SAND2020- 5297PE

A Neuromorphic Future for
Classic Computing Tasks

Presented by

Brad Aimone; jbaimon@sandia.gov
i — — OMaNFr /iSA

a urity A tration
I under contract DE-NA0003525.

SAND?2020-1546 C

We see neuromorphic computing embarking on a fully co-
2 | design future

.) Spiking Truly Brain-like 3)
Deep Learning I | Algorithms I I Algorithms I
BHYe8eY 5.,3&.;\‘.»1 R I

nnnnnnnnnn

Algorithms

K}

S | !

£ 3

5% I "

ko S I .

T : : s I

* GPUs Spiking I Hybrid Optical?
Neuromorphic Analog-Digital I 3D connectivity?

I Neuromorphic

Positioning neuromorphic towards impact in many directions

Scientific Computing
Well-understood requirements
Opportunity:

Novel neuromorphic algorithms

Examples:

* Solving SDEs (Monte Carlo
PDE solutions)

* Neural Graph Analytics

Machine Learning
Growing impact and need
Opportunity:

Mapping to Neuromorphic

Example:
* Whetstone conversion of DL
for spiking architectures

Brain-Derived Al
Achieve brain-like efficiency at advanced cognitive
tasks, but path has proven elusive...
Opportunity:
Develop novel algorithms that
address critical DOE problems

Examples:

Dragonfly model for interception
Hippocampus model for context-
dependent learning

WHETSTONE

4

Spiking Neural Networks

Subclass of Artificial Neural
Network

Neurons compute their own state
independently, possibly
asynchronously

Each neuron integrates incoming
information into a ‘potential’

If ‘potential’ reaches a
predetermined threshold, the
neuron alerts connected neurons

Neuron communication is single-
state signals (spikes)

A time delay for spike propagation
can be included

Enables event-driven computation

Pre-synaptic
Neurons

Input spikes

. —

Post-synaptic
Neuron

s | Spiking Neural Networks — Neuron Dynamics

Generically, a discrete-time leaky-integrate-and-fire neuron is well-modeled by simulators
and neuromorphic hardware.

For random draw 71 and weights w; ;, delays d; ;, initial voltages V(0), probability of fire
P;, and initial action potentials x(0) being algorithm dependent:

I//\i(t I 1) = Vi(t) I ZWi,ij(t — di,j + 1)
J

vt 4 1) = {1, P(e+1) >V and n; <P,
0, otherwise
i@, x@+1)=0
Vil + 1) = { 0, x(t+1)=1

Each neuron processes these functions at every time step in perfect parallel.

If you can take your algorithm and formulate it
as a network of these independent processes, it can run on neuromorphic.

¢ I Let’s imagine fully integrated neuromorphic onto HPC
platforms (sitting next to GPUs and CPUs)

Spi

The University
of Mancrester DRI

Emerging neuromorphic chips

« Ultra-low power spiking circuits

« Scalable architecture - easy to
achieve millions of neurons

7 I Machine Learning is one of many applications

Biological- Mach.ine
inspired neural Learning /
algorithms Deep Learning

Surrogate Models;
Reduced Order
Modeling

Non-Neural

Smart

Neural-implemented
numerical and
scientific computing

Random Walk
Methods

Graph Analytics

Katie Schuman, ORNL, 2017

s I Machine Learning is one of many applications

Non-Neural

Smart

Katie Schuman, ORNL, 2017

Biological- Machine Neural-implemented
inspired neural Learning / numerical and
algorithms Deep Learning scientific computing

Surrogate Models; Random Walk
Reduced Order Methods
Modeling

Graph Analytics

9

Diffusion via Random Walk

= Diffusion can be modeled either as a

deterministic PDE or a stochastic process.

" The chffusmn PDE is glven by
—f(t x) = D f(t x).

" To solve via a stochastic process, many
random walks are sampled to statistically
approximate a solution

" The mean density of walkers approaches the
expected mean, equal to the deterministic

solution, at a rate of 1/+/N.

o I Implementing Random Walks on Spiking Neuromorphic

Particle Method Density Method

Circuit per walker Circuit per position

See Severa,W, et.al, [CNN (2018), IEEE, |-8.

1 I The Density Method

= Each vertex encodes density of From Other Units Readout To Other Units
. . . « | Y A L)
particles in the internal potential of cds o~ .
- Buffer “r‘% S
certain nodes i,
v Walker

’ -

to connected vertices according to Walker -
Counter °§¥ -7~

-~ Generator

EY
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!

= Each time step “hands off™ particles e i

probabilistic maps

Output
Gates

Supervisor B, & S
Probability Gate

Cost (for k locations, simulating N
walkers; 1-D case)

Walker memory O(l)
Connection memory O(k)
Total neurons O(k)
Time per physical timestep O(max(p))), where p; is the density of walkers at

each location

Position energy per timestep O(N)

Update energy per timestep O(N)

2 | Speed of Simulation Depends on Maximum Density

.. Distribution of Walkers

Unit

[3 I3 10
Simulation Timestep

Spike Raster Plot

Neuron

Timestep

Expected Value of Option ($)

Connecting General IPDEs and Random Walks

13
150x2 + 5 [11
— x4+ =, X€E|——,—
u(0,x) = 2 10’10
0, otherwise
P Traditional
e
.
1 2.2
Vi +1rV ==0°x°V,, +1xV}
g European Option Price
10 Paths
100 Paths
0.5 ——500 Paths
5000 Paths
50000 Paths
04 ——-BS Solution
o3t gl Deduction from underlying
o2 N stock process
W
0.1 Bl e~ S
0 s ST
1 2 3 4 5

Time to Maturity (1)

2% © A
: [+ J) -0 Y9.0®
T Efficient Neuromorphic RW Implementation

dXt = ‘u(t,Xt)dt + U'(t, Xt)th \
Uur = f(uxvuxxv t)

N\

u(t,x) = E[g(X)|X, = x]

Rigorous Probabilistic Connections

| Challenging Applications, Low Power Implementation |

[E[e_datB(Xt’ Yt) |X01 YO]

Low Power Particle Transport Simulation

4+ I A Class of Integro-PDEs with a Probabilistic Interpretation

1
The IPDE-IVP U (6,2) =5) 36 Wik (600 +) byt D (8%)
i,j i

+A(t, x) j (u(t,x + h(t, x,@)) — u(t, 1)) do(q; t, x)dg

+c(t,x)u(t,x) + f(t,x)

u(t,x) = g(x)
t t S
has solution u(t,x) = E [g(Xt) exp <j c(s,XS)ds) + f f(s,X;)exp <] c(u,Xu)du) ds| X, = x
0 0 0
where dXt = b(t, Xt)dt + O-(t, Xt)th + h(t, Xt' Q)dPt;,Q,t,Xt

and a, b, c, g, h, and f are all real valued, 4 < 0; further for each t and x that ¢, = 0 and fqbQ (q)dq so that

: t :
P(t; Q,t,x) is a Poisson process with rate — fo A(s, x)ds. We further require that a = 6o ', b, and h are all
defined so that the stochastic process X; has a unique solution that belongs almost surely to the domain of g.

s I A Class of Integro-PDEs with a Probabilistic Interpretation

1
The IPDE-IVP u (¢, x) = Ez @, (6, XUy (t, %) + Z b; (t, x)u,, (t, x)
i,j L

FA(E %) j (u(tx + h(t%,)) - u(t,) do (@ £, x)dq

+c(t, x)ult,x) + f(t, x)
u(t,x) = g(x)

X0=x

u(t,x) = E [g(Xt) exp <]tc(s,XS)ds> + '[f(s,X;)exp (jsc(u,Xu)du> ds
0 0 0

Application SDE Example

a Heat Equation dX; = odW;
ab,f European Option Pricing dS; = rS;dt + oS, dW;
b,A,h,c, f Particle Transport dXy = —vYidt; dY; = wy,dPey,
a,f Electrostatic Scalar Potential* dXt(i) = JedW,
b,c Pollutant Source dX, = vdt”

Deterioration

*steady state solution, “actually an ODE

s I Accuracy Stack for Neuromorphic Implementation

PDE Ground Truth

Problem

To approximate the
expectation, we must sample
paths of the stochastic process.

ut = f(t' u, ux'uxx)
u(t,x) = E[g(t, X)|Xo = x]

Approximation |

M
1 , :
u(t,x) = MZ g(t,x}); Xél) =x
i=1

X()

—

Continuous paths cannot be
sampled, we must employ a
discretization scheme.

M
1 . .
u(jAt, x) = MZ g(jat, x;M); ng> =x
i=1

Xt

N
VAt

Neurons cannot represent a M . 1
continuum of locations. Hence u(jht, x;.) ~ izg(iAtJinAt :)?((,i) = xy, é —jAtAS
we must limit the spatial ML] 2
locations of the walk.]
There are a finite number of o :_
neurons, so maximum and] 1 o oM = .
minimum values for the u(At, xi) = Mz g(jat, XjLAt); Xo ' = xk = varies
random walk will exist. L —
Hardware Specific Issues. 1 n))
TrueNorth having quantized P ﬁ e . oz) varies

probability, for example.

7 1 Accuracy Stack for Neuromorphic Implementation

ut = f(t' u, ux'uxx)
u(t,x) = E[g(t, X)|Xo = x]

PDE Ground Truth

Position

Problem Approximation U Visualization

M
To approximate the 1 ,)
expectation, we must sample u(t, x) = MZ g(t, XLE); Xo =x
i=1

paths of the stochastic process.

X()

=

Continuous paths cannot be

M
. 1 R 0
sampled, we must employ a u(jAt, x) = MZ g(jat, XjAt); Xy =x
discretization scheme. i=1

&

Tttt d

Present for any implementation

s I Accuracy Stack for Neuromorphic Implementation

ut = f(t' u, ux'uxx)

PDE Ground Truth
u(t,x) = E[g(t, Xp)|1Xo = x]

Problem Approximation Visualization Error/Convergence

Neuromorphic Specific

IRLEIEIRI L

Neurons cannot represent a LM _ 1
continuum of locations. Hence |}, (ia¢ x,) ~ —Zg(jAt. 25,)’(‘(()l) = x; < — jAtAs
we must limit the spatial M & < 2
locations of the walk.]
There are a finite number of » o
neurons, so maximum and] 1 i B < (D) - .
' ~ —) = e varies
minimum values for the u(GAt, xi) M Z g(jat, XJAt)' Xo Xk o
random walk will exist. e]

ToTToT

Ur = f(t' U, Uy, uxx)
u(t,x) = E[g(t, X)|Xo = x]

PDE Ground Truth

Problem Approximation Visualization Error/Convergence

Hardware Specific

SELI IV

Hardware Specific Issues.)
TrueNorth having quantized varies

probability, for example.

20 I Analysis of Random Walk Algorithm

Goal: Can we get an “apples to apples” complexity analysis of two algorithm
versions (normal vs density)?

Approach: Consider time / power costs of simulating a number of walkers, W,
over a number of time steps, S. Conventional CPUs can use however many
processors are on the chip (P), and neuromorphic chips can use however many
mesh points (M) that can fit on the chip.

Problem: Simple 2D local diffusion

|
W walkers o /J;-)I 4':_1- A(- x
S timesteps x+=rnd() Jy— W walkers
y+=rnd() m) G timeStepS ' A
—|— M mesh points A A g
|

——

P processors K z

21 I Analysis of Random Walk Algorithm

W walkers
S timesteps

For 1..W
For 1...S
x+=rnd()
y+=rnd()

P processors

(A

1L
Bl

Al‘ﬂ

)

il
4» W walkers
=) S timesteps f
~|— M mesh points

N

A

Conventional Analysis

W =S
T = ccpy time ~p

Power = CcpupowerW * S

Neural Analysis k is a function of
the highest average
W xS walker density
T = Cneuraltime M mesh point relative

to average density

Power = CneuratpowerW * S

2 | Analysis of Random Walk Algorithm

Conventional Analysis Neural Analysis
W walkers Fo;c:l: 'iws J-’—v 1 ﬁ’ Iu‘
S timesteps ;’:::8 W k S Y T W k S
T = ccputime) ' T = Cneuraltime M
P J;' W walkers l
=) S timesteps T
| M mesh points —

P processors Powe'r‘ = CCPU,pOWETW * S POWQT' = CNeuTal’powerW % S

Time assessment:
Generally, k"M >> P. 50 if Cyeyrqr, timeS Ccpu, time » then the neural
chip will be faster.

For applications where k<<1 (average walker distribution is
highly skewed, e.g.) the time benefit of neural computing will
decrease.

Empirical question: Estimation of c_CPU (32000 walkers)

Assess Cneyrar, time @Nd Cepy, time fOr @ modern CPU and a

neuromorphic chip from above equations.

* Preliminary estimates performed for CPU using
C++/0penMP.

* Need estimates for TrueNorth or Loihi (ideally both).

3.5E-08

3E-08 —

2.5€-08 _ /‘\d
PO o

2E-08 —&— 100000

—&— 1000000
1.5E-08

10000000

c_CPU (time per RW update)

1E-08

SE-09

0 5 10 15 20 25 30 35

23 | Analysis of Random Walk Algorithm |

Conventional Analysis Neural Analysis
T
W walkers Fo;;r"i‘ﬁ’,s W * S '—'l ﬂr i W * S
S timesteps ;::::gg T — CCPU,tlme —P 0 I' 5 T f— CNeuT'al,time k—M
.;%— Wwalker-sI '
= S timesteps
I M mesh points —

P processors

)
Power = cneurat,power W * S]

Power assessment:

For CPUs, there is likely no inherent advantage of parallelization for power.
Efficiency of walker distribution (k) is not likely to affect power (in event-driven
hardware).

However, there is a strong likelihood that Cyeyrai, power << Ccpu, power

Empirical question:

Can we assess Cyeyrar, power 3N Cepy, power fOr @ modern CPU and a neuromorphic chip

from above equations?

« A coarse assessment can likely be made from power specifications of chips for
100% operation over idle.

« Can we build off of preliminary estimates performed for CPU using C++/0penMP?

« Need estimates for TrueNorth or Loihi (ideally both).

24

Monte Carlo on Loihi

s | Loihi-specific circuit

1. Supervisor circuit

From Other Units Readout To Other Units 1. Start buffer

+ A

2. Start counter

2. Counter circuit
1. Buffer neurons

2. Counter neurons

3. Probabilistic neurons

4. Output neurons

Supervisor

—— [o er s i o Otr e -
e 5] ks atr Burnr
. |
= > =y 5 —>| =¥ T [y
B8
o
e - o eree e Pty o -

26 | Loihi-specific circuit — node buffer and node counter

d=I

To next counter circuit or output
nodes

To Other Units

From Other Units Readout
S 4 A

|
I
|
I
|
I
I
|
I
|
I
I

/; S

|- COUNTER neuron stores number of e o
walkers as negative voltage

2- Supervisor input causes GENERATOR to
fire as long asVgynTEr IS Negative

3- RELAY neuron ensures that Vo nTEr iS
appropriately reset if it pre-emptively shuts
off

77 | Loihi-specific circuit — random probabilities and outputs

To Other Units

+

From Other Units Readout
> v

pl#p2 pi#(1-p2) (I-p1)*p3 (1-ply¥(i-p3)

|- Goal: we need to get pre-defined
probabilities that the walker gets directed
to along the kth output direction

2 — In principle, a tree structure would
worlk, but it does not scale well

% | Loihi-specific circuit — random probabilities and outputs

{I-ply
922900128

pil

To Other Units

From Other Units Readout
S 4 ,

(I-p3)

plFp2 piF(i-p2) (I-pl)p3 (1-ply(1-p3)
038549936 038549936 .922900128 0

|- Goal: we need to get pre-defined
probabilities that the walker gets directed to
along the kth output direction
2 — In principle, a tree structure would work,
but it does not scale well

- Can use tree to compute probabilities

» 1| Loihi-specific circuit — random probabilities and outputs

s %9229“'2' ‘

To Other Units

From Other Units Readout
S 4 ,

|
I
|
I
|
I
I
|
I
|
I
I

pi%p2 pH{l-p2) (1-ply*p3 (E-ply(i-p3)

922900128 0
038549936 038549936

j; e

Probability Gate

|- Goal: we need to get pre-defined
probabilities that the walker gets directed to |
along the kth output direction F“ P_‘ I'_' P_' <1
2 — In principle, a tree structure would work, ——— —— ——— ooe)
but it does not scale well

- Can use tree to compute probabilities
3 — Can collapse tree into single layer

- Single layer tree is both faster and has predictable delays...

2 | Task I:Simple diffusion

» 30 x 30 torus mesh
» 40 Loihi cores
» 600 random walkers

timestep=1

» 10,000 network timesteps (152 model
timesteps

number of walkers

» This is really as big as we can go due
to cap on # of probes

We can’t see results, but we can characterize them...

Energy (uJ) per timestep vs meshsize

wu
o

w B b
n o wn
-0

—a—H
-0

3
Q.
7
o 30 |
E .
= 25 |
5 20 | L % @ 10000
B15 [@ 100000
g 10 |
Lt

5 |

0 L L 1 L] 1 | J

0 5000 10000 15000 20000 25000 30000 35000 40000
Mesh Points
Time (us) per timestep vs meshsize
25
@

@20
(=N
% 15
g o 0 v ¢
= [®)
v © 10000
510 [
& © 100000
£
= 5

0 5000 10000 15000 20000 25000 30000 35000 40000
Meshpoints

Some uncertainty around Loihi

»Small models seem to have added expense / overhead
» Certain mesh-sizes don’t run / compile (probably my fault)
>3 chips fails. Other chip counts are okay

»Haven’t figured out how to track all mesh points (yet)

Energy (ul) per timestep vs meshsize Time (us) per timestep vs meshsize
25
35 ‘ e o o o
5 30 ‘ e o o @ 7 20
225 | = °
& B 15
ué 20 ‘ L E
o 15 o 10 ® ®
= ‘ ° E)] ® ° & o » i
& 10 £
s 5
g2 | -
a5
0 ‘ 1] :
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Mesh Points Mesh Points

Loihi does run similarly with different shape simulations

Energy (ul) per timestep vs meshsize

50
. 45 -
3 40 i
235 I
g § [1]
£ = ! @® 10000
el i ® 100000
¢) 2 20 B
Fat donut % 15 @ Skewed 10000
X,Y coordinates the same size 210 - Skewed 100000
5

0 5000 10000 15000 20000 25000 30000 35000 40000
Mesh Points

Time (us) per timestep vs meshsize

“Skinny donut”

s 20

X coordinate grows 5

. . . 2 15 = 1 o o

Y coordinate is fixed £ : ‘ ¢ @ 10000
10 T ® 100000
;_\ @ Skewed_10000
£ s Skewed 100000

0

0 5000 10000 15000 20000 25000 30000 35000 40000

Meshpoints

4 | Task 2:A real problem:
Steady-state PDE solution of heat

(0)=0 vA
E’(0)=o ax) <@~

B
&
&
ay

-
&

O o s
> >
oF-------

“‘B

~

12}

2Ax 3Ax

35

Well-suited for neuromorphic implementation

» Long time scale - walkers run until they are absorbed by end-node
» Can be a very long time to completion
» For 40 mesh points, walkers require ~250,000 simulation timesteps on average to fall off
» Steady-state approximation hurt by cutting off eatly

» Simulation timesteps are not directly telated to neural timesteps

» Requites a lot of walkers
» Typical for Monte Catlo approaches

81

SNN RW 1M neural timesteps
7F—|=SNN RW 100k neural timesteps
==SNN RW 500k neural timesteps
- -Analytic Solution

6F

ul

Solution
N

w

1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Position

3 | Highlights of Loihi Results

» 10,000 walkers requires 40 runs of 250 walkers each, for each of the 40 wire

locations

» Simulations run for 7,500,000 timesteps. On average between 200,000 and
300,000 simulation timesteps

» Runs very quickly: ~40 seconds for 7.5 M timesteps

» Only ~13 neurons per mesh point; in principle could put many copies on Nahuku

board

» Limitation becomes readout probes

320000

300000

Simulation Timesteps

280000

N
a
(=]
o
o
o

240000

Lolhi Execution Runtime (s)
2 B 8 3

220000

200000
1 357 9111315171921 232527293133353739 1 35 7 9111315171921232527293133353739
Sterting Position Starting Position

37

Solution

Loihi results are close to perfect

8
== Loihi RW 7.5M neural timesteps

s ==TrueNorth RW 7M neural timesteps
- -Analytic Solution

6

0.2 0.4 0.6 0.8

i
Position

1.8

How far can this go?

d 9%
5/ 62 = Do £(t,2)

timestep=1

number of walkers

Directly model diffusion

o1 o ‘
(L, 2) = '@E @ (8 X (£,%) + E B;{t, x)u,, (L, x)
id i

2060 [(e x+ e x,0) ~ ue0) bola:t,1)dq

+elt, x)ult, x) + f(t,x)
u(t,x) = g(x)

4{)0000J

300000
200000

100000}
0
10, .
4 4.29.567%00

20 op2s#7H0

Diffusion process used

as component to
estimate solution to
more complex PDEs

R
R

A 4

What else can we
compute on graphs in ‘

parallel?

39

Problem -

Project
P"Oblem
onto
stochastic
process
CENN

41 1 Graph Analytics in Spiking Networks

> Growing area of interest

» Neural circuits are fundamentally graphs. ..
» Hamilton et al., 2018; Parekh et al., 2019

> Simple shortest path search 1s an obvious illustration

SED D

Dynamic Programming

Dynamic programming is a general technique for solving certain kinds of discrete optimization problems
Dynamic programming consolidates redundant computation

fib(n) = fib(n — 1) + fib(n — 2); fib(1) = 1, fib(2) = 1 Those who cannot remember the past

are condemned to repeat it.

-Dynamic Programming

B EELELTY
&4},-{%4\.

[https://blog.usejournal.com/top-50-dynamic-programming-practice-problems-4208fed71aa3]
[https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html]
[https://medium.com/@shmuel.lotman/the-2-00-am-javascript-blog-about-memoization-41347e8fa603]

Broad Applications of Dynamic Programming

[Dynamic programming is a general technique for solving certain kinds of discrete optimization problems]

» Recurrent solutions to lattice models for protein-DNA binding

« Backward induction as a solution method for finite-horizon discrete-time dynamic optimization problems

» Method of undetermined coefficients can be used to solve the Bellman equation in infinite-horizon, discrete-time, discounted, time-invariant dynamic optimization problems

» Many string algorithms including longest common subsequence, longest increasing subsequence, longest common substring, Levenshtein distance (edit distance)

« Many algorithmic problems on graphs can be solved efficiently for graphs of bounded treewidth or bounded clique-width by using dynamic programming on a tree decomposition of the graph.

* The Cocke-Younger—Kasami (CYK) algorithm which determines whether and how a given string can be generated by a given context-free grammar

» Knuth's word wrapping algorithm that minimizes raggedness when word wrapping text

» The use of transposition tables and refutation tables in computer chess

» The Viterbi algorithm (used for hidden Markov models, and particularly in part of speech tagging)

» The Earley algorithm (a type of chart parser)

« The Needleman—Wunsch algorithm and other algorithms used in bioinformatics, including sequence alignment, structural alignment, RNA structure prediction

» Floyd's all-pairs shortest path algorithm

» Optimizing the order for chain matrix multiplication

» Pseudo-polynomial time algorithms for the subset sum, knapsack and partition problems

« The dynamic time warping algorithm for computing the global distance between two time series

» The Selinger (a.k.a. System R) algorithm for relational database query optimization

» De Boor algorithm for evaluating B-spline curves

» Duckworth—Lewis method for resolving the problem when games of cricket are interrupted

« The value iteration method for solving Markov decision processes

« Some graphic image edge following selection methods such as the "magnet" selection tool in Photoshop

» Some methods for solving interval scheduling problems

+ Some methods for solving the travelling salesman problem, either exactly (in exponential time) or approximately (e.g. via the bitonic tour)

» Recursive least squares method
« Bestimcking inumsiciinformeBon relievel Wikipedia: 30 applications across diverse domains
« Adaptive-critic training strategy for artificial neural networks [https://en.wikipedia.org/wiki/Dynamic_programming]
» Stereo algorithms for solving the correspondence problem used in stereo vision

» Seam carving (content-aware image resizing)

» The Bellman-Ford algorithm for finding the shortest distance in a graph AnOther I lSt Wlth 50 a pp I |Cat|0n5
« Some approximate solution methods for the linear search problem [https://blog.usejournal.com/top-50-dynamic-programming-
¢ Kadane's algorithm for the maximum subarray problem practice-pro blems-4208fed71aa3]

» Optimization of electric generation expansion plans in the Wein Automatic System Planning (WASP) 4 package

Spiking Dynamic Programming Approach

New neuromorphic algorithms for dynamic programming
Generically solves a broad class of dynamic programs

Spiking shortest paths algorithm
[Aibara et al., IEEE Int. Symp. on Circuits and Systems, 1991]

24

= Qur dynamic programming algorithm leverages shortest path
NGA

= Single neuron per dynamic program table entry
= Employs delays on links (simulable using recurrent neurons)

= Novel temporal encoding: time when neuron first fires
represents value of dynamic program table entry

Spiking Dynamic Programming Example

New neuromorphic algorithms for dynamic programming
Spike times encode dynamic programming table values

Dynamic Program for Knapsack

Problem
w

0 1 2 3 4 5 6 7 8 9 10

l\ \H\i[}\ﬂ\“\{l\"[l\hﬂ\II,I\&H
| st]

/

i ‘
IR B e Rt pa e
IR R R s as s S -
llI ‘llll 4 5 f 7 .3 .‘) l-lll

Each table entry is value of best knapsack solution
of weight at most W using items {1,...,k}

Knapsack Problem:
N items, each with weight w; and value v,

Goal: pick subset of items of weight at most W,
maximizing total value.

=6
A
[! =3

T[3,5] = max{T[2,5 — ws] + p3, T[2,5]}

P3

Spiking approach: T[i,j] encoded as time neuron (i,j) receives
incoming spike on last of its incoming links

Practical Considerations and Extensions

Dynamic program graph must be simulated on neuromorphic
hardware graph
New graph embedding problems and techniques

Neuromorphic hardware has a fixed minimum delay

Problem-specified delays must be scaled, introducing - 4y
multiplicative factor to running time v

Dynamic programming graph loading and readout (I/O) costs may o v -
present bottlenecks ' t wp
Optimized problem-specific algorithms possible (we do so for X
longest increasing subsequence v V% o

8 g q) | e Vv

Spiking approach as presented only gives value solution vd V3 Va3
Can use O(log n) extra neurons per graph node as memory to v v Uas

store solution
Novel Hebbian learning approach on edges also works!

7 1 How far can this go!?

u(t,x) = %X a; j(E, Xt (8, %) + E by(t, Xu, (t, x) G rap h analytics,
@ 92 Ny . optimization, ...
P fit,x)=D 2 (&, x). +A(t, x) j (ult x+ h(t,x,) — u(t, 1)) o la; t, x)dg P

+cl(t, Kyult,x) + f(t,x)
u(t,x) = g(x)

R

number of walkers

s Q 20000 |
20\
\ 10000 u
105\\\ 0 -
o\ - 10 ==
407\ o 20 7900
,203’(_20//\;) ’) 2 0 00&29-507§0d # Sd7 \ /
Diffusion process used Many things whose

Directly model diffusion

estimate solution to parallelized onto a graph

as component to computation can be ‘
more complex PDEs

4 | Acknowledgments

Neural PDE team:

Darby Smith, William Severa, Aaron Hill, Ojas Parekh, LLeah Reeder, Rich Lehoucq,
Brian Franke

Neural Graph team:
Ojas Parekh, Cindy Phillips, Ali Pinar, Yipu Wang, Yang Ho, William Severa

4 | Selected References

» Random Walks with Spiking Neuromorphic Hardware
» Severa, W, Lehoucq, R., Parekh, O. and Aimone,].B., Spiking Neural Algorithms for Markov Process
Random Walk. in 2018 International Joint Conference on Neural l\%fwor/és (IJCNN) (2018), IEEE, 1-8.

» Smith et al., ICONS 2020 submitted

® Neural Graph Analytics

» Aimone, J. B., Parekh, O., Phillips, C. A., Pinat, A., Severa, W, & Xu, H. (2019, July). Dynamic
Programming with Spiking Neural Computing. In Proceedings of the International Conference on Neuromorphic
Systems (pp. 1-9).

»Hamilton, K. E., Mintz, T. M., & Schuman, C. D. (2019). Spike-based primitives for graph algorithms.
arXiv preprint arXiv:1903.10574.

* Non-Al Applications of Spiking Neuromorphic Hardware

> AimoneN].B., Parekh, O., Phillips, C.A., Pinar, A., Severa, W. and Xu, H., Dynamic Programmin1g with
ipclﬁn > eural Computing. in Proceedings of the International Conference on Neuromorphic Systems, (2019),

» Parekh, O., Phillips, C.A., James, C.D., and Aimone,].B., Constant-Depth and Subcubic-Size Threshold
Circuits for Matrix Multiplication. in Proceedings of the 307 § Symposinm on Parallelism in Algorithms and
Arehitectures, (2018), ACM, 67-76.

» Schuman, C.D., Hamilton, K., Mintz T., Adnan, M.M., Ku, B.W, Lim, S.K. and Rose, G.S., Shortest Path
and Neighborhood Subgraph Extraction on a Spiking Memrstive Neuromorphic Implementation. in
Proeedings of the 7" Annual Neuro-inspired Computation Elements Workshop, (2019), ACM, 3.

= Generalized Feynman-Kac
> 1\S[}r(i{%oriu, M. (2013), Stochastic Caleulus: Applications in Science and Engineering, Springer Science & Business
edia.

* Boltzmann Transport Equation and Neumann Expansion

» Dupree, S. & Fraley, S. (2002), A Monte Carlo Primer: A Practical Approach to Radiation Transport, number v.
1, Springer US.

