SAND2021-6250R

The DevOps:
A Concise Understanding to the DevOps
Philosophy and Science

Brandon T. Klein
Sandia National Laboratories
Albuquerque, New Mexico
Email: btklein@sandia.gov

Abstract—This writing examines the DevOps practice
from a new perspective, one of understanding its
philosophical and scientific nature. DevOps has
fundamentally changed the landscape for research
and development based on guiding philosophical and
scientific principles. Advanced computational
technologies and domains have adopted DevOps to
enable advanced solution engineering for efficient,
quality-assured output. The author provides a concise
account of how the philosophy and science of DevOps
synergistically defines its essential disposition.

1 INTRODUCTION

DevOps—A successful paradigm to some and a mythical,
esoteric practice to others. The internet community has
generalized the definition of DevOps as a set of practices
that combines software development (Dev) and
Information-Technology (IT) operations (Ops) with the
intention to shorten systems development lifecycle
(SDLC) and provide continuous integration and
continuous deployment of high-quality software
(DevOps, 2020). This writing proposes a concise
understanding of DevOps by describing its underpinning
philosophy and science and how these domains guide its
success.

For the scope of this writing, the term DevOps
encompasses the industry term DevSecOps
([Dev]elopment + [Sec]urity + [Op]eration[s]). Security
should be implicit and omnipresent to the DevOps
paradigm and practice. Security throughout DevOps is
connected to quality assurance to provide efficient,
quality assured solutions through methodologies such as
SDLC (Laskowski, 2011). Security is everyone’s
responsibility through SDLC and has been championed
through the technology industry (Vogels, 2017). DevOps
originated in the software development and IT
community as a compilation of practices performed

NYSE {0} ENERGY

Natianal Nuclear Security Adminisiration Cin

within a larger practice; however, the paradigm and
principles of DevOps are reusable for general technology
solutions engineering and beyond (Sajjad, 2020). The
following sections provide a concise understanding to the
DevOps philosophy and science, which synergistically
define its disposition.

2 TAXONOMY

The following proposed taxonomy for DevOps
foundationally encompasses the domains of Philosophy
and Science. Figure 1 illustrates the proposed DevOps
taxonomy for Philosophy and Science along with their
respective branches, subdomains, and instantiations.
Under the domain of Philosophy, the branches of
Epistemology and Ontology will be examined through
additional classification of Belief, Knowledge, and Truth.
Accommodating instantiations of these subdomains will
be further examined through concepts and practices such
as: Agile development, Quality Assurance, and Lean
production. Under the domain of Science, the subdomains
of Social and Applied will be examined through
additional decomposition of Sociology, Psychology,
Economics, and Engineering. = Accommodating
instantiations of those subdomains will be further
examined through concepts and practices such as: Culture
Transformation, Faster-Time-to-Market, and
Automation.

3 PHILOSOPHY

The use of “philosophy” for this writing, will be lexically
attributed to the Cambridge Dictionary definition, “a
particular system of beliefs, values, and principles”
(Philosophy, n.d.). The DevOps philosophy proposed
here is continual improvement and delivery of efficient,
quality assured solution engineering through industry
recognized methodologies and practices. The following

section is not intended to be exhaustive; but is rather a

@ Sandia National Laboratories

mailto:btklein@sandia.gov

The DevOps: A Concise Understanding to the DevOps Philosophy and Science Klein

BELIEF — AGILE
EPISTEMOLOGY
QUALITY
KNOWLEDGE S ASSURANCE
PHILOSOPHY
ONTOLOGY — TRUTH — LEAN

DEVOPS

SocloLoGY & CULTURE

PsYcHoLoOGY TRANSFORMATION

FASTER-TIME-TO-

SCIENCE

EcONOMICS — MARKET

APPLIED

—{ ENGINEERING |— AUTOMATION

Figure 1 DevOps Philosophy and Science Taxonomy

scholastic recognition of the DevOps philosophy and core
philosophical principles through examination of the
associative branches: Epistemology and Ontology.

3.1 Epistemology

According to Oxford University Press, the definition of
Epistemology is “the theory of knowledge, especially
with regard to its methods, validity, and scope”; the
definition further states, “Epistemology is the
investigation of what distinguishes justified belief from
opinion” (Epistemology, n.d.). The following sub-section
explores academic and industry sources from which
DevOps draws knowledge, such as: concepts,
frameworks, methodologies, and practices. The
epistemological understanding of DevOps is further
explored through supporting sub-domains: Belief and
Knowledge.

3.1.1 Belief

Cambridge Dictionary defines belief as “the feeling of
being certain that something exists or is true” (Belief,
n.d.). While DevOps may imply a variety of beliefs, the
fundamental belief in DevOps explored here is Agile. At
its core, DevOps holds the essential belief that there
should be a reduction in time (speed/agility) of
development to operations for a quality assured solution
(output). It strives to reduce and shorten the feedback loop
within ideation, development, production, and output.
Ergo, the belief to employ a rapid, efficiently responsive

methodology is essential to DevOps and is thus, a shared
affinity with the Agile methodology.

Agile methodology, or Agile, is a belief held by the
project management community in the efficacy to plan,
execute, develop, and produce an output based on quick,
iterative development and collaboration cycles, known as
Sprints, amongst varying teams. Businesses, federal and
academic institutions, along with professional bodies
developed and adopted various approaches to manage
output (e.g. products and services); from Traditional
Waterfall to an evolved Adaptive approach of Agile
(Satzinger et al., 2009). Agile originated from a collection
of software professionals who desired to improve the
software development process. The collective software
professionals scribed the famous Agile Manifesto, the
foundation of which stemmed from the basis of 12
principles that collectively established the belief structure
of Agile (Beck et al., 2001) and later for DevOps.

Businesses as well as federal institutions demand
accelerated solution engineering for time-sensitive and
mission critical work. The need for speed in solution
engineering of mission critical work is so pressing, one
format redesigned the distinguished Sprint process of
Agile into a complementary format known as—the
Design Sprint. The purpose of the Design Sprint distills
problem solving of mission critical needs into five days:
Day One—strategize the target; Day Two—ideate
solutions; Day Three—select a solution; Day Four—

The DevOps: A Concise Understanding to the DevOps Philosophy and Science Klein

develop a prototype; Day Five—test the prototype and
capture lessons learned to decide how to progress next
(Knapp et al., 2016). The Agile philosophy permeates
DevOps and establishes agility within the practice. The
concepts and practice of DevOps rely on speed to quickly
engineer efficient, quality assured solutions, and through
integration and development to continually improve and
deliver desired solutions.

One method DevOps applies the Agile belief is through
CI/CD, a tech-industry term associated with Continuous
Integration and Continuous Delivery. This understanding,
however, should be augmented to include: CI as
Continuous Improvement and CD as Continuous
Development. This augmentation to CI/CD suits the need
to continuously develop from the continuous integration.
Additionally, the purpose for continual integration is to
improve the previous iteration and to continuously deliver
said improvement as soon as possible. Thus, the
augmented CI/CD model is an incessant CI/CD
(Continuous Improvement and Continuous Delivery)
cycle with aggregated sub-cycles of single and/or
multiple CI/CD (Continuous Integration and Continuous
Development) pipelines. Implementation of CI/CD is
tactically executed through software engineered pipelines
and can range from simplistic (one pipeline) to complex
(many pipelines). Implemented pipelines may be
interconnected or mutually exclusive; architecture of
CI/CD pipelines is tailored according to need.

The CI/CD model is applied to software development and
IT operations to enable accelerated delivery of solution
output. Any integration should be an incremental
improvement to the output. Thus, any development
should be driven by the need to integrate decided
improvements that are driven by the feedback loop cycle
of continuous improvement in order to provide
continuous delivery of improved output. The applied
Agile belief through CI/CD in DevOps allows output to
fail-fast, learn/improve quickly, and shortens the
feedback loop cycle regarding knowledge.

3.1.2 Knowledge

Knowledge, according to Oxford Learner’s Dictionary, is
“the information, understanding and skills that you gain
through education or experience” (Knowledge, n.d.). Vast
technical understanding and skillsets are paramount to
efficiently practice and execute DevOps. The knowledge
inputs for practicing DevOps are numerous and
multifaceted as illustrated through current hiring

qualifications within the leading technology industry. The
term “T-Shaped Professional” describes DevOps
professionals who require broad technical knowledge in
conjunction with profound specialized technical
knowledge (DevOps Institute, 2019).

In addition to the knowledge needed by the DevOps
practitioner, knowledge surrounding the DevOps process
encompasses an array of abstract and concrete
information spanning multiple technical and non-
technical disciplines and domains. Yet, there is a
fundamental confluence of the various disciplines and
domains regarding desired knowledge—continually
improved output through efficient, quality assured
methodologies.

Recognition regarding the importance of knowledge
capture, expression, evaluation, and retention integrated
in a feedback loop cycle has been accounted for through
formal concepts such as: Shewhart’s Cycle for quality
control—specification, production, inspection (Shewhart,
1939); and Deming’s rendition for quality control and
improvement—~Plan-Do-Study-Act (PDSA) (Deming,
2018); and the Japanese rendition of Deming’s work into
Plan-Do-Check-Act (PDCA) (Imai, 1986). For example,
when a business develops a strategy (Plan) to create a new
widget, the release of the widget to the market (Do) allows
the business to collect market information regarding the
widget for analysis (Study/ Check). With DevOps, the
analyzed knowledge can be quickly integrated (Act) for
the next development cycle to improve the widget and its
delivery. Thus, in DevOps, time to knowledge is
shortened and continuously integrated into development
for continuous improvement of the delivered output.

Formal concepts like Shewhart’s Cycle, PDSA, and
PDCA provide the structure and methodology for
problem solving/decision making within DevOps. The
ability to solve problems or make decisions sooner
becomes a competitive advantage for the business or
institution employing DevOps. Knowledge becomes a
commodity for continual improvement and the ability to
capture, retain, share, or expend it dictates significant
business decisions, strategies, and future outcomes.
DevOps ensures knowledge is appropriately cycled to
deliver efficient, quality assured solutions by following a
phased approach, based on Shewhart’s Cycle, PDSA, and
PDCA.

In order to benchmark the knowledge captured through
processes like Shewhart’s Cycle, PDSA, and PDCA

The DevOps: A Concise Understanding to the DevOps Philosophy and Science Klein

regarding quality improvement, a data driven approach is
applied through Six Sigma. Six Sigma was founded by
Motorola to combat quality failures and reduce error rates
through the combination of Statistical Process Control
and Total Quality Management (Tennant, 2001). Six
Sigma methodology provides DevOps the knowledge for
benchmarking current state of quality in order to strive
toward necessary incremental improvement of assured
output.

Define, Measure, Analyze, Improve, and Control—
otherwise known as DMAIC (pronounced “Duh-MAY-
ick”) are the five phases of Six Sigma improvement
(George et al., 2005). The five phases of Six Sigma
improvement guide DevOps to provide quality assured
solutions as follows: 1) setting an initial quality level for
desired output (Define); 2) concretize initial output
(Measure); 3) review knowledge from quality and error
levels (Analyze); 4) integrate and develop corrections to
known issues for new output (Improve); finally, 5) ensure
subsequent delivery cycle includes only improved output
(Control). This data driven improvement cycle
continuously repeats for DevOps through knowledge
capture and feedback loop cycles. The knowledge
collected from employing Six Sigma in DevOps provides
the necessary process to continually improve the quality
level and reduce/eliminate known errors on the next
continuous delivery cycle of efficient, quality assured
solutions. In order to continually reduce errors or other
issues causing constraints, DevOps continually seeks
truth regarding existing value-add and non-value-add
items for the continuous improvement and continuous
delivery of efficient, quality assured solutions.

3.2 Ontology

The lexical representation of ontology from Merriam
Webster’s definition follows, “a branch of metaphysics
concerned with the nature and relations of being”
(Ontology, n.d.). DevOps has existed in name since 2009,
thanks to Patrick Debois (Mezak, 2018). However, the
concept/practice of DevOps has a notable familiarity due
to its evolution from the harmonious collection of vetted
methodologies, practices, frameworks, and concepts. The
next section explores the ontological nature of DevOps
through the sub-domain: Truth.

3.2.1 Truth

The preceding section concerning Epistemology and its
subcomponents, Belief and Knowledge, lays the
groundwork for the ontological Truth of DevOps. The

following discussion of Truth is not meant as an
exhaustive list of all truths within DevOps, but is a
discussion of what, at the highest level, embodies Truth
for DevOps. Truth is “the body of real things, events, and
facts: actuality” according to Merriam Webster’s
dictionary (Truth, n.d.).

A genuine truth regarding DevOps is—Lean. The “Lean”
in DevOps is respectfully analogous to the “lean
production” methodology coined by John Krafcik to
reflect the Toyota Production System (TPS) of Toyota
Motor Corporation (Toyota); which, intentionally seeks
to continuously reduce or eliminate extraneous items and
inefficiencies from a production structure that is flexible
and less oppressive compared to its predecessor, mass
production (Womack et al., 2007).

TPS derived inspiration from both the Ford Production
System, a mass production model championed by Henry
Ford and workflows of American supermarkets. From this
beginning, TPS became a continually improving, just-in-
time, Kanban pull system under Taiichi Ohno of Toyota
(Ohno, 1988). Additional enhancement to TPS came from
adoption of Shigeo Shingo’s Single-Minute Exchange of
Die, also known as SMED (Shingo, 1985).

Lean production has been tested and validated as a truth
through Toyota’s success and pervasive adoption of TPS
across varying business domains. The lean production
mindset became associated as a way of thinking—Ilean
thinking. Lean thinking is truth: either an activity is lean
or still contains non-essential waste, known as muda in
Japanese, inhibiting the true value to be realized
(Womack & Jones, 1996). The notion to make something
“Lean” could be considered as rendering it to be precisely
composed of only the exact items needed for it to be
efficiently optimal; any additional components are
considered excessive, non-value-add and cause value to
diminish or become suboptimal.

The output produced from employing DevOps starts with
lean thinking for frugal feature standardization through
the Minimum-Viable-Product (MVP) concept (Ries,
2011). Frugality should not be corelated with shoddiness
but should instead be understood in the context of being
sensible, prudent, and economical with regard to
resources as well as expectations. A sacrifice to quality
should not occur to the MVP in DevOps. Instead, a phased
approach to deliver efficient, quality assured features of
the MVP should take place through the lifecycle of CI/CD
(Continuous Improvement and Continuous Delivery via

The DevOps: A Concise Understanding to the DevOps Philosophy and Science Klein

Continuous Integration and Development). Additionally,
DevOps incrementally improves the initial MVP through
continuous knowledge capture and plowback of said
knowledge into the next MVP development cycle.
DevOps repeats the improvement cycle toward
“perfection” or “near-perfection” as the ultimate end goal.
Note however, that what constitutes perfection will be
determined by the needs of the business/institution.

Efficiency is a vital mantra for DevOps and its success
and stems from thinking lean for all aspects of the
practice. Thinking lean and making solutions lean, while
employing DevOps, aligns well with the familiar adage
attributed to Einstein (2019) “Everything should be made
as simple as possible, but not simpler” (p. 475). From lean
programming code, to lean CI/CD pipelines, the
ecosystem of DevOps should consist only of what is
exactly needed and nothing more. Additional muda will
bloat and overload the DevOps practice causing
cumbersome maintenance and operations, which is not
ideal. Lean thinking for DevOps is a truth and many
features that encompass the practice, such as software
engineering and computing, employ lean thinking.

Lean thinking is natural to software engineering and
computing as both come from the field of mathematics. In
mathematics, algorithms should be reduced (reduction)
down to the simplest form (Boyer & Merzbach, 1991).
Any additional items not pertaining to desired
functionality of the algorithm are out of scope and need
not be present. Software engineering lean code is
recognizable from the desire to develop clean code—
simple, direct code (Martin, 2008); additionally, to quote
Hoare (1969), “Computer programming is an exact
science” (p.576). Lean computing environments are
desirable, as is recognized in the collective Unix
philosophy of making each program do one thing well by
eliminating or not adding unnecessary clutter and
complication (Mcllroy et al., 1978). Additional lean
computing environments include minimalistic operating
systems that contain only specific elements essential to
desired functionality with capability to modify elements
just-in-time if ever needed (Geer, 2009).

Lean is truth for DevOps and enables the practice to
continually seek improvement and optimization through
reduction of muda. Lean thinking is vitally important to
the efficiency and success of DevOps. DevOps
fundamentally believes an efficient, quality assured
solution should be lean in order to reduce/shorten the
feedback loop within ideation, development, production,

and output. Combining Lean, Agile, and Quality
Assurance provides a concise view of principles guiding
DevOps philosophy for efficient, quality assured
solutions.

4 SCIENCE

According to Oxford University Press, the lexical
definition of science is, “the intellectual and practical
activity encompassing the systematic study of the
structure and behavior of the physical and natural world
through observation and experiment” (Science, n.d.). The
following section is a brief scholastic account of the
scientific nature innate to DevOps through examination of
associative branches within the Science domain: Social
and Applied.

4.1 Social

Social Science is “the scientific study of human society
and social relationships” according to Oxford (Social
Science, n.d.). The following section conveys three
significant disciplines of Social Science that contribute to
the scientific nature of DevOps: Sociology, Psychology,
and Economics.

4.1.1 Sociology & Psychology

According to Giddings (1923), “Sociology is an attempt
to account for the origin, growth, structure, and activities
of society by the operation of physical, vital, and physical
causes, working together in process of evolution” (p.8);
and according to Arnoult (1976), “Psychology is the study
of behavior; that is, the study of observable actions of
humans and other animals” (p.7). Although Sociology
and Psychology are distinctive fields, they will be
examined together to better understand the adoption of
DevOps by an organization. The following section
explores DevOps culture and transformation, specifically
as applied to business organizations that adopt the
practice. Many of the points analyzed, however, are
applicable for other types of organizations such as federal
and academic institutions.

Businesses are social systems-of-systems (SoS)
organizations that endeavor to effectively motivate
autonomous, free-willed humans to achieve common
behavior and organizational goals (Hersey & Blanchard,
1977). For the varying systems in a business to embrace
DevOps, a significant commitment and effort is required
by the leaders and workforce. Both the individual worker
and collective workforce need to culturally adopt such

The DevOps: A Concise Understanding to the DevOps Philosophy and Science Klein

DevOps principles as continuous improvement, which
compels a continuous learning environment.

DevOps adoption transforms the culture of a business into
thinking and behaving within a new paradigm, both
sociologically and psychologically. When a business
embraces a new paradigm, new capabilities emerge and
current capabilities need to be assessed for continuance.
Capabilities under the previous business paradigm may
not align with DevOps and therefore may need to be
eliminated or transformed into new capabilities to prevent
them from becoming rigidities (Leonard, 1992).

Businesses should commit to adapting or reinventing as
needed to meet requirements for a successful
transformation to DevOps. Executive leadership should
provide consistent, proactive communication to the
workforce regarding its DevOps transformation progress
in a transparent manner to eliminate barriers and ensure
success. Reinventing the business philosophy, learning
new competencies, and eliminating transformation
barriers enable adoption of DevOps principles and
practices. The commitment to transform the business
must be steadfast from leadership and effectively
executed for the workforce or it will fail (Deming, 2000).

When transitioning to DevOps, new capabilities most
assuredly require new skills. The business must commit
to maturing the workforce with necessary skills for
DevOps, like the T-Shape Professional, to provide
significant psychological value to the individual worker
and sociological value to the workforce. The ability to
provide value to the individual worker strengthens the
organizational commitment between the individual and
the business (Margelyté-Pleskiené & Veinhardt, 2018),
This, in turn, strengthens a successful cultural
transformation to DevOps. If new skills are not fostered,
individuals may become disenfranchised and seek
alternative businesses to continue career development.

Businesses using technology must recognize the need to
adopt DevOps or be left with organizational obsolescence
(Le Mens et al.,, 2015) and organizational cynicism
(Wanous et al.,, 1994). Additionally, businesses must
guard against resistance to DevOps due to hubristic
leadership (Sadler-Smith et al., 2016), collective hubris
(Sullivan & Hollway, 2014), and success syndrome
(Tushman & O'Reilly, 1996), all of which could stifle or
prevent adoption and transformation to DevOps.

Transformation for a business is not trivial. If a business
can initialize and communicate the value of the

transformation to the workforce, Dbarriers to
transformation become easier to remove. A reference
model for successful cultural transformation is found
from Toyota’s “Toyota Way.” Toyota’s culture was
transformed into “Toyota Way” by adopting TPS and
positively embracing its workforce to foster sociological
and psychological value (Liker & Franz, 2011). Toyota
describes “Toyota Way” as rooted in the spirit of making
things (monozukuri in Japanese) (Toyota Motor
Corporation, n.d.) as well as two principles: continual
improvement (kaizen in Japanese) and respect for people
(Liker, 2004). The principles of “Toyota Way”
transformed Toyota’s culture into a positive, learning
environment, which strengthened organizational
commitment from its workforce (Allen & Meyer, 1990)
and significantly contributed to longstanding industry
success (Sobek II & Smalley, 2008).

The DevOps culture is analogous to “Toyota Way”
regarding positive, impactful business and culture value.
DevOps provides a unique organizational culture that
practices continual delivery of efficient, quality assured
solutions through continual improvement methodologies
based on science. DevOps encourages a scientific
environment for the collective and individual to organize,
research, develop, and assess solutions based on
repeatable information (Wallace, 1971).

4.1.2 Economics

According to Marshall (1890), “Economics is on one side
a study of wealth and on the other a branch of the study
of man” (p.1). Economics has two main branches:
macroeconomics and microeconomics. Macroeconomics
studies the global economy while microeconomics studies
the economies of individual persons and businesses. For
scope and brevity, this section describes how DevOps
enhances the wealth of individual businesses through an
important feature of reducing the time required for an
efficient, quality assured output (e.g. product/service) to
enter the market—coined “Faster-Time-to-Market.”
Although this section focuses on DevOps for businesses,
it would be an oversite not to recognize the value Faster-
Time-to-Market has for research institutes such as
universities and federal laboratories, although, applied as
such, the phrase warrants slight modification to the more
suitable—Faster-Time-to-Science (NASA, 2013).

Functional application of DevOps provides business
operations increased acceleration of quality assured
output to the market. Increased acceleration of production

The DevOps: A Concise Understanding to the DevOps Philosophy and Science Klein

from DevOps could be viewed as faster time to
production, which enables a Faster-Time-to-Market. The
concept of Faster-Time-to-Market originates from “Time
to Market” in correlation to the reduction of product lead
time for an output to reach the consumer market
(Charney, 1991).

DevOps provides significant impact to businesses
universally through its general employment of key
concepts such as Agile, Lean, Quality Assurance, Cultural
Transformation, and Automation. Incorporation of said
concepts provides value-add to managing and improving
business processes with the ultimate aim of reducing costs
while maintaining, or even increasing, customer
satisfaction. Incorporation of DevOps for businesses
improves value chains through reduced costs and
differentiation, which could provide competitive
advantage within a tightly vying industry (Porter, 1985).
Additionally, DevOps enhances the ability of an
organization to provide quality assured output at an
accelerated frequency for the market (Faster-Time-to-
Market), which thereby increases opportunity to satisfy
customers. The ability for a company to provide customer
satisfaction sooner and more frequently than the
competitor is a competitive advantage and bastion against
competitive forces within its industry (Porter, 1997).

Increasing the frequency of customer satisfaction with
delivered output is a critical success factor for any
business due to inbound cashflow from consumer
spending and consumer retention. Therefore, businesses
may spend significant resources to obtain customer
satisfaction and retention through quality of conformance,
which focuses on the identification and elimination of
defects before market release to ensure output meets, or
exceeds, intended design specifications (Garrison et al.,
2017). DevOps enhances the ability for a business to
obtain quality of conformance through its efficient,
quality assured methodologies regarding continual
improvement and delivery. The sooner quality assured
output can reach the consumer market ahead of
competitors, the sooner an opportunity is presented to
make a sale from consumer spending (i.e. inbound
cashflow). If a business has known inbound cashflow, that
monetary resource will be worth more at present time than
in the future due to potential uncertainties and failing
inadequacies: internally with people, processes, and
technologies; or externally to macroeconomic and geo-
political uncertainties (BIS, 2011). Also, time is money;
the Time-Value of Money principle regards a unit of

money today as worth more than the same unit of money
in the future (Kimmel et al., 2018). Ergo, realization and
purchasing power of timelier inbound cashflow allows the
business to make monetary decisions sooner; a critical
ability in competitive markets. If a business obtains
competitive and comparative advantage over competitors,
those advantages become invaluable to the business and
are exploited to lead the industry.

While macroeconomics and geo-political risks are beyond
the control of businesses, operational risk is not.
Operational risk includes technology systems and
technology risk, both significant to the practice and
continuation of DevOps. Since the purchase and use of
technology may not provide value-add, businesses
meticulously strategize and cost manage how technology
can provide value-add through operational efficiency
improvements in the form of economies of scale or
economies of scope (Saunders & Cornett, 2017). DevOps
provides value-add through increased speed of output
(Faster-Time-to-Market) to obtain economies of scale and
additionally enhances ability to meet output need,
fulfilling economies of scope. DevOps looks to help
provide a methodology for businesses to get-to-market
sooner (Faster-Time-to-Market), which in turn provides a
valid return-on-investment regarding the technology
required to engineer and implement DevOps.

Thus, DevOps can complement and further enhance a
paradigm of business success already understood through
the synergy of total quality management and operational
risk management (Luburi¢, 2012). DevOps provides
continual improvement and continual delivery of
solutions (output) while benchmarking the current state of
quality to strive toward incremental improvement for
efficient, quality assured solutions.

4.2 Applied

According to Smith (1967), “[A]pplied science can be
regarded as a body of experimental methods,
experimentally determined constants and theory” ... “that
are likely to prove helpful to engineers and others who
have to solve socially determined problems by the use of
any available methods and concepts regardless of their
intrinsic intellectual interest or lack of it” (p.57). The
following section conveys the significant discipline of
Applied Science that contributes to the scientific nature of
DevOps: Engineering.

The DevOps: A Concise Understanding to the DevOps Philosophy and Science Klein

4.2.1 Engineering

Engineering is, according to Engineering World (1919),
“the practice of safe and economic application of the
scientific laws governing the forces and materials of
nature by means of organization, design and construction,
for the general benefit of mankind” (p.34).

As mentioned earlier in this writing, DevOps originated
from software engineering, likewise significant
nomenclature associated throughout the practice
originates from the respective engineering field. Software
engineering encompasses knowledge in areas such as:
computer programing, architecture (e.g. data, software,
system), solution engineering; as well as various
disciplines, such as: computer science, mathematics,
quality management, systems engineering (Bourque et al.,
2014). DevOps engineering methodologies have greatly
enabled efficiency and success by holding to sound
mathematical and engineering principles: Abstraction
(Russell, 1903), Modularity (Gauthier & Pont, 1970),
Polymorphism (Cardelli & Wegner, 1985), Portability
(Newey et al., 1972), Encapsulation (Parnas, 1972),
Reusability (Rich & Waters, 1983).

Engineered automation is an essential aspect of DevOps
and is a key component to its success. Additionally,
automation is essential to modern and future computing
technologies. In 2001, IBM proclaimed autonomic
computing a necessity and provided principles on the
ability to self-manage through four concepts: self-
configuration, self-optimization, self-healing, and self-
protection (Kephart & Chess, 2003). Then in 2005, IBM
provided an architectural blueprint for autonomic
computing (IBM, 2005). John von Neumann set
precedence in autonomic computing with formulated
lectures on automata computing machines compared to
the human nervous system (von Neumann, 1951) and
later the notion of self-reproducing automata (von
Neumann, 1966). A significant contribution to the success
of DevOps resides in the practice of engineering CI/CD
pipelines to automate configuration, optimization,
healing, and securing of efficient, quality assured,
engineered solutions.

Implementation of DevOps CI/CD pipelines leverage
sophisticated technologies to enhance and promote
automation of disparate systems, which require nontrivial,
customization for interoperability, however developed
software has eased implementation (Klein et al., 2020).
Software and system operation teams, or full-stack

engineering teams, coordinate interfaces to develop,
manage, and operate systems used to establish desired
pipelines. Nonetheless, integration of DevOps CI/CD
pipelines need to be engineered to enable expressive
automation, thus engineering automation to enable
automation engineering (i.e. build the machine that builds
the machines).

The engineered automation in DevOps, such as, but not
limited to CI/CD pipelines, are composed of synergistic,
reusable, polymorphic building blocks: Images, Scripts,
Application Programming Interfaces (APIs) (Klein &
Miner, 2018). The engineered building blocks in DevOps
are analogous to abstract data types in computer science
and Functionals (higher-order function) in mathematics.
The building blocks are untyped in the utmost abstract
form when designing generic, reusable architecture
patterns and solutions, then typed when instantiated to
develop efficient, quality assured solutions. The
combination of the engineering building blocks in
DevOps provides increased expressiveness to architect
and engineer various reusable patterns and solutions,
ranging from trivial to complex. Since the engineering
building blocks can be software defined, advanced
development with automation and computing has taken
place. Entire systems, and SoS, have evolved to become
integrated with software defined solutions (Juve &
Deelman, 2011). Fully software defined systems and SoS
have been deployed unto various physical and digital
environments for various production workload purposes
(Gannon et al., 2017). Even atypical propositions (Miner
& Klein, 2018) for physical modern systems and SoS to
become software defined have initialized (Miner et al.,
2018).

Advanced efficient, quality assured computing solutions
exist in DevOps due to expressive interplay between the
engineering building blocks. These engineering building
blocks enhance the use of entirely developed software
defined systems, and/or SoS, solutions, which provide a
gamut of advantageous and tactical architectural patterns
to quickly employ such as: save-point, ephemeralness,
immutability, and idempotency. Similar in notion to a
save-point for video games or databases, software defined
solutions can expressively save-point entire ecosystems
(as images, scripts, APIs). Once the ecosystem is saved,
CI/CD pipelines can redeploy solutions to resurrect or
roll-back to desired state; and/or continue existence in a
different ecosystem for survival or compliance (Hadgu et
al., 2016). Ephemeral solutions live only for the moment

The DevOps: A Concise Understanding to the DevOps Philosophy and Science Klein

in time they are specifically needed, then shut down until
needed again or terminate from existence through CI/CD
pipelines. Ephemeral, software defined computing
environments have increased in use through computing
(Cotta et al., 2016). Immutable solutions are designed to
have nonchanging and persistent state. However, if an
undesired permutation occurs in the solution, then the
permutated solution is destroyed and re-instantiated to the
originally intended desired state through CI/CD pipelines.
Such implementation of immutability into entire solutions
includes immutable infrastructure (Mikkelsen et al.,
2019). Idempotent solutions are designed to consistently
provide nonchanging, persistent existence and behavior
regardless of the number of times deployed or applied
through CI/CD pipelines. Such idempotent software
defined computing solutions include distributed cloud
environments (Ramalingam & Vaswani, 2013).

The recognition and significance of DevOps automation
is pervasive in modern technology, solution architecting,
and engineering in advanced computing fields such as
Cloud Computing, High-Performance Computing, Big
Data, Machine Learning/Artificial Intelligence, Internet
of Things, Robotics, and Extended Reality. When the
automation of development and deployment of software-
based solutions are combined, increased expressiveness
and DevOps automation success are realized. Through the
combination of DevOps CI/CD pipelines and engineering
building blocks, the ability to develop efficient, quality
assured solutions through engineered automation
becomes achievable and maintainable.

5 CONCLUSION

DevOps is a multifaceted, eclectic concept and practice
with origins in academic and industry recognized
methodologies and practices. The philosophy and science
behind DevOps are the reasons for its fast adoption and
success. This writing covered DevOps with regard to the
domain of Philosophy through the branches of
Epistemology and Ontology, under the classifications of
Beliefs, Knowledge, and Truths. Additionally, the
discussion explicated DevOps in light of the domain of
Science, as subdomains of Social and Applied were
examined through the fields: Sociology, Psychology,
Economics, and Engineering. = Accommodating
instantiations of the subdomains for both Philosophy and
Science were further examined through key DevOps
concepts and practices and applied contextually to a
business framework.

6 ACKNOWLEDGEMENTS

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security
Administration under contract DE-NA0003525.
SAND2021-6250 R

7 REFERENCES

Allen, N. J., & Meyer, J. P. (1990). “Organizational
socialization tactics: a longitudinal analysis of links to
newcomers’ commitment and role orientation”, The
Academy of Management Journal, 33(4), 847-858.

Arnoult, M. D. (1976). Fundamentals of Scientific
Method in Psychology. Dubuque, lowa. Wm. C. Brown
Company Publishers.

Bank for International Settlements — BIS. (2011).
Principles for the Sound Management of Operational
Risk. Basel Committee on Banking Supervision. June
2011. Basel: Bank for International Settlements.

Beck, K. M., Beedle, M., van Bennekum, A., Cockburn,
A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B.,
Martin, R.C., Mellor, S., Schwaber, K., Sutherland, J., &
Thomas, D. (2001). The Agile Manifesto.
http://agilemanifesto.org/

Belief. (n.d.). Cambridge Dictionary. In Cambridge.com
dictionary. Retrieved from
https://dictionary.cambridge.org/us/dictionary/english/be
lief

Bourque, P., Fairley, R. E., & IEEE Computer Society
(2014). Guide to the Software Engineering Body of
Knowledge (SWEBOK®) (3" Edition). IEEE Computer
Society Press, Washington, DC, USA.

Boyer, C. B., & Merzbach, U. C. (1991). 4 history of
mathematics. New York, N.Y: J. Wiley and Sons. 229.

Cardelli, L., & Wegner, P. (1985). On Understanding
Types, Data Abstractions, and Polymorphism.
Computing Surveys, 17(4), 471-522.

Charney, C. (1991). Time to Market: Reducing Product
Lead Time. Dearborn, MI: Society of Manufacturing
Engineers.

http://agilemanifesto.org/
https://dictionary.cambridge.org/us/dictionary/english/belief
https://dictionary.cambridge.org/us/dictionary/english/belief

The DevOps: A Concise Understanding to the DevOps Philosophy and Science

Cotta, C., Fernandez-Leiva, A., Vega, F., Chavez, F.,
Merelo Guervos, J., Castillo, P., Camacho, D., R-
Moreno, M. (2016). Application Areas of Ephemeral
Computing: A Survey. 10.1007/978-3-662-53525-7 9.

Deming, W. E. (2000). Out of the Crisis. United
Kingdom: Massachusetts Institute of Technology, Center
for Advanced Engineering Study.

Deming, W. E. (2018). The New Economics for Industry,
Government, Education. United States: MIT Press.

DevOps. (2020, February 4). In Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/wiki/DevOps

DevOps Institute. (2019). The DevOps Engineer Craze—
Who You Should Really Hire. Retrieved from
https://devopsinstitute.com/2019/05/30/the-devops-
engineer-craze-who-you-should-really-hire/

Einstein, A., & Dyson, F. (2019). The Ultimate Quotable
Einstein. United States: Princeton University Press.

Engineering World. (1919). Engineering World: A
Journal of Engineering and Construction. United States:
International Trade Press, Incorporated. 14-15.

Epistemology. (n.d.). Oxford University Press. In
Lexico.com dictionary. Retrieved from
https://www.lexico.com/en/definition/epistemology

Gannon, D., Barga, R., & Sundaresan, N. (2017). Cloud-
Native Applications. /EEE Cloud Computing, 4, 16-21.

Garrison, R. H., Noreen, E. W., & Brewer, P. C. (2017).
Managerial Accounting. Boston: McGraw-Hill/Irwin.

Gauthier, R., & Pont, S. (1970). Designing Systems
Programs. Prentice-Hall, Englewood Cliffs, N.J., 1970.

Geer, D. (2009). The OS Faces a Brave New World.
Computer, 42(10), 15-17. 10.1109/MC.2009.333.

George, M. L., Rowlands, D., Price, M., & Maxey, J.
(2005). The Lean Six Sigma Pocket Toolbook: A Quick
Reference Guide to Nearly 100 Tools for Improving
Process Quality, Speed, and Complexity. New York,
NY: McGraw-Hill.

Giddings, F. H. (1923). The Principles of Sociology: An
Analysis of the Phenomena of Association and of Social
Organization. United Kingdom: Macmillan.

10

Klein

Hadgu, T., Klein, B. T., Appel, G. J., & Miner, J. G.
(2017). Cloud Computing for Complex Performance
Codes. United States. 10.2172/1343253.

Hersey, P., & Blanchard, K. H. (1977). Management of
organizational behavior: utilizing human resources (3
Edition). Englewood Cliffs, N.J.: Prentice-Hall.

Hoare, C. A. R. (1969). An axiomatic basis for computer
programming. Communication of the ACM, 12(10), 576-
580, 583.

IBM Corporation. (2005). An Architectural Blueprint for
Autonomic Computing. Autonomic Computing White
Paper.

Imai, M. (1986). Kaizen: The Key to Japan’s
Competitive Success. McGraw-Hill Education, New
York.

Juve, G., & Deelman, E. (2011). Automating
Application Deployment in Infrastructure Clouds. 2011
1EEE Third International Conference on Cloud
Computing Technology and Science, Athens, 658-665.

Kephart, J., & Chess, D. (2003). The Vision of
Autonomic Computing. IEEE.

Kimmel, P. D., Weygandt, J. J., & Kieso, D. E. (2018).
Financial Accounting: tools for business decision
making (9" Edition). New York: Wiley.

Klein, B. T., & Miner, J. G. (2018). DevOps: Images
Scripts APIs Oh my!. United States.
https://www.osti.gov/servlets/purl/1512856

Klein, B. T., Giese, G., Lane, J., Miner, J. G., Jones, J.
J., & Venezuela, O. (2020). An Approach to DevOps and
Microservices. United States. 10.2172/1635752.

Knapp, J., Zeratsky, J., & Kowitz, B. (2016). Sprint:
How to Solve Big Problems and Test New Ideas in Just
Five Days. New York, NY: Simon & Schuster.

Laskowski, J. (2011). Why software quality assurance
and IT security need to work together. IBM Corporation.
Retrieved from
https://www.ibm.com/developerworks/rational/library/so
ftware-quality-assurance-1T-security/software-quality-
assurance-IT-security-pdf.pdf

https://en.wikipedia.org/wiki/DevOps
https://devopsinstitute.com/2019/05/30/the-devops-engineer-craze-who-you-should-really-hire/
https://devopsinstitute.com/2019/05/30/the-devops-engineer-craze-who-you-should-really-hire/
https://www.lexico.com/en/definition/epistemology
https://www.osti.gov/servlets/purl/1512856
https://www.ibm.com/developerworks/rational/library/software-quality-assurance-IT-security/software-quality-assurance-IT-security-pdf.pdf
https://www.ibm.com/developerworks/rational/library/software-quality-assurance-IT-security/software-quality-assurance-IT-security-pdf.pdf
https://www.ibm.com/developerworks/rational/library/software-quality-assurance-IT-security/software-quality-assurance-IT-security-pdf.pdf

The DevOps: A Concise Understanding to the DevOps Philosophy and Science

Le Mens, G., Hannan, M., & Pdlos, L. (2015).
Organizational Obsolescence, Drifting Tastes, and Age
Dependence in Organizational Life Chances.
Organization Science, 26, 550-570.

Leonard, D. (1992). Core Capability and Core Rigidities:

A Paradox in Managing New Product Development.
Strategic Management Journal. 13. 111-125.

Liker, J. K. (2004). The Toyota way: 14 management
principles from the world's greatest manufacturer. New
York: McGraw-Hill.

Liker, J. K., & Franz, J. K. (2011). The Toyota Way to
Continuous Improvement. New York: Mc-Graw Hill.

Luburi¢, R. (2012). Synergistic effects of Total Quality
Management and Operational Risk Management in
central banks. International Journal for Quality Research
6(4), 381-388.

Margelyté-Pleskiené, A., & Vveinhardt, J. (2018). The
Quintessence of Organizational Commitment and
Organizational Cynicism. Management of
Organizations: Systematic Research, 80, 67-88.

Marshall, A. (1890). Principles of Economics. Book 1.
Macmillan and Company.

Martin, R. C. (2008). Clean Code: A Handbook of Agile
Software Craftsmanship. United States: Pearson
Education.

Mcllroy, M., Pinson, E. N., & Tague, B. A. (1978).
UNIX time-sharing system: Foreword. The Bell System
Technical Journal, 57, 1899-1904.

Mezak, S. (2018). The Origins of DevOps: What's in a
Name?. DevOps. https://devops.com/the-origins-of-
devops-whats-in-a-name/

Mikkelsen, A., Grenli, T., & Kazman, R. (2019).
Immutable Infrastructure Calls for Immutable
Architecture. 10.24251/HICSS.2019.846.

Miner, J. G., & Klein, B. T. (2018). FFRDC-in-a-Bottle.
Sandia National Laboratories. United States.
https://www.osti.gov/servlets/purl/1513087

Miner, J. G., Klein, B. T., Venezuela, O., & Comen, A.
(2018). Federally Funded Research and Development
Centers-as-Code (Version 1). [Computer software].
https://www.osti.gov//servlets/purl/1439578.

11

Klein

NASA. (2013, November 13). NASA brings Earth
Science ‘big data’ to the cloud with Amazon web
services. Phys. https://phys.org/news/2013-11-nasa-
earth-science-big-cloud.amp

Newey, M. C., Poole, P. C., & Waite, W. M. (1972).
Abstract machine modeling to produce portable
software—a review and evaluation. Software: Practice
and Experience, 2(2), 107-136.

Ohno, T. (1988). Toyota Production System: Beyond
Large-Scale Production. United Kingdom: Taylor &
Francis.

Ontology. (n.d.). Merriam-Webster. In Merriam-
Webster.com dictionary. Retrieved from
https://www.merriam-webster.com/dictionary/ontology

Parnas, D. L. (1972). On the Criteria to Be Used in
Decomposing Systems into Modules. Communication of
the ACM, 15(12), 1053-1058.

Philosophy. (n.d.). Cambridge Dictionary. In Cambridge
Dictionary.com dictionary. Retrieved from
https://dictionary.cambridge.org/us/dictionary/english/ph

ilosophy

Porter, M. E. (1985). Competitive advantage: Creating
and sustaining superior performance. New York: Free
Press.

Porter, M. E. (1997). How competitive forces shape
strategy (HBS reprint 79208). Competitive Strategy. 1-
10.

Ramalingam, G., & Vaswani, K. (2013). Fault Tolerance
via I[dempotence. ACM SIGPLAN Notices, 48, 249-262.
10.1145/2480359.2429100.

Rich, C., & Waters, R. (1983). Formalizing Reusable
Software Components. The Artificial Intelligence
Laboratory Massachusetts Institute of Technology.

Ries, E. (2011). The Lean Startup: How Today's
Entrepreneurs Use Continuous Innovation to Create
Radically Successful Businesses. United

Kingdom: Crown Business.

Russell, B. (1903). The Principles of Mathematics
(Volume 1). Cambridge: University Press.

Sadler-Smith, E., Akstinaite, V., Robinson, G., & Wray,
T. (2016). Hubristic leadership: A review. Leadership,
13.10.1177/1742715016680666.

https://devops.com/the-origins-of-devops-whats-in-a-name/
https://devops.com/the-origins-of-devops-whats-in-a-name/
https://www.osti.gov/servlets/purl/1513087
https://www.osti.gov/servlets/purl/1439578
https://phys.org/news/2013-11-nasa-earth-science-big-cloud.amp
https://phys.org/news/2013-11-nasa-earth-science-big-cloud.amp
https://www.merriam-webster.com/dictionary/ontology
https://dictionary.cambridge.org/us/dictionary/english/philosophy
https://dictionary.cambridge.org/us/dictionary/english/philosophy

The DevOps: A Concise Understanding to the DevOps Philosophy and Science

Sajjad, F. (2020). Implementing DevOps Goes Beyond
Technology. DevOps. https://devops.com/implementing-
devops-goes-beyond-technology/

Satzinger, J. W., Jackson, R. B., & Burd, S. D. (2009).
Systems Analysis and Design in a Changing World.
Boston, MA: Thomson Course Technology.

Saunders, A., & Cornett, M. M. (2017). Financial
Institutions Management: A Risk Management
Approach. 9" ed. New York: McGraw-Hill.

Science. (n.d.). Oxford University Press. In Lexico.com
dictionary. Retrieved from
https://www.lexico.com/en/definition/science

Shewhart, W. A. (1939). Statistical Method from the
Viewpoint of Quality Control. Department of
Agriculture. Dover, 1986.

Shingo, S. (1985). 4 revolution in manufacturing: the
SMED system. Japan: Taylor & Francis.

Smith, C. (1967). A Historical View of One Area of
Applied Science—Metallurgy. National Research
Council Panel on Applied Science Technological
Progress. Applied Science and Technology Progress: A
report to the Committee on Science and Astronautics,
U.S. House of Representatives. Washington, D.C.:
National Academy of Sciences. 57-71.

Sobek 11, D. K., & Smalley, A. (2008). Understanding
A3 Thinking: A Critical Component of Toyota’s PDCA
Management System. Productivity Press: Boca Raton,
FL.

Social Science. (n.d.). Oxford University Press. In
Lexico.com dictionary. Retrieved from
https://www.lexico.com/en/definition/social science

Sullivan, G., & Hollway, J. (2014). Collective pride and
collective hubris in organizations. In, Understanding
Collective Pride and Group Identity: New Directions in
Emotion Theory, Research and Practice. United

Kingdom: Taylor & Francis. 10.4324/9781315767680-7.

Tennant, G. (2001). Six Sigma: SPC and TOM in
manufacturing and services. United Kingdom: Gower.

Toyota Motor Corporation. (n.d.). Toyota Production
System. Toyota.
https://global.toyota/en/company/vision-and-
philosophy/production-system/

12

Klein

Truth. (n.d.). Merriam-Webster. In Merriam-
Webster.com dictionary. Retrieved from
https://www.merriam-webster.com/dictionary/truth

Tushman, M., & O'Reilly, C. A. (1996). Ambidextrous
Organizations: Managing Evolutionary and
Revolutionary Change. California Management Review,
38(4), 8-30.

Vogels, W. (2017). Amazon Web Services 2017
re:Invent Keynote Presentation. [Video]. YouTube.
https://www.youtube.com/watch?v=nFKVzEAm-ts

von Neumann, J. (1951). The general and logical theory
of automata. In L.A. Jeffress (Ed.), Cerebral mechanisms
in behavior; the Hixon Symposium, 1-41. Wiley.

von Neumann, J., In Burks, A. W., & Goldstine, H. H.
(1966). Theory of self-reproducing automata. Urbana:
University of Illinois Press.

Wallace, W. L. (1971). The Logic of Science in
Sociology. Chicago, IL: Aldine Atherton, Inc.

Wanous, J. P., Reichers, A. E., & Austin, J. T. (1994).
Organizational cynicism: An initial study. Columbus,
Ohio: Max M. Fisher College of Business, Ohio State
University.

Womack, J. P., & Jones, D. T. (1996). Lean thinking:
Banish waste and create wealth in your corporation.
New York: Free Press.

Womack, J. P., Jones, D. T., & Roos, D. (2007). The
Machine that Changed the World. United
Kingdom: Simon & Schuster.

https://devops.com/implementing-devops-goes-beyond-technology/
https://devops.com/implementing-devops-goes-beyond-technology/
https://www.lexico.com/en/definition/science
https://www.lexico.com/en/definition/social_science
https://global.toyota/en/company/vision-and-philosophy/production-system/
https://global.toyota/en/company/vision-and-philosophy/production-system/
https://www.merriam-webster.com/dictionary/truth
https://www.youtube.com/watch?v=nFKVzEAm-ts

