number and year, which are used to constraint the minimal and 
maximal number of generator units allowed to be installed in the specified year. Some years that 
are not indicated follows the previous ones. 
 

• “depreciable capital cost” specifies the construction related information, such as plant life, 
depreciation rate and construction years. 
 

• “forced outage rate” specifies the forced outage rate. 
 

• “capacity” specifies the generator unit capacity in different time periods. 
 

• “para” specifies parameters describing the generator, as shown in Table 5-2.  These parameters 
are always following the same order of sequence in variable matrix for keeping the physical 
meaning. 

 
• “construction_cost_yearly_specific” specifies the year-by-year construction cost of renewable 

energy sources since this cost usually keep decreasing rapidly in the future 
	
	
5.5 Output of CANDI-TH and CANDI-RE Submodules 
	
Outputs of the CANDI-TH and CANDI-RE submodules are combined and unified as outputs of the 
CANDI_GEN module, which include: 

• Generation capacity: an array containing the capacity of all generators in the system. 
• Availability rate: an array containing the availability rates of all generators (including both 

thermal and renewable generators) in the system. 
• Generation configuration information: reserve margin information, generator characteristics and 

various cost parameters 

The variables above are used in other modules (e.g., CONFIG, OPTIMIZE, ELCC), and are saved in a 
‘.mat’ file under the path of ‘root/projects/project_1/project_data/CANDI-GEN.mat’ for the CANDI-
GEN module.  The output information is also stored in the structure variable system_info as 
candi_gen_info and candi_gen_conf, which are depicted in Figure 5-4. The variable names are 
‘capacities’ and ‘availability_rate’.  Availability rates are actually “one minus outage rate” for thermal 
generators, and availability probability for renewable energy sources. The candidate thermal generator 
characterized by the outage rate, in this way, is equivalent to two-states representation similar to multi-
states representation renewable energy sources. This capacity availability information, together with 
reserve margin requirement information, is used by CONFIG module to produce the available candidate 
configurations of generation expansion planning. The cost information and characteristic parameters are 
used by OPTIMIZE module to calculate the total cost and cash flow of the potential candidate 
configuration of specific expansion plans. This is explained in Chapter 7. 
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Figure 5-4 The output structure of candidate generator information
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6.0 CONFIG Module 
	
CONFIG is the expansion configuration module that generates additional constraints for the optimization 
problem in the OPTIMIZE module. It narrows down possible expansion configurations based on the 
constraint inputs form a user. Required input data include, for example, minimum/maximum reserve 
requirements, minimum/maximum number of units of a particular expansion candidate that can be 
installed in a given year, and the acceptable LOLP in the given study period.  
 
6.1 Overview of CONFIG Module 
	
The CONFIG module is used to generate all valid configurations over the planning years. For a specific 
year, a configuration shows the cumulative number of installed candidate plants of each kind in this year 
since the start. Error! Reference source not found. demonstrates an example of a configuration in a 
specific year. in this year, the accumulative number of Generator G1 is four starting from the first year of 
the planning period.  

  

Table 6-1 Configuration example for a specific year 

Candidate Generator G1 G2 G3 G4 
Number 4 5 3 2 

 

In general, configurations have the following features: 
1) Evolving: Configurations are related to years, and each configuration must be able to evolve from at 

least one configuration of the previous year. Error! Reference source not found.-1 shows an 
example of configurations in Year k and k+1. The evolving feature of configuration gives them a 
parent-child relationship: ‘Config 1@k’ is the parent configuration of ‘Config 1@(k+1)’ and ‘Config 
2@(k+1)’. In addition, a configuration can have multiple different parent configurations and even 
itself as a parent configuration, as shown in Error! Reference source not found.-1. The root 
configuration ‘Config 1@0’ is always a 1-by-N vector, with N representing the total number of 
generators. 
 

Config	1@k
(0	0	1	0)

Config	2@k
(0	0	0	1)

Config	1@(k+1)
(1	0	1	0)

Config	2@(k+1)
(0	0	1	1)

Config	3@(k+1)
(0	0	0	1)
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Config	1@k
(0	0	1	0)

Config	2@k
(0	0	0	1)

Config	1@(k+1)
(1	0	1	0)

Config	2@(k+1)
(0	0	1	1)

Config	3@(k+1)
(0	0	0	1)

	
Figure 6-1 Example of configuration evolution 

 

2) Cumulative: The number of each generation unit in a configuration represents how many such unit 
has been built since the first year of the planning period. As a result, the number can only be equal or 
larger than its parent configuration in the previous year. For example, (G1, G2, G3, G4) = (1 1 1 0) 
might be a possible child configuration of ‘Config 1@(k+1)’ while (G1, G2, G3, G4) = (0 1 1 0) 
cannot be since the number of Generator G1 is decreasing. 
 

In addition to these features, there are also other requirements for a configuration to be valid (See Table 
6-2). Configurations that satisfied the system reserve requirement are called valid configuration. All 
invalid configurations are discarded. In summary, the functionality of the CONFIG module is to generate 
valid configurations of all years during the planning period. 

 

6.2 Inputs of CONFIG Module 

The inputs and outputs of the CONFIG module are briefly summarized in Error! Reference source not 
found..  

  
Table 6-2 Inputs and outputs of the CONFIG module 

Inputs Outputs 
1) Reserve requirements Valid configurations in a well-organized data structure 

that can be conveniently accessed by the following 
modules. 

2) Minimum number of units installation 
3) Tunnel width of units installation 

 

Since configuration is related to the installation of candidate generators, it makes sense to put all required 
inputs in the CANDI-GEN.json configuration file. 

 
• Input 1: Reserve requirements 

System generation reserve are specified by two numbers: lower bound and upper bound. If the generation 
reserve is lower than the lower bound, the system reliability is jeopardized due to generation capacity 
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shortage; on the other hand, if it is over the upper bound, unnecessary asset investment incurs. As a result, 
at each year the total generation capacity from existing generators and candidate generators should fall 
between these boundaries. 

In the CANDI-GEN.json, the reserve requirement is specified by the key ‘reserve_margins’ with two key-
value pairs as the contents: they are ‘margins’ and ‘year’, as shown in Figure 6-2. The values for 
‘margins’ and ‘year’ should have the same length. In the example, it shows that the upper and lower 
bound of reserve margin is 15(%) and 50(%) since year 1998. This margin remains the same for the 
following years until new change specified: starting in 2004, the margin should be within 20(%) and 
40(%). 

 
    "reserve_margins":{ 
        "margins":[[15,50],[20,40]], 
        "year":[1998,2004] 
    } 

Figure 6-2 Configuration of system reserve margin in the CANDI-GEN.json 

 

• Input 2: Minimum and maximum number of units installation 

Human experts can specify the range of generators’ number every year: for a specific type of generator, 
the number should fall within certain range. The ranges can be changed in the candidate generators’ 
configuration file, with the key name ‘plans’ in the candidate generator’s hash map data structure. This 
module inherits a feature from WASP, so most of the users are familiar: the range is specified as 
minimum number of units and the tunnel width, which refers to how many more units can be added to the 
minimum number.  

For instance, 6-3 shows an example of one candidate thermal generator. For this generator, according to 
the user defined configuration, the number should be between [0, 2] in the year 2001 and 2002; starting 
2003, there should be at least one unit of this generator and the maximum number can be 3; starting in 
2004, there should be at least two units and can reach up to 4 units, this remains the same till the end of 
the planning period. Before 2001, since there is no specification, it is assumed [0, 0] in place, that means 
this generator is unable to be installed prior to 2001 

 
{ 
        "type": "thermal", 
        "code": "V-CC", 
 
        … 
        … 
 
        "para":[300, 600, 6, 1950, 1950, 0, 10, 28, 600, 0, 1200, 2.1, 4.0, 11000, 0.0, 0.5], 
        "plans":{ 
            "number": [[0,2],[1,2], [2,2]], 
            "year": [2001, 2003, 2004] 
         } 
    } 

Figure 6-3 Configuration of an example candidate generator in the CANDI-GEN.json 
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6.3 Outputs of CONFIG Module 
The output of the CONFIG module is an indexed matrix that stores all valid configurations over the 
planning period in the variable CT.pStore (CT is an instantization of class ConfigurationTree). Some 
examples of generated configuration candidates are depicted in Figure 6-4. Each column is corresponding 
to a specific generator type. These configuration candidates with indexes also form a tree-like structure 
that contains all possible system evolution paths, which is evaluated later to identify the optimal plan. In 
this fashion, the CONFIG module does not only generate the individual configuration candidate (e.g., 4 3 
3 6 1) but also the evolution relationship of these configuration candidates through HaspMap and a sparse 
connection matrix. This kind of information is also stored in the instantization variable of class 
ConfigurationTree as shown in Figure 6-5. 

 

 

 
Figure 6-4 Screen capture of generated configuration candidates index 79-100 
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Figure 6-5 The output structure of configuration candidate information 

 

 

 

6.4 Configuration Tree Data Structure 
 

In order to keep the configuration candidate evolution information, all the valid generation expansion 
planning configurations candidates are kept connected and stored in a tree-like data structure. We do care 
about this evolution relationship because the path of evolution determine the different newly construction 
cost involved in the different generation expansion plans. This custom tree data structure is defined to 
hold all the permutations of configurations for each year and indicate their evolution relationship (i.e., 
parent configuration and child configuration connections). The basic structure of the configuration tree is 
presented as shown in Figure 6-6. 

 
 

 
 

Figure 6-6 Tree data structure of configurations 
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For each year, starting the first year, we need to generate a set of valid configurations that can be reached 
from each configuration in the previous year, called the parent configuration. Valid configurations are 
those configurations which meet the reserve margin for that year, as previously discussed. 

 
The basic class definition of our configuration tree data-structure is as follows: 

 
classdef ConfigurationTree < handle 
    properties 
        pStore 
        indexMap 
        yearlyConfigurationsMap 
        totalYears  
        totalCandiGenerators 
    end 
    methods (Access = public) 
        function obj = ConfigurationTree(studyYear,totalCandiGenerators)           
            %constructor 
        end 
         
        function obj = addConfiguration(obj,year,parentIndex,configuration) 
            %add a new configuration to the tree 
        end 
         
        function obj = addConfigurationList(obj,year,parentIndex,configurationList)            

%generalization of addConfiguration to add a list of        
configurations 

end 
    end 
   methods (Access = protected) 
        function addChild(obj,parentIndex,childIndex) 
            %set a specific configuration as a child to a parent config 
        end  
    end 
end 

Figure 6-7 Class of configuration tree structure in MATLAB code 

 
Each of the member variables and the functions are explained below: 
 

 
pStore 
type: 2-d numeric matrix 
size: NxC (N = number of nodes in the tree, C = number of candidate generators) 

 
It is a 2-D matrix to hold all of the configurations (nodes) in the tree.  Each row is a new configuration, 
and the columns is for number of units of different candidate generators. A typical value of pStore might 
look like this: 

 
[0, 0, 0, 0, 0; 
2, 2, 0, 1, 0; 
2, 0, 0, 2, 0] 
 

Which means, there are three configurations in total at the configuration tree. The first configuration, is 0, 
0, 0, 0, 0. Which means, all five candidate generators are not included in this configuration. The second 
configuration is 2, 2, 0, 1, 0. Which means, 2 of the first, 2 of the second, and 1 of the fourth candidate 
generator are included in this configuration.  
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indexMap 
type: hash-map 
size: N (equal to number of unique yearly configurations) 
key: string, configuration + year 
value: int, index of the configuration in pStore 

 
It is a hash map linking a particular configuration to its index in the pStore. A hash map of configuration 
is needed so that duplicate configurations aren’t added to the configuration tree. Every time a new 
configuration is generated for a particular year, a test is done to check if that configuration already exists 
in indexMap, in which case, it is considered a duplicate and is not added to pStore. Instead, it’s index at 
pStore is retrieved from indexMap, and that configuration is marked as a child of the configuration for 
which new configurations was being generated. Since configurations need to be unique for a given year 
only, the year number is appended to the configuration vector and converted to a string before adding to 
indexMap as a key.  
 
yearlyConfigurationMap 
type: hash-map 
size: total number of study years 
key: string, year 
value: list of int, indices of the configurations in pStore for that year 

 
 
 
 

It is a hash map to store and retrieve all the valid configurations for each year.  
 
connections 
type: matrix 
size: NxN 
 

This is the adjacency matrix to store the parent-child relationships of all the configuration nodes in the 
tree. It’s size is equal to the total nodes in the configuration tree. 

 
totalYears 
type: int 

Stores the total simulation years 

totalCandiGenerators 
type: int 
 
Stores the total number of candidate generators. 
 
 
Methods including: 
 
ConfigurationTree(studyYear,totalCandiGenerators) 

Input: 
 studyYear: list of int, the list contigious years to conduct the study 
  totalCandiGenerators: int, total number of candidate generators 
    
Output: 
 obj: A new configuration tree object, with the root configuration 
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This is the constructor method to initialize an empty configuration tree. It takes in studyYear, which is the 
list of study years, and totalCandiGenerators which is the total number of candidate generators. It then 
places the first configuration, which is just a zero vector as the root of the configuration tree. 

 
addConfiguration(year,parentIndex, configuration) 

Input: 
 year: int, the year for which configuration is being added   

parentIndex: int, the index of the parent configuration in pStore    
 configuration: vector, the configuration vector (1xC) 
 
Output: 

 obj: Modified configuration tree object, with the new configuration added 
 

All configuration (except the root, which is automatically created by the constructor) needs to have a 
parent configuration from which it is derived. This function allows to add a configuration to the 
configuration tree, as a child of a certain existing configuration. If a configuration identical to the 
configuration being added alreay exists for the same year, no new configuration is added to the 
pStore. Instead, the existing duplicate configuration is marked as the child of the parentIndex 
configuration.  

 
addConfigurationList(year,parentIndex, configurationList) 

Input: 
 year: int, the year for which configuration is being added   

parentIndex: int, the index of the parent configuration in pStore    
 configurationList: matrix of T configurations (TxC) 
 
Output: 
  obj: Modified configuration tree object, with the new configurations added 

 
This is an extension of addConfiguration function that allows to add multiple configurations at once. 
 
 
addChild(parentIndex, childIndex) 

Input: 
 parentIndex: int, the index of the parent configuration in pStore   
 childIndex: int, the index of the child configuration in pStore    
 
Output: 

obj: Modified configuration tree object, with the parent-child relationship 
saved in the adjacency matrix 

 
This is an internal function to mark the parent-child relationship in adjacency matrix. 
 

Configuration tree generation: 
 
A dynamic programming approach is used to generate the configuration tree for each of the study year. 
The process starts with generating configurations for the first year, and for each of the subsequent years, 
new configurations are generated based on each of the existing configuration in the previous year. Each of 
these new configuration needs to be tested for meeting the reserve requirement for each periods of the 
year, and if they meet the requirement, they are added into the configuration tree. The configuration tree 
data structure takes care of duplicate configurations. 

 
The pseudo-code for configuration tree generation can be written as follows: 

 



 38 

1. CT = new ConfigurationTree() 
2. for each year in studyYears: 
3. prev_year = year – 1 
4.    prev_configs ß configurations in prev_year. (Root config if year is starting year) 
5.      for each config in prev_configs: 
6.  new_configs = getNewConfigs(config, candidateGeneratorRangesForThisYear) 
7.  configCapacities = getConfigCpacities(new_configs,candi_gen_capacities) 
8.  minimum_capacity = getMinimumAditionCapacity(year) 
9.  validConfigIndices = getValidIndices(configCapacities , minimum_capacity)  
10.  acceptable_configs ß new_configs(validConfigIndices) 
11.  CT.addConfigurationList(year, index_of_config, acceptable_configs) 
 

Here is the description of the functions: 
 

getNewConfigs(config, candidateGeneratorRangesForThisYear) 
Input: 
 config:1xC numeric vector, the parent configuration  
   candidateGeneratorRangesForThisYear: 1xC cell-array. Element i gives is a list 
of acceptable number of units for the candidate generatior i. 
   #example: {[0,1,2],[0],[0],[1,2], [0]}. Candidate generator 1 can have 0, 1 or 
two units for this year and candidate generator 4 can have 1 or 2 units 
 
Output: 
 new_configs: TxC numeric matrix, where T is the number of new configurations 
generated 
 

The function generates new configurations based on an input (parent) configuration and the user 
specified ranges for the number of units of candidate generators.  

 
Example 

Input: 
candidateGeneratorRangesForThisYear = {[0,1,2],[0],[0],[1,2], [0]} 
Config = ([1,0,0,0,0]  
 
Output: 
#remove units in the ranges which are less than that in config 
 
new_candidateGeneratorRangesForThisYear = {[1,2],[0],[0],[1,2], [0]}  
new_configs = cartesianProduct({[1,2],[0],[0],[1,2], [0]}) 
[1,0,0,1,0; 
2,0,0,1,0; 
1,0,0,2,0; 
2,0,0,2,0] 
 
 

getConfigCpacities(new_configs,candi_gen_capacities) 
Input: 
 new_configs:TxC numeric matrix, the new T configurations 
   candi_gen_capacities: CxP numeric matrix of generator capacities, where P is the 
number of periods in a year. 
 
Output: 
 configCapacities: TxP numeric matrix of total generator capacities for each 
configuration and each period 

 
The function performs matrix multiplication of the configurations and the capacities, to return a matrix of 
total generator capacity for each configuration for each period. 
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Example 

getNewConfigs([1,1,0,0,0; 2,1,0,0,0], [100,120;30,40;120,110;50,55;20,22]) 
 
Input: 
new_configs = [1,1,0,0,0; 2,1,0,0,0] (T = 2, C = 5) 
candi_gen_capacities = [100,120;30,40;120,110;50,55;20,22] (C =5, P = 2) 
 
Output: 
configCapacities = new_configs * candi_gen_capacities 
[130, 160; 
230, 280] 
 
 

getMinimumAditionCapacity(year) 
Input: 

year: int, the year for which minimum capacity is to be determined 
 

Output: 
   minimum_capacity: 1xP double, the minimum value of total candidate generator       
capacity to be added this year to meet reserve margin for each period 

 
The function determines the amount of new candidate generator capacity that needs to be added in a given 
year to meet the reserve requirement. For this the function takes help of the load-calc module to determine 
the peak load for the given year (for different periods), and the different existing generator plans to 
determine existing generation capacity for that year. Then, the unmet generation to meet the minimum 
reserve margin is returned as the minimum_capacity.  

 
 

getValidIndices(configCapacities , minimum_capacity) 
Input: 
 configCapacities: TxP numeric matrix of config capacities 
   minium_capacity: 1xP double, the minimum total candidate generator capacity 
required to meet the reserve requirement for each period 
 
Output: 
 validConfigIndices: 1xT logical array of indices in configCapacities, which 
meet the minium_capacity  
 

 
The function performs a basic logical comparison to determine which of the configuration meet the 
minimum reserve requirement. 
 
Example 

Input: 
configCapacities = [130, 160; 230, 280] 
minium_capacity = [140, 150] 
 
Output: 
#all makes sure all columns passes the test 
validConfigIndices = all(configCapacities > minium_capacity) 
= [0, 1] (logical array) 
#Only the second row passes the test 

 

 
 
 



 40 

Verification with WASP: 
 
The developed CONFIG module was run with a test case (without renewables) to verify the output with 
WASP. The used test case was the default demonstration case study with variable expansion plan in 
WASP, with the hydro plants removed from fixed, existing and candidate plans.  
 
For the year 2017, the configurations generated by WASP is: 
 
 

 
 

Figure 6-8 Screen capture of generated configuration in 2017 from WASP 

 
For the same year 2017, the configuration generated by CONFIG muddle is: 
 

 
 

Figure 6-9 Screen capture of generated configuration in 2017 from MATPLAN 

 
It can thus be seen that the configurations match exactly with WASP. 
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7.0 OPTIMIZE Module 
	
7.1 Overview of OPTIMIZE Module 
OPTIMIZE is the optimization module that combines probabilistic and optimization techniques to 
determine the optimal system expansion policy based on inputs defined in the other modules. The 
objective function of minimal generation expansion cost is optimized with taking into account 
probabilistic model of generator availability, including renewable energy sources, and different types of 
cost. All economic and cash flow calculations are included, such as present value calculations and 
escalation of fuel prices. OPTIMIZE module provides users the final decision-making reference of 
optimal generation expansion plan in different years. 
 

7.2 Cost Calculation 
Once all the configurations satisfying given constraints are generated, a cost function is evaluated to find 
the optimal (least cost) sequence of configurations throughout the study period.   
 
This cost function is an objective function be minimized. It comprises of the followings: 
 

• Depreciable capital investment costs: equipment, site installation and construction costs (I) 
• Salvage value of investment costs (S) 
• Fuel costs (F) 
• Non-fuel operation and maintenance costs (OM) 
• Cost of the energy-not-served (ENS) 

 
The objective function is expressed in Equation (7-1):  
 

Minimize 𝐶" = 	 𝐼",' − 𝑆",' + 𝐹",' + 𝑂𝑀",' + 𝐸𝑁𝑆",'0
'12                                                      (7-1) 

 
Here, 

𝐶"  : objective function attached to an expansion plan j. 
t  : time in years (1, 2, …, T). 
T  : total length of the study period, given in years. 

 
The bars given above each term in Equation (7-1) mean that these are discounted values based on a 
reference date and discount rate i.  
 
Therefore, the optimization problem can be formulated as: 
 
                                                         Minimum 𝐶"  for ∀j                                                           (7-2) 

 
The distribution of expenses throughout the entire expansion plan is depicted, as shown in Figure 7-1. 
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Figure 7-1 Schematic diagram of cash flows for an expansion plan. 

 
 
 
 

In the figure above, 
 
CAPITAL1   : sum of the investment costs of all units added in the first year of study. 
OPERATING1 : sum of all system operating costs (fuel, O&M, energy not served) in the first year of  

study. 
SALVAGE  : sum of the salvage values at the horizon, of all plants added during the study period. 
t0   : number of years between the reference date for discounting and the first year of the 

study. 
T   : total length of the study period, given in years. 
 

 
a. Depreciable capital investment costs 

 
																																																		𝐼",' 	= 1 + 𝑖 6 '7'862 ∗ 𝑈𝐼; ∗ 𝑀𝑊;                                        (7-3) 

 
Here,														 
 

	∑  : sum calculated considering all units added in year t by expansion plan j. 
UIk  : capital investment cost of unit k, expressed in monetary units per MW. 
MWk : capacity of unit k in MW. 
𝑖  : discount rate. 
t  : time in years (1, 2, ..., T). 
t0  : number of years between the reference date for discounting and the first year of the study. 

 
 Equation (7-3) was implemented in our optimization module using the code given below:  
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For a given year of the study (line 108), the parent nodes of a particular acceptable configuration are 
traced back. Using this information (line 109), the difference between the parent configuration and newly 
generated configuration is calculated to find which generator units are added into the new configuration.  
Lines 110-111 implement Equation (3), where COST_CON =  depreciable capital investment costs 
(construction costs) . The cost for each new plant added in a given year is then calculated and the values 
are stored in the vector COST_CON. The process is repeated for all possible configurations in that year. 
 
 

b. Salvage value of investment costs 
 
																																																							𝑆",' 	= 1 + 𝑖 6 07'8 ∗ δ;,' ∗ 𝑈𝐼; ∗ 𝑀𝑊;                                         (7-4)                  
                        
Where, 

                                                 																						δ;,' = 	
26 27> ?@ABCA
26 27> ?@A

                                                            (7-5) 
 
Here, 
𝛿;,' : salvage value factor at the horizon for unit k. 
T  : total length of the study period, given in years. 
𝐿;  : Life of unit k in years. 
𝑦; : 𝑇 − 𝑡 + 1  

 
 
Using the costs calculated in the previous section, the salvage costs are calculated next.   
 

 
 

The first step is to calculate the salvage factor, which is done by implementing Equation (5) in our 
optimization module. This is shown in the code snippet above (lines 100-102), where a for loop is used to 
calculate the salvage factor of each of the plants, for each year during the study period.      
 

 
 

 
Once the salvage factor has been calculated, it is used to calculate the salvage value of each of the plants 
in a configuration for a particular year. This is the implementation of Equation (4) in our Matlab module 
shown in lines 113-114. The variable COST_SAL{countConfig}(k) is the output, which represents the 
salvage cost for each new plant added in a particular configuration year. This calculation is repeated for 
each of the newly added plants in each of the possible configurations for that year, and the values for each 
plant are stored in the vector COST_SAL. 
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c. Fuel costs 
 
                     𝐹",' 	= 1 + 𝑖 6'6I.K ∗ (𝐹𝐶; ∗ 106K) ∗ 𝐻;P ∗ 𝐸;P ∗ 𝐻;Q ∗ 𝐸;−𝐸;P;                             (7-6) 
 
Here, 
𝐹𝐶;  : Fuel Cost of unit k, given in cents/million kcals. 
𝐻;P  : Heat rate at minimum operating level (kcal/kWh) of unit k. 
𝐻;Q  : Average incremental heat rate (kcal/kWh) of unit k. 
𝐸;  : Total energy (GWh) generated by unit k. 
𝐸;P  : Base energy (GWh) of unit k. 

 
Fuel costs are calculated for each possible configuration in a given year by implementing Equation (6) in 
our optimization module as shown in the code snippet below: 
 

 
 
Lines 88-91 implement Equation (7-6) in two steps for each possible configuration in a given year, with 
the variable COST_FUEL(countConfig) storing the value. Once this calculation is repeated for all the 
possible configurations, the fuel costs for each of them is stored in the COST_FUEL vector. 
 
 

d. Non-fuel operation and maintenance costs 
 
                                      𝑂𝑀",' 	= 1 + 𝑖 6'6I.K ∗ 𝑈𝐹𝑂&𝑀; + 𝑈𝑉𝑂&𝑀; ∗ 𝐸;                               (7-7) 
 
Here, 
𝑈𝐹𝑂&𝑀; : Unitary fixed O&M cost of unit k, expressed in monetary units per MW-year. 
𝑈𝑉𝑂&𝑀; : Unitary variable O&M cost of unit k, expressed in monetary units per kWh. 

 
 
Using information from the possible configurations for a given year and calculating the total generation 
capacity for each configuration, the operation and maintenance costs can then be calculated as follows: 
 

 
 
The code snippet lines 93-95 show the steps involved in the calculation of operation and maintenance 
costs. The first step is shown in line 93, where the total generation capacity of a possible configuration is 
calculated. Using this information in lines 94-95, Equation (7-7) is implemented where the variable FOM 
in the code represents the variable 𝑼𝑭𝑶&𝑴𝒌 and the variable VOM in the code represents the variable  
𝑼𝑽𝑶&𝑴𝒌 from the original equation.  The vector totalCapacity on line 93 is multiplied by 12 to account 
for each month of the year and then multiplied by 1000 to convert from $/kW to $/MW. The sum of the 
entry in vector energy_config is multiplied by 1000 to account for the energy generated in GWh instead 
of MWh. The calculations are repeated for each possible configuration in a particular year and the results 
are stored in the energy_config vector. 
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e. Cost of the energy-not-served 
 

                                𝐸𝑁𝑆",' = 1 + 𝑖 6'Z6I.K ∗ 𝑎 + P
\
∗ ]^,_

`a^
+ Q

b
∗ ]^,_

`a^

\
*	𝑁',c                               (8) 

 
Here, 
𝑁',c : Amount of energy-not-served in year t. 
𝐸𝐴' : Energy demand (kWh) of the system in year t. 
a, b and c : Polynomial coefficients for incremental cost of ENS defined by the user input. 

 
The final component of the objective function is the energy-not-served cost. This has been implemented 
in our optimization module using the code snippet given below: 
 

 
 

In our model, we used only one polynomial coefficient a which is represented by CF1 in our code, line 
97. As we consider the coefficients b and c to be zero, part of Equation (7-8) simplifies to the expression 
shown in line 97. Using calculated values of energy not served (kWh), period hours and peak load values 
for each possible configuration in a given year, the total ENS cost is calculated. This calculation is carried 
out for all possible configurations and is stored in the vector COST_ENS. 
 
Once all the different cost components of Equation (1) have been calculated for each possible 
configuration of a given year, the optimization module moves onto the next year in the study and repeats 
these set of calculations. This process is repeated until the final year of the study is reached, and the costs 
for all possible configurations starting from the first year of the study are calculated. 
 

7.3 Maintenance Mechanism 
	
Prior to performing actual production costing, an estimated maintenance schedule must be prepared since 
it affects equipment availability in each of the time periods. It is not reasonable to ignore maintenance 
since the maintenance of units has a significant effect on the system's operating cost. To a large extent, 
the maintenance of generation equipment can be scheduled at times when system capacity reserves are 
greatest. The time requirements for scheduled maintenance outages depend on the type and size of a unit. 
A reasonable procedure is to schedule maintenance for the largest items of equipment when reserves are 
the greatest, schedule maintenance for the next largest items of equipment when remaining reserves are 
the greatest, etc. This procedure tends to levelize the operable equipment reserves for the system during 
the year. The approach to schedule the maintenance energy block is illustrated in Figure 7-2.  
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Figure 7-2 Illustration of maintenance schedule with energy blocks 

 

The general steps can be summarized as follows: 

 

Ø Determine the maintenance space in each period and maintenance class for each generator; 
Ø Categorize all generating units in different sizes and classes with maintenance requirements 

organized as energy block; 
Ø Schedule the energy block in each maintenance space slot with the principle: Largest energy 

block scheduled to largest maintenenace space in the rest unsatisfied maintenance requirements; 
Ø Convert maintenance days and energy amount into availability (%). 

 
 

The code snippet to perform the above steps are presented below: 

 
function availability = getAvailability(year, configuration, system_info) 
%   getAvailability Summary of this function goes here 
%   The calculation procedure follows the mechanism described in pp.43-49 
%   https://www.osti.gov/servlets/purl/5208341 to consider maintenance schedule. 
  
... Do some initialization and parameter retriving HERE ... 
      
    mainSpace = installedCapacity - maxLoad; 
     



 47 

    mainSize = para(9,:); 
    [class,~,ic] = unique(mainSize); 
     
    for i = 1:length(class) 
        largest = length(class)-i+1; 
        classSize = class(largest); 
         
        MWDAYS = 
sum(para(2,ic==largest).*para(8,ic==largest).*number_of_gens(ic==largest));  
        MAINBK = classSize * 91; 
        NO = MWDAYS/MAINBK; 
        NO_periods = zeros(1,number_periods); 
         
        REMAIN = MWDAYS; 
        while REMAIN > MAINBK 
            [~, idx] = max(mainSpace); 
            NO_periods(idx) = NO_periods(idx)+1; 
            mainSpace(idx) = mainSpace(idx)- MAINBK/days(idx); 
            REMAIN = REMAIN - MAINBK; 
        end 
         
        [~, idx] = max(mainSpace); 
        NO_periods(idx) = NO_periods(idx) + REMAIN/MAINBK; 
        mainSpace(idx) = mainSpace(idx)- REMAIN/days(idx); 
 
        main_prob = NO_periods / NO; 
         
        units = find(ic==largest); 
        for k = 1:length(units) 
            main_days = main_prob * para(8,units(k)); 
            main_rate = main_days ./ days; 
            availability(:,units(k)) = (1-para(7,units(k))/100) * (1-main_rate)'; 
        end       
    end 
     
    availability = repmat(availability,2,1);  
end 

Figure 7-3 Implementation code of the maintenance mechanism 

 

The above partial code snippet works for transforming the energy block shifting into availability of each 
generator unit. In other words, their capacity is discounted by this availability probability (%).  

 

7.4 Energy Dispatch 
 

The energy dispatch information is key to calculate all associated cost related to fuel and O&M 
determined by total energy generation (MWh or GWh). 

 
function [LOLP, EENS, baseEnergy, energy] = 
getEnergy(year,periodHours,system_info,loadingOrder,configuration) 
 

The energy dispatch is calculated using the function getEnergy following some integral procedure for 
load duration curves. It is noteworthy that the energy integral should consider two-block representation 
similar to WASP, which distinguishes base energy and peak energy in the overall calculation. The loading 
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order is only valid among each sub category, implying all base energy with base capacity are preceeding 
peak energy and peak capacity scheduling.  

 

7.5 Graph Structure and Search 
 

Using the calculated cost results, we associated the total cost for each candidate configuration and 
mapped the expansion planning cost of generator configuration evolution to a graph structure that 
contains nodes and edges. In the graph structure mapping, each node stands for the destination 
configuration of that year, and each edge stands for the generator configuration evolution path from 
parent configuration to child configuration as described in the CONFIG module. The overall workflow of 
OPTIMIZE module can be presented in Figure 7-4 and summarized as follows. 

 

 

 
Figure 7-4 The workflow of OPTIMIZE module 

	
	
	

• STEP 1: Determine the loading order (through calculation of full-load-cost, FLC) and get the 
availability according to the maintenance mechanism, preparing this information for later energy 
dispatch calculation; 

• STEP2:  Calculate the energy and base energy generated by each unit in each type of power 
plant, including renewables, using discounted capacity (considering availability) and shifted LDC 
curve (considering loading order) in each period; 
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• STEP3:  Process the cost calculation using the formulas presented in the last section, assign the 
cost for each possible configuration evolution rather than configuration itself. The same 
configuration coming from different parents does have different costs involved; 

• STEP4:  Map the cost and configuration index to a graph structure, the cost is weight for edge 
and the configuration index is for node; 

• STEP5:  Perform the dynamic programming or tree search algorithm to find the optimal solution 
that can be retrieved and stored for ELCC module. 
 
 

The reason why the total cost of each configuration is associated with each edge, as weight, instead of 
each node is that we do care about the evolution path of each configuration rather than the simple 
configuration destination. Because in some parts of the cost calculation, for example CONSTRUCTION 
COST and SALVAGE VALUE, the cost or value should be calculated based on the newly added units. 
Only the added units in child configuration that are different from the parent configuration are considered 
and discounted in that year. In orther words, the same configuration may have different 
CONSTRUCTION COST and SALVAGE VALUE if it evolves from different configurations in the 
previous year. 

In the following code snippet (lines 143-183), we built the graph structure by using the MATLAB built-in 
function digraph and track configuration in each layer (depth) of year. The method addedge is also used 
to assign the cost as weight to each edge linking parent-child configurations. 

 

 

   G = digraph creates an empty directed graph object, G, which has no nodes or edges 

   G = addedge(G,s,t) adds an edge to graph G between nodes s and t. If a node specified 
by s or t is not present in G, then that node is added. The new graph, H, is equivalent to G, but includes 
the new edge and any required new nodes. 
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Figure 7-5 Screen capture of building graph structure 

	
It is also noteworthy that we added a virtual ending node after the last year in order to facilitate the tree 
search process introduced in the code snippet (lines 179-181). All the evolved configuration candidates at 
the last year are assumed to connected to this virtual ending node. The resultant graph structure is as 
shown in Figure 7-6. The numbers (1-79) are the index of each valid configuration candidate. The 
configurations at the same layer belong to the same year. 
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Figure 7-6 Graph structure of example configuration candidates 

 

After the graph structure is built, the least cost expansion plan (configuration evolution) across all the 
studied years can be mathematically equivalent to finding a shortest path with the least distance that 
represents the total weight (cost) over all the pass-by edges. Again, we used the MATLAB built-in 
function shortestpathtree to help us achieve such a goal. 

 

TR = shortestpathtree(G,s,t) computes the tree of shortest paths between multiple source 
or target nodes. 

 

The functionality is shown in the following code snippet (lines 190-210) to check the final cost results. 
The start node is node 1 (i.e., the first study year), and the destination node is the virtual ending node 
(indexed as #last configuration + 1). 
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Figure 7-7 Screen capture of tree search code structure for optimal solution 

 

The returned variable TR (line 192) is also a graph structure that can be further retrieved by method 
successors for the optimal solution (line 209). It is noteworthy that we begin retrieving our expansion 
plan from configuration ID=2 since it is actually the first valid configuration at first study year after root 
(ID=1) configuration. 

 

7.6 Input of OPTIMIZE Module 
Inputs to OPTIMIZE module are all the outputs from previous introduced modules, and can be listed as 
follows: 
 

• Energy-not-served penalty cost information from LOAD-CALC module 
• Existing generator capacity information from EXIST-GEN module 
• Existing generator configuration information from EXIST-GEN module 
• Candidate generator capacity information from CANDI-GEN module 
• Candidate generator configuration information from CANDI-GEN module 
• Valid configuration candidates and their construction & operation cost information from 

CONFIG module 
 

 

7.7 Output of OPTIMIZE Module 
Outputs of the OPTIMIZE module include: 

• Optimal generation expansion plans in different years 
• The total cost and separate cost elements for each configuration evolution in different years 
• All the associated LOLP and ENS information for further decision-making 

The variables above is saved in a ‘.mat’ file under the path of 
‘root/projects/project_1/project_data/OPTIMIZE.mat’ for the OPTIMIZE module.  The output 
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information is also stored in the structure variable system_info as optimal_configuration that is depicted 
in Figure 7-8.  

	
Figure 7-8 The output structure of optimal generation expansion plan information 

	
The following Figure 7-9 also shows the cost calculation result for several example configurations, 
considering five types of conventional power plants and two types of renewables (solar PV and wind 
farm). It is noteworthy that even the single one configuration (4 4 5 9 3 1 2) at year 2015 can have 
different cost values (CONCST, SALVAL) if it evolves from different parent configurations (4 4 4 9 2 1 
2), (4 4 5 9 2 1 2) or (4 3 5 9 2 1 2). 

	

Figure 7-9 Print-out of several example configuration evolution 
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The Figure 7-10 shows the final optimal generation expansion planning solution that stands for the least 
cost expansion plan over studied years (1998-2017). The seven columns indicate five types of 
conventional power plants and two types of renewables (solar PV and wind farm). The numerical values 
are actually cumulative results. For instance, compared with year 2016, one unit of third type (column) 
and one unit of fifth type (column) are installed at the final studying year 2017. 

 

	

Figure 7-10 Print-out of the final optimal solution of expansion plan 
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8.0 ELCC Module 
	
8.1 Overview of ELCC Module 
ELCC is effective load carrying capability module that is responsible to calculate ELCC value of each 
power plant, including renewables selected as expansion planning candidates. The general idea is to 
define the capacity credit of each new unit as the capacity added to a system, allowing the load to increase 
without compromising the generation adequacy. For implementation, the functionality of this module can 
be explained as follows: first, take a note of the original system installed capacity (MW) and LOLP from 
the OPTIMIZE module as benchmark values; second, remove the generator unit of interest and rerun the 
OPTIMIZE module to locate the revised system installed capacity (MW) that is able to keep the original 
LOLP. The difference between the benchmark capacity and the revised system capacity is the ELCC of 
the generator in question. The module is rerun to obtain ELCC of all the studied generation units.  
	
8.2 Theoretical Analysis of ELCC values 
ELCC stands for effective load carrying capability module. ELCC represents the generator’s contribution 
to system reliability. It is the additional firm load that can be met by an incremental generator while 
maintaining the same level of system reliability. ELCC measures the contribution of an individual 
generator to system capacity with and without the generator of interest. This module is responsible for 
calculating ELCC value of each power plants, including renewable generation units, that are selected as 
expansion candidates. Theoretically, the most well-known method for ELCC calculation is Garver's 
method. The general idea is to define the capacity credit of each new unit as the capacity added to a 
system, allowing the load to increase without compromising the generation adequacy. When unit g is 
added to the system, the risk of power deficit decreases from LOLPg-1 to LOLPg. The load carrying 
capability of unit g is defined as the largest constant load, CELCC, which can be added to the system 
without the risk of power deficit exceeding the earlier level LOLPg-1. The equivalent load duration curve 
including unit g and the constant load is given by the following Equation (8-1) and (8-2) and illustrated in 
Figure 8-1. 

 

                               (8-1)  

 

                                                                 (8-2) 
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Figure 8-1 ELCC calculation illustration 

 
In the implementation, the ELCC calculation process can be explained as follows: first, take a note of the 
original system installed capacity (MW) and LOLP from the OPTIMIZE module as benchmark values. 
Second, remove the generator of interest and rerun the OPTIMIZE module with a new constraint to keep 
the original LOLP. Then, take a note of the revised system installed capacity (MW). The difference 
between the benchmark capacity and the revised system capacity is the ELCC of the generator in 
question. The module is rerun to obtain ELCC of all power plants. 
 

 
 

In the above code snippet (lines 84-89), the MATLAB built-in function interp1 was used to retrive x 
value by setting y value in a functional relationship. 

 

vq = interp1(x,v,xq) returns interpolated values of a 1-D function at specific query points using 
linear interpolation.  

 
In line 89, the totalCapacity is the actual installed total capacity including newly added generator, and 
newCap is the newly obtained capacity by satisfying the same reliability level. Finally, all the generator 
unit’s ELCC value were printed out in different years and different periods under the optimal 
configuration scenario. For renewables, like wind (second last column) and solar (last column), they may 
have significant different ELCC values in different periods due to the change of weather conditions.  
These are shown in Figure 8-2. 
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Figure 8-2 Print-out of ELCC values for the first period over 20 years 

 

Additionally, because of the ELCC of each incremental resource depends on the whole portfolio of 
renewable resources, the ELCC function in WASP including renewable parts is actually a 
multidimensional surface. According to some studies, the marginal ELCC of one renewable resource 
technology declines as its penetration increases. For solar PV, high capacity credit at low penetrations 
while this rapidly decreases as additional capacity is added. A renewable portfolio that contains a diverse 
set of power technologies, such as thermal, hydro, wind can mitigate the decline in ELCC.  
	
8.3 Input of ELCC Module 
Inputs to ELCC module are outputs from previous introduced modules, and can be listed as follows: 
 

• LDC curve information from LOAD-CALC module 
• Existing generator capacity information from EXIST-GEN module 
• Candidate generator capacity information from CANDI-GEN module 
• Valid configuration information from CONFIG module 

	
8.4 Output of ELCC Module 
Outputs of the ELCC module are the ELCC values calculated for each valid configuration candidate in 
each time period in different years. The variables above is saved in a ‘.mat’ file under the path of 
‘root/projects/project_1/project_data/ELCC.mat’ for the OPTIMIZE module.  The output information is 
also stored in the structure variable system_info as ELCC that is depicted in Figure 8-3.  
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Figure 8-3 The output structure of ELCC value information 
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9.0 Validation and Case Study 
	
9.1 Validation using WASP 
The developed MATPLAN package was validated with the well-known Wien Automatic System 
Planning (WASP) package.  To validate MATPLAN, results from MATPLAN were compared with that 
of WASP. This allowed us to verify the validity of MATPLAN in performing power system expansion 
planning with traditional power plants.  All studies were carried out in a PC – Intel i5 with 8GB RAM 
running Windows 10. The newest version of WASP-IV package was used.   

Validation results confirm that MATPLAN is able to deal with expansion planning with conventional 
power plants. The WASP demo example was used as the validation case study.  Under this case study, the 
characteristics of six existing conventional power plants in the case study are listed in Table 9-1.  These 
existing conventional power plants are: two lignite plants (FLG1 and FLG2), one coal plant (FCOA), one 
oil plant (FOIL), one gas turbine plant (FGT) and one natural gas plant (F-CC). Table 1 also summarizes 
the characteristics of five candidate power plants. These candidate power plants include the following 
types: natural gas plant (VCC), lignite plant (VLG1 and VLG2), coal plant (VCOA) and nuclear power 
plant (NUCL). 

 

Table 9-1 Important parameters of the existing conventional power plants 

 
During the 20-year planning horizon from 1998 to 2017, Table 9-2 summarizes the unit 
retirement/addition information of generating plants, together with their tunnel width and yearly peak 
load.  The unit retirement/addition is indicated by -1/+1, respectively, in each year of the planning 
horizon.  The tunnel width restricts the minimum and maximum number of units allowed to be installed. 
For example, [1,2] for VLG1 in year 2005 implies that the minimum number of VLG1 to be added is one 
(1) and the maximum increment is two (2) – this means in 2005, the number of VLG1 that can be added 
are 1, 2 and 3.  If not specified, the tunnel width is as the same as that of the previous year. 

 

 

 

 

 

 

 

 

 



 60 

Table 9-2 Yearly information for the studied system 

 
 

Considering only conventional power plants, each year was divided into four periods according to 
different seasons.  Peak load in each period has a different peak load ratio, which is 0.90, 0.87, 0.93, 1.00 
of the annual peak loads for each season. By using the same constraints on reserve margin and LOLP, 
MATPLAN can produce the same feasible candidates and the same optimal solution as WASP, as shown 
in Table 9-3.  

Hence, it can be concluded that the developed MATPLAN has been successfully validated with WASP, 
and both of which generate the same optimal configurations in different study years. Some slight 
mismatch of LOLP values was observed, which was expected to be caused by numerical issues associated 
with different LDC representation methods. This can be improved by using a detailed modeling of LDC 
curves with more accurate point-wise load data. 

Table 9-3 Optimal solutions from MATPLAN vs. WASP 
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In addition, MATPLAN was also tested using realistic field data to showcase its applicability in a real-
world environment considering renewable energy (both solar PV and wind farms) in the generation mix.  
This is discussed below. 
 
9.2 Case 1: Low Penetration of Renewable Energy Sources in the Generation Mix  
This case study describes the use of MATPLAN for generation expansion planning with low penetration 
of renewable energy, including wind and solar power. The study years were from 2019 to 2038. In order 
to fully consider the volatile contribution of renewable energy to the overall system capacity in different 
periods, especially for solar plants (which produce no output during the nighttime), year-division-by-day 
and day-division-by-hour attributes were added in the setting file to let the user define how a year/a day 
could be divided into different sections. For example, a year could be divided into four different sections, 
as follows: days 1-91, days 92-183, days 184-274, and lastly days 275-365. Currently, there is no limit on 
the number of sections but higher number of sections result in longer computation time. On the other 
hand, the day-division-by-hour attribute is intended to let users split each day into two different periods: 
day and night. For instance, for the first section of the year (days 1-91), the daytime period is 07:00 to 
18:00, and the nighttime period is 18:00 to 07:00 of the next day. The above division results in eight 
periods, as summarized in Table 9-4. Each period has different LDC representations and different 
renewable generation profiles. 

 

Table 9-4 Time period division for renewable energy 

 
 

In the case study, the annual wind production data were obtained from the U.S. National Renewable 
Energy Laboratory (NREL) wind integration data sets. The solar production data were collected through 
realistic field measurements for on-site PV panels. Their normalized power output in a typical example 
year is depicted in Figure 9-1. Their cost characteristics are provided in Table 9-5. The parameters of 
conventional generators are kept the same as those in the validation case. 
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Table 9-5 Characteristics of candidate renewable energy generators 

 
 
 
 

	
Figure 9-1 Normalized power output of PV and wind farms during one year (using a 24-hour moving 

average window)  
 

 
Using MATPLAN, the optimal solution of the generation expansion evolution path is presented in Figure 
9-2. We can observe that the renewable energy generators are incorporated into the expansion plan in 
early years due to their economic advantages, including low maintenance costs and no fuel cost.  
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Figure 9-2 Optimal expansion plan – the case of low renewable energy penetration 

 

 

The ELCC values of each candidate generator in different periods of the last study year 2038 are provided 
in Table 9-6.  

 

Table 9-6 ELCC of candidate generators in different periods 

 
 
It can be observed that the renewable energy generators usually have much less ELCC values compared 
to those of conventional generators due to their intermittent nature.  This is especially for solar power 
plants that have no capacity credit at nighttime. Most generators also have different ELCC values in 
different periods due to the different shapes of ELDC curves in these periods while considering the same 
reliability levels. It is noteworthy that the ELCC values of conventional generators during the daytime 
(Period 1 - Period 4) and nighttime (Period 5 - Period 8) are not necessarily the same if LDC curves are 
modeled separately, and hence they are different during daytime and nighttime. 
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9.3 Case 2: High Penetration of Renewable Energy Sources in the Generation Mix 
This case scenario accounts for 30%-35% of the total system capacity at the end of the planning 
horizon. In this case study, MATPLAN was used to determine the optimal expansion plan with 
high level (30-50%) of renewable energy penetration. Meanwhile, the LOLP was kept at the 
same level or less by calibrating the reasonable capacity contribution of renewable energy 
generators. The resulting MATPLAN’s optimal expansion plan is depicted in Figure 9-3.  Figure 
9-4 shows how the 30-35% renewable energy penetration target has been reached in the final 
study year of 2038. 
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Figure 9-3 Optimal expansion plan – the case of high renewable energy penetration 
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Figure 9-4 The total system installed capacity - the case of high renewable energy penetration 

 

It is observed in Figure 9-5 that even with the increase in renewable energy penetration over the study 
years, the LOLP values were still kept at a quite low level if all renewable energy sources were treated as 
positive power output generators (not using negative load methods). It can also be observed that the 
nighttime LOLP values were larger than the daytime LOLP values due to the volatile capacity 
contribution of solar power.  

 

	
Figure 9-5 LOLP – the case of high renewable energy penetration 
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9.4 Case 3: Accounting for Multiple Locations of Renewable Energy Sources.   
In this test case, different installed capacities of wind/solar power plants located in multiple locations 
were studied to showcase the flexibility of MATPLAN in dealing with diverse input datasets. The 
datasets came from (i) the NREL Grid Modernization project that provides national-wide wind/solar 
datasets; (ii) the Eastern Wind Integration Data Set and Western Wind Integration Data Set 
(https://www.nrel.gov/grid/wind-integration-data.html) that include meteorological conditions and 
turbine power for more than 126,000 sites in the continental United States for the years 2007–2013; and 
(iii) the Solar Power Data for Integration Studies (https://www.nrel.gov/grid/solar-power-
data.html), which consist of 1 year (2006) of 5-minute solar power and hourly day-ahead 
forecasts for approximately 6,000 simulated PV plants.  
The renewable energy sources, including their locations and characteristics used in this case study, are 
summarized in Table 9-7. 

 

Table 9-7 Multiple locations of selected renewable energy sources 

Name WIND1 WIND2 SOLAR1 SOLAR2 

Type Wind Wind Solar Solar 

Coordinate 38.477, -79.675 38.174, -84.408 36.650, -78.250 36.350, -115.950 

State Virginia Kentucky Virginia Nevada 

County Highland Fayette Albemarle Nye 

Capacity (MW) 30  20 50 150 

 

The result of MATPLAN’s optimal expansion planning considering multiple locations of renewable 
energy sources is presented in Figure 9-6, in which renewable energy sources, including two wind farms 
(WIND1 30MW and WIND2 20MW) and two solar farms (SOLAR1 50MW and SOLAR2 150MW) 
dominate the newly added generating units. Since thermal plants usually have larger capacity than 
renewable energy sources, they make up majority of the system capacity, which can be observed in Figure 
9-7. 
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Figure 9-6 Optimal expansion plan – the case of multiple locations of renewable energy sources 

 
Figure 9-7 Total system installed capacity – the case of multiple locations of renewable energy sources 
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9.5 Case 4: Different Cost Structure of Different Types of Solar Panels 
Different cost structures of different types of solar panels (e.g., monocrystalline, polycrystalline, fixed-tilt, 
one-axis-tracking) were considered by taking into account different cost specifications. In order to see 
the impact of different types of solar panels (e.g., monocrystalline, polycrystalline, fixed-tilt, 
one-axis-tracking) with different cost structures on MATPLAN’s output, specifications of year-
by-year construction costs were added as one of the inputs to MATPLAN. The cost data were 
extracted from NREL technical report: Cost-Reduction Roadmap for Residential Solar 
Photovoltaics (PV), 2017–2030. (https://www.nrel.gov/docs/fy18osti/70748.pdf). Some general 
cost information associated with different types of solar panels are summarized in Table 9-8. 
 

Table 9-8 Cost structures (2017) of different types of solar panel 

Type Residential Commercial Fixed-tilt utility-
scale 

One-axis-tracking 
utility-scale 

Size Range 3-10kW 10kW-2MW >2MW >2MW 

Cost 2.80 $/W 1.85 $/W 1.03 $/W 1.11 $/W 

Soft costs portion (e,g, 
land acquisition, tax) 

65% 50% 30% 32% 

Labor costs portion 10% 5% 10% 8% 

Hardware 10% 20% 25% 25% 

Inverter 5% 5% 5% 5% 

Module 10% 20% 30% 30% 

 
Thus, by considering the different cost structures of different types of PV panels and the year-by-year cost 
values, the increasing number of fixed-tilt PV units and one-axis tracking PV units in the expansion 
planning plans could be seen in Figure 9-8. However, it is worth mentioning that the cost is not the only 
factor that determines the final optimal expansion plan, which is also affected by various other factors, 
such as specific tunnel width, relative cost of other energy sources and PV capacity size. 
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Figure 9-8 The increasing number of PV units in the expansion planning plan 

 

9.6 Test the Implementation using Parallel-computing Toolbox 
In some case studies, very long computational time was required to run MATPLAN in order to complete 
the iteration involving a large amount of expansion configuration options. Hence, parallel computing 
toolbox in MATLAB was used in loops to run independent iterations in parallel on multi-core CPUs. 
Specifically, parfor loops were used, in which parfor automates the creation of parallel pools and 
manages file dependencies.  

 

parfor loopVar = initVal:endVal; statements; end executes the loop body commands in statements 
for values of loopVar between initVal and endVal. loopVar specifies a vector of integer values 
increasing by 1. If we have Parallel Computing Toolbox™, the iterations of statements can execute on 
a parallel pool of workers on your multi-core computer or cluster.  

 

For example, in one case study of 1205 candidate configurations in total (including wind1, wind2, solar1, 
solar2), four working cores were used in parallel pool to reduce the total computing time from 150 min to 
49min on a desktop with Intel Core i5-3340 CPU @ 3.10GHz and 8.00 GB RAM.  
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10.0 MATPLAN Software Access 
	
The latest version of MATPLAN source code (version 1.0) has been made publically available on Github, 
URL: https://github.com/wasp2019/MATPLAN, together with its Wiki that provides description 
about MATPLAN overview, features, use guides as well as developer resources.   
 
The screen capture of MATPLAN 1.0 page on Github is shown in Figure 10-1. 
 
 
 

	
	

Figure 10-1 Screen capture of MATPLAN 1.0 page on Github 
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The screen capture of MATPLAN wiki page on Github is shown in Figure 10-2. 
 

	
	

Figure 10-2 Screen capture of MATPLAN Wiki page on Github 
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