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Corrosion in Oil and Natural Gas Industry

• $1.4 billion annually: direct corrosion costs in domestic oil and 
gas exploration and production in the U.S. 

• $589 million: surface piping and facility costs 

• $463 million: downhole tubing expenses

• $320 million: capital expenditures related to corrosion. 

• 25~30% can be saved with optimal corrosion management.

3

Koch, G. H., Brongers, Michiel, P. H., Thompson, N. G., Virmani, Y. P. and Payer, 
J. H., “Corrosion costs and preventive strategies in the United States” (2002). Top-of-line corrosion in Natural 

gas transmission pipeline

Corroded production casing 
pipe sample from downhole*

* University of North Dakota Energy & Environmental Research Center.

www.corrosionpedia.com



4National Energy Technology 
Laboratory

Corrosion in Natural Gas Pipelines

• 528,000 km of Natural Gas Transmission & Gathering Pipelines in U.S.

• ~ $4.5 billion Corrosion-related Annual Cost to monitor, replace, and 

maintain these assets.
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Corrosion is an electrochemical process that 
causes mass loss and structural deterioration

Anodic reaction

Fe(s)   Fe2+(aq) + 2e-

Cathodic reaction

2H+(aq) + 2e-   H2(g)

2H2CO3(aq) + 2e-   H2(g) + 2HCO3
-(aq)

e-
Fe2+(aq)

Iron or Steel

FeCO3(s)

Dissolution of CO2: CO2(g)   CO2(aq)

Hydration of CO2: CO2(aq) + H2O(l)   H2CO3(aq)

                         ~ 0.2% of CO2(aq) and quite slow

Dissociation of H2CO3(aq):

H2CO3(aq)   H+(aq) + HCO3
-(aq), pK1=6.35 at 25 oC

HCO3
-(aq)   H+(aq) + CO3

2-(aq), pK2=10.33 at 25 oC

Susceptible 

materials

Corrosive 

environment

Tensile stress

SCC

Jones, D. A., Principles and Prevention of Corrosion, P 237.

Han, J., Nesic, S., Yang, Y., Brown, B., Electrochimica Acta, 2011, 5396-5404.

https://corrosion.ksc.nasa.gov/stresscor.htm
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Optical Fiber Sensor Platform

Emphasis Within NETL Research & Innovation Center:
 Optimize Interrogation System (Range, Resolution, Cost)
 Early Corrosion On-Set Detection
 Methane Leak Detection & In-Pipe Gas Composition 

Monitoring

A Multi-Parameter, Distributed Optical Fiber Sensor Platform Enabling Reliability & Flexibility

Target Metrics = >100km Interrogation, <1m Spatial Resolution, Cost ~$30k (<$0.30 / m)
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Optical fiber sensors

• Advantages of optical fiber sensors (OFS)

• nondestructive monitoring

• in-situ distributive measurements

• small size, flexibility, geometric versatility, light weight

• inherent immunity to electromagnetic interference (EMI)

• compatibility to optical fiber data communication systems

• improved safety in the presence of flammable gas 

environments as compared to electrical based sensors

• can be functionalized with specific sensing materials
http://www.materialsperformance.com/news/2018/09/fiber
-optic-sensors-prevent-corrosion-of-natural-gas-pipelines
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Distributed OFS sensing principle

• Distributed OFS enables continuous real-time monitoring 
over the whole structure at a reduced cost per length unit. 

Joe, H.-E., Yun, H., Jo, S.-H., Jun, M. B. G. and Min, B.-K., Int. J. 
Precis. Eng. Manuf. Technol. 5(1), 173–191 (2018).

Distributed temperature, strain, and acoustic sensing (DTS, DSS, DAS)

Optical backscatter reflectometer (OBR)
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Corrosion sensors from previous work

Rayleigh backscattered light increased as 

corrosion of Fe film proceeded

Microstrain on the fiber increased with 

mass loss of coated metallic Ni film.

Multi-mode Fiber Coreless Fiber

Fe

Multi-mode Fiber Single-mode Fiber

Ni

NACE CORROSION, 2019, No. 13499.Proc. SPIE 10973, Smart Structures and NDE for 
Energy Systems and Industry 4.0, 109730N.
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Experimental Setup

Transmission measurement 
during the Fe plating onto and 
dissolution from the SiO2 coated 
optical fiber.
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Fe/SiO2 Composite Coating Preparation

Cleaning and Prep

Fe Electroless Plating

Chemical Amount Operation

FeSO4·7H2O 11g/L Stir, 30mL

C6H5Na3O7·2H2O
(Sodium Citrate)

57g/L Stir, 30mL

H3BO3 10g/L Stir, 30mL

NaOH 1.2M to pH 9.8@22C Drops

NaBH4 3.0g/L Added the last

Chemical Amount Operation

Acetone 100% <5min, Sliding

DI water Rinse Air dry

NaOH 10M, 50C <5min, Sliding in PTFE plate

DI water Rinse Air dry

Chemical Amount Operation

SnCl2 22.6g/L Stir, 30mL
Immerse, 20min at 50CHCl, conc. 10mL/L

PdCl2 0.795g/L Stir, 30mL
Immerse, 20min at 50CHCl, conc. 5mL/L

TEOS sol-gel for dip coating to form SiO2 layer

Chemical Amount Stir Hot
plate T

Dip/travel Calcination

DI 1mL 60 oC for 3h ~25 travels
of coreless 
fiber

Up, 3h;
600 oC, 2h;
Cool,3h

Ethanol 4.5mL

TEOS 4.5mL

Sensitization & Activation 
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Fe plating on sub-micron SiO2 spheres

• The patches of Fe coating indicates 
that SiO2 spheres/coating facilitated 
Fe plating.

• Fe coated SiO2 spheres with about 
hundreds of nm thickness. (~1h)

• Honeycomb-like Fe coating.

Fe on SiO2 spheres

Multi-mode Fiber Coreless Fiber Multi-mode Fiber
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After Fe dissolution in pH2 (SEM)

• Fe coating was dissolved in pH 2.

• A ~150nm uniform coating was observed in the 

cross-section. Porous SiO2 or residual Fe?

SiO2 spheres

Multi-mode Fiber Coreless Fiber Multi-mode Fiber
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T% decreased during Fe plating

• T% increased in the first 2 mins, probably due to the H2 gas 

formation on the surface at the early stage of Fe plating.

• T% then decreased after Fe deposited on the fiber due to Fe 

light absorption.

• For the wavelengths of 600nm and 800nm, T% became 

relatively stable after 60min.

• Wavelengths of 400nm and 900nm were affected more by the 

integration time because of low SNR.
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T% increased during Fe dissolution in pH 2

• T% increased as Fe 

dissolved, which enables 

corrosion monitoring.
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Conclusions

• A Fe/SiO2 composite film was studied as the sensing film where the SiO2 layer provides

roughness/porosity and light coupling and the Fe layer serves as the corrosion sensing

element.

• The composite film was prepared through a sol-gel and electroless plating combined

process with potential for mass production.

• T% decreased after Fe deposited on the fiber due to light absorption of Fe film.

• T% increased as Fe dissolved, which enables corrosion monitoring using this Fe/SiO2

coated optical fiber.
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Support Team (LRST). Neither the United States Government nor any agency thereof, nor any of

their employees, nor LRST, nor any of their employees, makes any warranty, expressed or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process disclosed, or represents that its use

would not infringe privately owned rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof. The views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States Government or any agency thereof.
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Thank you!

Contact Information: Ruishu.Wright@netl.doe.gov


