
A Neuromorphic Future for
Classic Computing Tasks

Presented by

Brad Aimone; jbaimon@sandia.gov
1011111iir

Sandia Nanonal Laboratories is a multirnission
laboratory rnanaged and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International inc., for the U.S. Department of

Energy's National Nuclear Securicy Administration
under contract DE-NA0003S2S.

SAND2020-1546 C

SAND2020-5297PE

We see neuromorphic computing embarking on a fully co-
2 design future

O

GPUs

Deep Learning

Spiking
Neuromorphic

Spiking
Algorithms

Hybrid
Analog-Digital
Neuromorphic

Truly Brain-like
Algorithms

(3)1

Optical?
3D connectivity?

I Positioning neuromorphic towards impact in many directions
3

Scientific Computing

Well-understood requirements
Opportunity:

Novel neuromorphic algorithms

Examples:
• Solving SDEs (Monte Carlo

PDE solutions)
• Neural Graph Analytics

Machine Learning

Growing impact and need
Opportunity:

Mapping to Neuromorphic

Example:
• Whetstone conversion of DL

for spiking architectures

Brain-Derived Al

Achieve brain-like efficiency at advanced cognitive
tasks, but path has proven elusive...

npportunity:

address critical DOE problems

Develop novel algorithms that

;"
• eic\
e
0

(00

hg

WHETSTONE

Examples:
• Dragonfly model for interception

• Hippocampus model for context-
dependent learning

4 Spiking Neural Networks

Subclass of Artificial Neural
Network

Neurons compute their own state
independently, possibly
asynchronously

Each neuron integrates incoming
information into a 'potential'

If 'potential' reaches a
predetermined threshold, the
neuron alerts connected neurons

Neuron communication is single-
state signals (spikes)

A time delay for spike propagation
can be included

Enables event-driven computation

__}.-------

ellPre-synaptic

Neurons

Input spikes

A 11

d
Post-synapfic

Neuron

5 Spiking Neural Networks — Neuron Dynamics

Generically, a discrete-time leaky-integrate-and-fire neuron is well-modeled by simulators
and neuromorphic hardware.

For random draw n and weights wij, delays dij, initial voltages V(0), probability of fire
Pi, and initial action potentials x(0) being algorithm dependent:

Vi (t + 1) = Vi (t) + / wijxj (t — dij -I- 1)

i

x t + 1 =
1, 114 + 1) > Vi* and riii < Pi

i ()
0, otherwise

Vi(t + 1) =
riVi(t), xi(t + 1) = 0

0, xi(t +1) = 1

Each neuron processes these functions at every time step in perfect parallel.

If you can talce your algorithm and formulate it
as a networlc of these independent processes, it can run on neuromorphic.

6 Let's imagine fully integrated neuromorphic onto HPC
platforms (sitting next to GPUs and CPUs)

TR
LM-27L

Emerging neuromorphic chips
• Ultra-low power spiking circuits
• Scalable architecture 4 easy to

achieve millions of neurons

7 Machine Learning is one of many applications

Biological-
inspired neural

algorithms

Machine
Learning /

Deep Learning

Surrogate Models;
I Reduced Order g

Modeling

Non Neural

Network

Anomaly
implantable/

mSart DetectionNLPil Wearable

Sitinsori

Data
Classification

Biology
Sensor-

inspired

Control Ifidao

Basic
Benchmark

Tests

lma

ciassincilion
or Processing

Neural-implemented
numerical and

scientific computing

Random Walk
Methods

Graph Analytics

Katie Schuman, ORNL, 2017

8 Machine Learning is one of many applications

Biological-
inspired neural

algorithms

Machine
Learning /

Deep Learning

Surrogate Models;
I Reduced Order

Modeling

Non Neural

Network

Anomaly
implantable/

mSart DetectionNLPil Wearable

Sitinsori

Data
Classification

Biology
Sensor-

inspired

Control Ifidao

Basic
Benchmark

Tests

lma

ciassincilion
or Processing

Neural-implemented
numerical and

scientific computing

Random Walk
Methods

Graph Analytics

Katie Schuman, ORNL, 2017

9 Diffusion via Random Walk

• Diffusion can be modeled either as a
deterministic PDE or a stochastic process.
• The diffusion PDE is given by

2a a

f (t, x) = D f (t, x).a t a x 2
• To solve via a stochastic process, many
random walks are sampled to statistically
approximate a solution
• The mean densio of walkers approaches the
expected mean, equal to the deterministic
solution, at a rate of 11-a.

10 Implementing Random Walks on Spiking Neuromorphic

Particle Method

Circuit per walker

1
A crO.0 .0.0

9i
•0.a®

0 0 9 9O•© go." 0.0.0.0
.0. 0.0.0 e . .°*0

9
14 9 a a 9 9
01'0 *04 o. o .0ip

Density Method

Circuit per position

See Severa,W., et. al, IJCNN (20 18), IEEE, I -8.

ii The Density Method

• Each vertex encodes density of
particles in the internal potential of
certain nodes

• Each time step "hands off" particles
to connected vertices according to
probabilistic maps

From Other Units

Probability Gate

Measure Cost (for k locations, simulating N
walkers; I -D case)

Walker memory 0(I)

Connection memory O(k)

Total neurons O(k)

Time per physical timestep 0(max(p,)), where p, is the density of walkers at
each location

Position energy per timestep O(N)

Update energy per timestep O(N)

To Other Units

12 Speed of Simulation Depends on Maximum Density

140

120

100

O

80
(1)

Spike Raster Plot

Distribution of Walkers

Simulation Timestep

4:!:r

•

•
4114111E

160

Timestep
300 4b0

13 Connecting General IPDEs and Random Walks

, Distribution of Walkers

0.6

0.5

0.1

European Optlon Prlce

2 3

 10 Paths
 100 Paths

 500 Paths
 5000 Paths

 50000 Paths

-- -BS Solution

Time to Maturitv ft)

4

IE
0.5

Traditional

nme Pos'

5

Deduction from underlying
stock process

1

o

Wr

CL

s_

oa_

O

vi

o

cd

CL
CL

170

—C

0 ,6

0

0. 0 0 . p. ° • 0.
(0 °

0 0 • f

* 0 0 °. FJ

0.0 *04

Efficient Neuromorphic RW Implementation

clXt = µ.(t,Xt)dt + 0-(t,Xt)dWt

ti 1111".........4" -at = f Otx,uxx,

.41 1V
u(t,x) = lE[g (X0 IX() = x]

Rigorous Probabilistic Connections

Low Power Particle Transport Simulation

I A Class of Integro-PDEs with a Probabilistic Interpretation
The IPDE-IVP

has solution

ut (t, x) =
2

aii (t, x)uxixi (t, x) + bi(t,x)uxi(t, x)
i

+A(t, x) f (u(t, x + h(t, x, q)) — u(t, x)) (/),Q(q; t, x)dq

+c(t, x)u(t, x) + f (t, x)
u(t, x) = g(x)

ft
u(t, x) = IE [g(Xt) exp (I c(s, X s)ds) + f f (s, Xs) exp (I c(u,Xu)du) ds X o =

where dXt = b(t, X t)dt + a (t , t)diNt + h(t, t, Q)dPt;4,txt

and a, b , c, g ,h, and f are all real valued, A. < 0; further for each t and x that ch 0 and f ch(q)dq so that

P(t; Q, t, x) is a Poisson process with rate — fot A(s, x)ds. We further require that a = (To' , b, and h are all

defined so that the stochastic process Xt has a unique solution that belongs almost surely to the domain of g.

15 A Class of Integro-PDEs with a Probabilistic Interpretation

The IPDE-IVP ut (t, x) =
2
1 ai (t, x)uxixi (t, x) + bi(t, x)uxi(t, x)

+A(t, f (u(t, x + h(t, x, q)) — u(t, x)) (/),Q(q; t, x)dq

+c(t, x)u(t, + f (t, x)
u(t, x) = g(x)

u(t,x)= IE[g t exp
ft

(I c(s, X s)ds)+ f f(s,Xs) exp(I c(u, Xu)du)ds Xo .xl

Non-Zero Terms Application SDE Example

a Heat Equation dXt = adWt

a, b, f European Option Pricing dSt = r Stdt + aStdWt

b, h, c, f Particle Transport dXt = —vYtdt; dYt = wYtdPut

a, f Electrostatic Scalar Potential* de) = -jdWt

b, c Pollutant Source
Deterioration

dXt = vdtA

*steady state solution, ^actually an ODE _

16 Accuracy Stack for Neuromorphic Implementation

PDE Ground Truth

Problem

To approximate the
expectation, we must sample

paths of the stochastic process.

ut = f (t,u,u,,u„)

u(t, x) = lE[g (t , Xt)1X0 = x]

Mr— A.. roximation
M

1
u(t, x) —

m
(t, X0; XV = x

i=1

Continuous paths cannot be
sampled, we must employ a

discretization scheme.

Pos.,

Visualization

M
1

u(j At, x) g(jAt, XjAt); 41") = x

i=1

Neurons cannot represent a
continuum of locations. Hence

we must limit the spatial
locations of the walk.

M
1

u(j
At, xk) m—Ig 0 At jjAt); 4') = xk

i=1

There are a finite number of
neurons, so maximum and
minimum values for the
random walk will exist.

1
u(J At, xk) --=•• M g Atiejm);)e,:(;") = xk

1=1

Hardware Specific issues.
TrueNorth having quantized

probability, for example.

1
P

256

Error/Convergence

1

M

Ot

1
jAtAs

varies

varies

17 Accuracy Stack for Neuromorphic Implementation

PDE Ground Truth

Problem

To approximate the
expectation, we must sample

paths of the stochastic process.

ut = f (t,u,u,,u„)

u(t, x) = lE[g (t , Xt)1X0 = x]

A. . roximation
M

1
u(t, x) —

m
(t, X0; XV = x

i=1

Continuous paths cannot be
sampled, we must employ a

discretization scheme.

,
Pos.,

Visualization

M
1

u(1,6,t, x) At, XjAt); 41") = x

i=1

•

Error/Convergence

1
M

Ot

An- An- An- ma An-
Present for any implementation

18 Accuracy Stack for Neuromorphic Implementation •
ut = f (t,u,u,,u„)

PDE Ground Truth
u(t, x) = lE[g (t , Xt)1X0 = x]

1
0.5 0.5

Time Posilon

Problem Approximation Visualization Error/Convergence

N: omorphic Specific
-Ur -Ur -Ur

Neurons cannot represent a
continuum of locations. Hence

we must limit the spatial
locations of the walk.

There are a finite number of
neurons, so maximum and
minimum values for the
random walk will exist.

M
1

xk) 114IgOAt,fejAt); 5((()') = xk

i=1

1
u(jAt,xk) --=•• m—IgOAtiejm);)e,:(;") = xk

1=1

1
jAtAs

varies

19 Accuracy Stack for Neuromorphic Implementation •
ut = f (t,u,u,,u„)

PDE Ground Truth
u(t, x) = lE[g (t , Xt)1X0 = x]

03 0 055
1 -1

PoslIon

Problem Approximation Visualization Error/Convergence

Hardware Specific

Hardware Specific issues.
TrueNorth having quantized

probability, for example.

1
P a

256
varies

20 Analysis of Random Walk Algorithm

Goal: Can we get an "apples to apples" complexity analysis of two algorithm
versions (normal vs density)?

Approach: Consider time / power costs of simulating a number of walkers, W,
over a number of time steps, S. Conventional CPUs can use however many
processors are on the chip (P), and neuromorphic chips can use however many
mesh points (M) that can fit on the chip.

Problem: Simple 2D local diffusion

W walkers
S timesteps

For 1...W
For 1...5
x+=rnd()
y+=rnd()

 _i

P processors

4_ w walkers
S timesteps

- M mesh points

i it 4-
1 In- ii,

1 k

AI
À

J-

1

2 I Analysis of Random Walk Algorithm

_

W walkers
S timesteps

For 1...W
For 1...S
x+=rnd()
y+=rnd()

V N" V

1

i ,

,
V V V V

Í 1

P processors

¡

-4-

.it.
1

,

Í)

Ini• 1.

.4_ W walkers
S timesteps

+ M mesh points

)r

A J

Conventional Analysis

VI/ * 5'
T = CCPU,time p

Power = CCPU,powerW * S

Neural Analysis

W * s
T = CNeural,time kM

Power = CNeural,powerW * S

k is a function of
the highest average
walker density
mesh point relative
to average density

22 Analysis of Random Walk Algorithm

Conventional Analysis Neural Analysis

W walkers
S timesteps

For 1...W

For 1_5
xl•=rricl()

y.rnd()

I.T = CCPU,time
V11*

P

Power = C-CPU,powerW *

W walkers
S timesteps
M mesh points

Time assessment:
Generally, k*M » P. So if CNeural, time~ CCPU, time then the neural
chip will be faster.

For applications where k«1 (average walker distribution is
highly skewed, e.g.) the time benefit of neural computing will
decrease.

*

T = CNeural,ttme kM

Power = C-Neural,powerW * S I

Empirical question: Estimation of c_CPU (32000 walkers)

Assess CNeural, time and Ccpu, time for a modern CPU and a
4E-08

3.5E 08

neuromorphic chip from above equations. -0 3E-08

_

; 2.5E-08• Preliminary estimates performed for CPU using
1000302E-08 —II—

—0-1000000C++/OpenMP. 1.5E 08

—0— 10003000

• Need estimates for TrueNorth or Loihi (ideally both). 1E-08

5E-09

o

5 10 15 20 25 30 35

Processors

1

Analysis of Random Walk Algorithm

Conventional Analysis Neural Analysis

W watkers
5 timesteps

For 1...W
For 1...5
xx=rnd()
y-F=rnd()

llll
nnnnnnnl

P processors

VII *5'
T = CCPU,time p

Power = C-CPU,powerW *

W walkers
®► S timesteps

mesh points

MI *5'
T = CNeural,time kM

rPower = C-Neural,powerW *

Power assessment:
For CPUs, there is likely no inherent advantage of parallelization for power.
Efficiency of walker distribution (k) is not likely to affect power (in event-driven
hardware).
However, there is a strong likelihood that CNeural, power " CCPU, power

Empirical question:
Can we assess CNeural, power and CCPU, power for a modern CPU and a neuromorphic chip
from above equations?
• A coarse assessment can likely be made from power specifications of chips for

100% operation over idle.
• Can we build off of preliminary estimates performed for CPU using C++/OpenMP?
• Need estimates for TrueNorth or Loihi (ideally both).

24 1

Monte Carlo on Loihi

25 Loihi-specific circuit

From Other Units

Buffer ?
t..

Readout

Walker •.*

Counter

Supervisor

Walker
• nerator

a
•-•
2 ••••

To Other Units
4

1. Supervisor circuit

1. Start buffer

2. Start counter

2. Counter circuit

1. Buffer neurons

2. Counter neurons

3. Probabilistic neurons

4. Output neurons

41-10. 1 ►

• • •

26 Loihi-specific circuit — node buffer and node counter

d= I

d=5

TG

IN

I - COUNTER neuron stores number of
walkers as negative voltage
2- Supervisor input causes GENERATOR to
fire as long as VCOUNTER is negative
3- RELAY neuron ensures thatVCOUNTER is
appropriately reset if it pre-emptively shuts
off

To next counter circuit or output
nodes

From Other Units

....
Buffcr I"

Readout
,• A

Walker u

Countcr

Supervisor

Walker
nerator

-

- -

Probabi ity Gate

1b Other Units

27 Loihi-specific circuit — random probabilities and outputs

Wp2 *t: -p -13 u-p3)

I - Goal: we need to get pre-defined
probabilities that the walker gets directed
to along the kth output direction
2 — In principle, a tree structure would
work, but it does not scale well

From Other Units

....
Buffcr I"

Readout
A

Walker u

Countcr

Supervisor

Walker
nerator

4

- -

Probabi ity Gate

To Other Units

28 Loihi-specific circuit — random probabilities and outputs

pil

.077099872

O

(11-01)

322968172

p2 (1-1P24 0-103)

.5

•
pl*p2 p)11*(11-p2)) (11-piro ((11-pll

.038549936 .038549936 .922900128

I - Goal: we need to get pre-defined
probabilities that the walker gets directed to
along the kth output direction
2 — In principle, a tree structure would work,
but it does not scale well

- Can use tree to compute probabilities

From Other Units

Buffer

Readout
A

•

Walker

Counter

Supervisor

Walker
nerator

4

- -

Probabi ity Gate

To Other Units

29

.038549936

Loihi-specific circuit — random probabilities and outputs

p111 2)

.038549936

11

.922900128

0-pir(l-p3)

From Other Units

Buffer

Readout
,• A

•

Walker %.

Counter

Supervisor

I - Goal: we need to get pre-defined
probabilities that the walker gets directed to
along the kth output direction = 4--P

2 — In principle, a tree structure would work,
but it does not scale well

- Can use tree to compute probabilities
3 — Can collapse tree into single layer

- Single layer tree is both faster and has predictable delays...

Walker
nerator

-

- -

Probabi ity Gate

To Other Units

30 Task l: Simple diffusion

5 \

To
0o

-5

20

10

-10

-20
-20

timestep= 1

: •
:•••

„ . . • • • •

•••

-10

10
20

➢ 30 x 30 torus mesh

➢ 40 Loihi cores

➢ 600 random walkers

➢ 10,000 network timesteps (152 model
timesteps

➢ This is really as big as we can go due
to cap on # of probes

We can't see results, but we can characterize them...

50

45

40

2- 35
cv 30

25

20

15
r., 10

5

0

Energy (uJ) per timestep vs meshsize

•

0 5000 10000 15000 20300 25000 30300 35000 40000

Mesh Points

• 10000

• 100000

Time (us) per timestep vs meshsize

25

20

cr.

15 ss
. E
4-

10 • 10000

• 100000

5

0

0 5000 10000 15000 20000 25000 30000 35000 40000

Meshpoints

Some uncertainty around Loihi

>Small models seem to have added expense / overhead

>Certain mesh-sizes don't run / compile (probably my fault)

>3 chips fails. Other chip counts are okay

>Haven't figured out how to track all mesh points (yet)

35

--i- 30

Et-,, 25

E ▪ 20

ti 15

10

LE 5

•

Energy (uJ) per timestep vs meshsize

* • • •

0 • • • •

0

0 500 1000 1500 2000 2500

Mesh Points

25

i= 5

❑

Time (us) per timestep vs meshsize

0 • • •

•

• 0 • • •

500 1000 1500 2000 2500

Mesh Points

•

Loihi does run similarly with different shape simulations

"Fat donut"
X,Y coordinates the same size

"Skinny donut"
X coordinate grows
Y coordinate is fixed

50

45

• 40

cu 35

w ▪ 30

▪ 25

Kt 20

15

1' 10
La

0

Energy (uJ) per timestep vs meshsize

0 5000 10000 15000 20000 25000 30000 35000 arpoco

• 19000

• 100000

*Skewed 1000C)

• Skewed 100000

25

Time (us)

Mesh Points

per timestep vs meshsize

20

yt 15 a • 10000

• 100000

•
■

10

• Skewed_10000
E
i= 5 • Skewed 100000

0

0 5000 10000 15000 20000 25000 30090 35000 40000

Meshpoints

34 Task 2:A real problem:
Steady-state PDE solution of heat

/ /

T=0

u(0)=0
u'(0)=0

I

0 Ax 20x 30x e — 2Ax f — Ax e

35 Well-suited for neuromorphic implementation

➢ Long time scale - walkers run until they are absorbed by end-node

➢ Can be a very long time to completion

➢ For 40 mesh points, walkers require —250,000 simulation timesteps on average to fall off

➢ Steady-state approximation hurt by cutting off early

➢ Simulation timesteps are not directly related to neural timesteps

➢ Requires a lot of walkers

➢ Typical for Monte Carlo approaches

8

7

6

5

c
o
117, 4

o

3

2

1

SNN RW 1M neural timesteps

—SNN RW 100k neural timesteps-

—SNN RW 500k neural timestepsi

- -Analytic Solution_

7

-

0.2 0 4 0 6 0.8 1

Position
1 2 1 4 1 6 1 8

36 Highlights of Loihi Results

➢ 10,000 walkers requires 40 runs of 250 walkers each,
locations

➢ Simulations run for 7,500,000 timesteps. On average
300,000 simulation timesteps

➢ Runs very quickly: —40 seconds for 7.5 M timesteps

➢ Only —13 neurons per mesh point; in principle could
board

➢ Limitation becomes readout probes

so

1 3 5 7 s nu 151719 21 23 25 27 29 31 33 35 37 39

Starting Position

320000

300000

.a..1 280000

E

, - 260000

re
240000

E
in

220000

200000

for each of the 40 wire

between 200,000 and

put many copies on Nahuku

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Starting Position

•

37 Loihi results are close to perfect

8

7

6

5

4

3

2

1

0

-
.

Loihi RW 7.5M neural timesteps

TrueNorth RW 7M neural timesteps

- Analytic Solution

..
. .

.

1'
I

.If

.

-......._ '''-

.0

0.2 0.4 0.6 0.8 1
Position

1.2 1.4 1.6 1.8

•

38 I How far can this go?

a 82

at f(t,x) =
2
f(t,x).

ax

-5
20

timestep= 1

-10 20
10

-20

Directly model diffusion

40000

30000

20000

10000

0

10
8
6

u t,x f(t,x)

x)uri(E„x)

4
2
0 0 0d)

29160.751 001 261
scl 79 00

Diffusion process used
as component to

estimate solution to
more complex PDEs

???
ft ft ft

•

What else can we
compute on graphs in

parallel?

39 1

0 Project
problem

10 onto
stochastic

II process
basis

Deterministic
Components

 J

1 I

Diffusion
(Local & Non-

local)
Components

}

r

.

CPU

GPU

Neuromorphic

r

Neuromorphic
Hardware

}

41 Graph Analytics in Spiking Networks

> Growing area of interest

> Neural circuits are fundamentally graphs...

> Hamilton et al., 2018; Parekh et al., 2019

> Simple shortest path search is an obvious illustration

t=o t=3

iiM

t=6

I Dynamic Programming

Dynamic programming is a general technique for solving certain kinds of discrete optimization problems

Dynamic programming consolidates redundant computation

fib(n) = fib(n — 1) + fib(n — 2); fib(1) = 1, fib(2) = 1

lb(?)

111 •I2)
ThA2) si) ftAg sA,
sx9

[https://blog.usejournal.com/top-50-dynamic-programming-practice-problems-4208fed71aa3]
[https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html]
[https://medium.com/@shmuel.lotman/the-2-00-am-javascript-blog-about-memoization-41347e8fa603]

Those who cannot remember the past

are condemned to repeat it.

-Dynamic Programming

1

I Broad Applications of Dynamic Programming

Dynamic programming is a general technique for solving certain kinds of discrete optimization problems

• Recurrent solutions to lattice models for protein-DNA binding

• Backward induction as a solution method for finite-horizon discrete-time dynamic optimization problems

• Method of undetermined coefficients can be used to solve the Bellman equation in infinite-horizon, discrete-time, discounted, time-invariant dynamic optimization problems

• Many string algorithms including longest common subsequence, longest increasing subsequence, longest common substring, Levenshtein distance (edit distance)

• Many algorithmic problems on graphs can be solved efficiently for graphs of bounded treewidth or bounded clique-width by using dynamic programming on a tree decomposition of the graph.

• The Cocke—Younger—Kasami (CYK) algorithm which determines whether and how a given string can be generated by a given context-free grammar

• Knuth's word wrapping algorithm that minimizes raggedness when word wrapping text

• The use of transposition tables and refutation tables in computer chess

• The Viterbi algorithm (used for hidden Markov models, and particularly in part of speech tagging)

• The Earley algorithm (a type of chart parser)

• The Needleman—Wunsch algorithm and other algorithms used in bioinformatics, including sequence alignment, structural alignment, RNA structure prediction

• Floyd's all-pairs shortest path algorithm

• Optimizing the order for chain matrix multiplication

• Pseudo-polynomial time algorithms for the subset sum, knapsack and partition problems

• The dynamic time warping algorithm for computing the global distance between two time series

• The Selinger (a.k.a. System R) algorithm for relational database query optimization

• De Boor algorithm for evaluating B-spline curves

• Duckworth—Lewis method for resolving the problem when games of cricket are interrupted

• The value iteration method for solving Markov decision processes

• Some graphic image edge following selection methods such as the "magnet' selection tool in Photoshop

• Some methods for solving interval scheduling problems

• Some methods for solving the travelling salesman problem, either exactly (in exponential time) or approximately (e.g. via the bitonic tour)

• Recursive least squares method

• Beat tracking in music information retrieval \A/ikipedia: 30 applications across diverse domains
• Adaptive-critic training strategy for artificial neural networks [https://en.wikipedia.org/wiki/Dynamic_programming]
• Stereo algorithms for solving the correspondence problem used in stereo vision

• Seam carving (content-aware image resizing)

• The Bellman—Ford algorithm for finding the shortest distance in a graph Another list with 50 applications
• Some approximate solution methods for the linear search problem [https://blog.usejournal.com/top-50-dynamic-programming-
• Kadane's algorithm for the maximum subarray problem practice-problems-4208fed71aa3]
• Optimization of electric generation expansion plans in the Wein Automatic System Planning (WASP) package

1

I Spiking Dynamic Programming Approach

New neuromorphic algorithms for dynamic programming
Generically solves a broad class of dynamic programs

Spiking shortest paths algorithm
[Aibara et al., IEEE Int. Symp. on Circuits and Systems, 1991]

24

30

5

20

44

• Our dynamic programming algorithm leverages shortest path
NGA

Single neuron per dynamic program table entry

Employs delays on links (simulable using recurrent neurons)

• Novel temporal encoding: time when neuron first fires
represents value of dynamic program table entry

Spiking Dynamic Programming Example

New neuromorphic algorithms for dynamic programming
Spike times encode dynamic programming table values

Dynamic Program for Knapsack
Problem

-; 10

I) 11/ al II ll (I (I {I

I

[P--AL

5 6 7 7 7 7 7

1 2 4 5 9 9

4, 4' 4' 4'
2 -I 5 6 9 111 I

1

Each table entry is value of best knapsack solution
of weight at most W using items {1,...,k}

Knapsack Problem:
N items, each with weight IN; and value vi

Goal: pick subset of items of weight at most W,
maximizing total value.

= 6

= 3
T[3,5] = max(T[2,5 — w3] + p3, T[2,5]}

Spiking approach: T[i,j] encoded as time neuron (i,j) receives
incoming spike on last of its incoming links

1

1
1
1

I Practical Considerations and Extensions

• Dynamic program graph must be simulated on neuromorphic
hardware graph
New graph embedding problems and techniques

• Neuromorphic hardware has a fixed minimum delay
Problem-specified delays must be scaled, introducing
multiplicative factor to running time

• Dynamic programming graph loading and readout (I/0) costs may
present bottlenecks
Optimized problem-specific algorithms possible (we do so for
longest increasing subsequence)

• Spiking approach as presented only gives value solution
Can use O(log n) extra neurons per graph node as memory to
store solution
Novel Hebbian learning approach on edges also works!

v2

1)31

-1

47 How far can this go?

a 82

at f(t,x) = D
2
f(t,x).

ax

-5
20

timestep= 1

-10 20
10

-20

Directly model diffusion

40000

30000

20000

10000

0

10
8
6

(14t, r q

) ra.x)

4
2
0 0 009

29160.751 001 261
scl 79 00

Diffusion process used
as component to

estimate solution to
more complex PDEs

1(ft;

Graph analytics,
optimization,

•

Many things whose
computation can be

parallelized onto a graph

48 Acknowledgments

Neural PDE team:

Darby Smith, William Severa, Aaron Hill, Ojas Parekh, Leah Reeder, Rich Lehoucq,
Brian Franke

Neural Graph team:

Ojas Parekh, Cindy Phillips, Ali Pinar, Yipu Wang, Yang Ho, William Severa

■

49 Selected References

• Random Walks with Spiking Neuromorphic Hardware
> Severa, W., Lehoucq, R., Parekh, O. and Aimone, J.B., Spiking Neural Algorithms for Markov Process
Random Walk. in 2018 International Joint Confirence on Neural Networks (IJCWN) (2018), IEEE, 1-8.
> Smith et al., ICONS 2020 submitted

• Neural Graph Analytics
>Aimone, J. B., Parekh, O., Phillips, C. A., Pinar, A., Severa, W, & Xu, H. (2019, july). Dynamic
Programming with Spiking Neural Computing. In Proceedings of the International Conference on Neuromorphic
Systems (pp. 1-9).

>Hamilton, K. E., Mintz, T. M., & Schuman, C. D. (2019). Spike-based primitives for graph algorithms.
arXiv preprint arXiv:1903 .10574.

• Non-AI Applications of Spiking Neuromorphic Hardware
> Aimone, J.B., Parekh, O. Phillips, C.A. Pinar, A. Severa, W. and Xu, H. Dynamic Programmin with
Spiking Neural Computing. in Proceedings of the International Conference on Neuromorphic Systems, (20 9),
ACM, 20.

> Parekh, O., Phillips, C.A., James, C.D., and Aimone, J.B. Constant-Depth and Subcubic-Size Threshold
Circuits for Matrix Multiplication. in Proceedings of the 30th Symposium on-Parallelism in Algorithms and
Architectures, (2018), ACM, 67-76.

> Schuman, C.D., Hamilton, K., Mintz T., Adnan, M.M., Ku, B.W, Lim, S.K. and Rose, G.S., Shortest Path
and Neighborhood Subgraph Extraction on a Spiking Memrstive Neuromor hic Implementation. in
Proeedings of the 7th Annual Neuro-inspired Computation Elements Workshop, (2019 ACM, 3.

• Generalized Feynman-Kac
> Grigoriu, M. (2013), Stochastic Calculus: Applications in Science and Engineering, Springer Science & Business
Metha.

• Boltzmann Transport Equation and Neumann Expansion
> Dupree, S. & Fraley, S. (2002), A Monte Carlo Primer: A Practical Approach to Radiation Transport, number v.
1, Springer US.

