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Abstract

To expedite new molecular compound development, a long-sought goal within the

chemistry community has been to predict molecules’ bulk properties of interest a priori

to synthesis from a chemical structure alone. In this work, we demonstrate that ma-

chine learning methods can indeed be used to directly learn the relationship between

chemical structures and bulk crystalline properties of molecules, even in the absence

of any crystal structure information or quantum mechanical calculations. We focus

specifically on a class of organic compounds categorized as energetic materials called
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high explosives (HE) and predicting their crystalline density. An ongoing challenge

within the chemistry machine learning community is deciding how best to featurize

molecules as inputs into machine learning models—whether expert handcrafted fea-

tures or learned molecular representations via graph-based neural network models—

yield better results and why. We evaluate both types of representations in combination

with a number of machine learning models to predict the crystalline densities of HE-

like molecules curated from the Cambridge Structural Database, and we report the

performance and pros and cons of our methods. Our message passing neural network

(MPNN) based models with learned molecular representations generally perform best,

outperforming current state-of-the-art methods at predicting crystalline density and

performing well even when testing on a dataset not representative of the training data.

However, these models are traditionally considered black boxes and less easily inter-

pretable. To address this common challenge, we also provide a comparison analysis

between our MPNN-based model and models with fixed feature representations that

provides insights as to what features are learned by the MPNN to accurately predict

density.

Introduction

The discovery of new molecular compounds, including energetics, pharmaceutics, or-

ganic semiconductors, and food additives, is a labor-intensive and costly Edisonian pro-

cess, driven by cycles of informed design, synthesis, crystallization, characterization,

and property testing. The ability to predict molecular compounds’ bulk crystalline

properties from a chemical structure alone and a priori to synthesis has been desired

for decades to reduce new compounds’ development time. However, this goal remains

largely elusive as the bulk properties of molecular compounds are often significantly

impacted by the crystal structure they adopt, and accurately and efficiently predicting

molecular crystal structures using quantum mechanics-based computational approaches

is challenging due to the significant influence that crystallization conditions and molec-
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ular conformational flexibility (i.e., ability to change 3-dimensional structure) have on

crystal structure.1 Thus, the determination of molecules’ crystal structures and their

crystalline properties has remained a largely experimental endeavor and bottleneck in

new molecular compounds discovery pipelines.

In this work, we demonstrate that machine learning (ML) approaches can be used

to directly learn the relationship between chemical structures and bulk crystalline prop-

erties of molecular compounds and to make predictions even in the absence of crystal

structure information. While a variety of ML approaches have been demonstrated for

predicting molecular-level properties, including energy levels and lipophilicity,2–8 use

of ML approaches to predict bulk crystalline properties of molecular compounds are

far less explored with only a handful of examples.8–13 Figure 1 provides an overview

of the typical process involved with new molecular compounds’ development and high-

lights how our ML approach can provide a shortcut to the time-consuming synthesis,

crystallization, and characterization steps that are normally required to know the crys-

talline properties of a new molecule. We specifically focus our studies on predicting

the crystalline density of a class of energetic materials called high explosives (HE),

since density of molecular HE directly relates to detonation velocity—an important

performance metric when evaluating molecular HE candidates. Furthermore, the de-

velopment and testing of new HE is particularly hazardous work that would especially

benefit from early prioritization and minimization of samples to be synthesized and

studied.

Aside from synthesizing and experimentally determining the density of HE candi-

dates or attempting to adopt ML approaches, as we do here, the current best method

of attaining a density approximation is via quantum mechanics-based density func-

tional theory (DFT) calculations. Specifically, studying small datasets of known HE

molecules, Rice et al.14 and Qiu et al.15 separately showed that density of energetics

can be approximated by dividing a molecule’s molecular weight (which is known pre-

cisely from the chemical structure alone) by its molecular volume, approximated using

electron density isosurfaces calculated with DFT. Generally within the HE commu-

3



Figure 1: Schematic of the typical process and labor involved with researching new molecular
compounds (blue arrows). Highlighted in green are various possible shortcuts that machine
learning can enable to expedite new molecule development. By directly predicting crystalline
properties from a molecular structure alone, as we do in this work, many of the time-
consuming steps normally involved with synthesis, crystallization, and characterization may
be prioritized.

nity, if a density prediction error is less than 0.03 g/cc, the prediction is considered

“excellent”; predictions with errors within 0.03 and 0.05 g/cc are considered “infor-

mative;” predictions with error between 0.05 and 0.10 g/cc are “barely usable;” and

predictions with errors greater than 0.10 g/cc are “deceptive.”16,17 For 180 C-, H-,

N-, and O-containing HE molecules, Rice et al.’s quantum mechanical-based approach

yielded 41.1% of predictions that were excellent within 0.03 g/cc and 21.7% that were

informative within 0.03 and 0.05 g/cc.14,18 However, this approach thereby yields over

a third of predictions with errors of 0.05 g/cc or greater.14,18 As noted by Politzer et

al., one likely source for these high errors is the fact that the DFT calculations used to

approximate the molecular volume are performed on single molecules (i.e., molecules

in the gas phase), thereby omitting intermolecular interactions typically present and

affecting density in crystalline materials.18 Politzer et al. introduced an electrostatic

correction factor that helps to improve the accuracy of these DFT-based density pre-

dictions.18 However, still none of the approaches published thus far provide accurate

predictions and are over 0.1 g/cc too low for important test cases like 1,3,5-triamino-

2,4,6-trinitrobenzene (TATB)—a particularly useful HE molecule given both its simul-
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taneously high performance (stemming from its high density of 1.93 g/cc19) and high

insensitivity to mechanical shock.20

In this work, we describe a curated dataset of HE-like molecules and report and com-

pare machine-learned models to predict the densities of these molecules from chemical

structure alone—without crystal structure information or requiring any DFT calcula-

tions. In devising these models, we evaluated a number of different machine-readable

molecular representations, or featurization methods, and a number of different model

architectures—both of which significantly affect the predictive performance of ML mod-

els but in ways that are difficult to predict beforehand. We note that certain combi-

nations do not need to be evaluated due to incompatibilities between specific molec-

ular featurization types and ML models, and we quickly determined that the longest-

standing and popular ASCII string-based molecular representation method called Sim-

plified Molecular Input Line Entry System or SMILES strings21 does not perform

well for this crystalline density prediction task. We instead focus on more traditional

and easily interpretable models (specifically random forest and partial least squares

regression) with expert-crafted and predefined molecular-level summarizations of fea-

tures, as well as more recently developed graph-based models (i.e., message-passing

neural networks (MPNNs)) that encode instead only atom and bond information into

a machine-learned molecular representation of relevant molecular features and that are

therefore less easily interpretable. We report here the performance and pros and cons

of each to aide in further ML model development for molecular compounds. In par-

ticular, across tests on more than 10000 HE-like molecules with our best model—the

largest HE-relevant test set reported to date—61% of predictions were “excellent” and

22% were “informative”, and the model performs well even in the density prediction

of notoriously difficult molecules like TATB, yielding a prediction of 1.95 g/cc that is

only 0.02 g/cc higher than the experimentally reported value.
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Materials and Methods

Dataset

A challenge to machine learning for HE molecules has been the lack of readily avail-

able large datasets; datasets of approximately 300 HE molecules are considered large

for the HE community.14,22 To address this issue, we curated a dataset of energetic-

like molecules from the Cambridge Structural Database (CSD),23 a repository con-

taining over a million published and experimentally-derived organic, inorganic, and

metal–organic small-molecule crystal structures. We sub-selected from the CSD database

molecules that either are known HE or are similar to this family of compounds by

imposing the following restrictions: 1) molecules must be composed of only carbon,

hydrogen, nitrogen, and oxygen, 2) molecules must contain a nitrogen-oxygen bond of

any type (e.g., single, double, triple), and 3) the crystal structure cannot be solvated

or one of co-crystals (i.e., the crystal structure contains only one type of molecule).

From this subset, we then removed a molecule if its 3D structure could not be

correctly constructed from its crystal structure file. In addition, we removed any

molecule that was missing a published density value. We note that a molecule in

CSD may contain a calculated density as well as a published density provided by

the authors of the source publication for the molecule. We found that these values

differed in some cases, and so we chose to treat the published density values as ground

truth; additional details of the dataset may be found in the Supporting Information.

Furthermore, for any molecules that had more than one crystal structure meeting all the

above criteria and therefore had multiple densities associated with it, we took only the

highest density, which commonly (but not exclusively) corresponds to a lower energy

and more stable form.24 Using the molecules available in CSD as of December 2018,

this filtering process resulted in dataset of 10251 energetic or energetic-like molecules

for our regression analyses. We provide a list of these molecules’ CSD reference codes

as a list in the Supporting Information.

The distribution of crystalline densities for the filtered molecules comprising our
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dataset is shown in Figure 2. The distribution is concentrated at intermediate densities

of approximately 1.35 g/cc with a relatively smaller number of values at the low and

high extremes, the latter of which is relevant to HE studies25,26 for its correlation with

detonation velocity. Due to the imbalance of density values and the importance of high

density datapoints, we apply stratified k-fold cross validation when fitting our models to

ensure that the folds are representative of the whole population of densities of the HE-

related dataset, similar to what would be trained in a production environment, thereby

allowing for a fair prediction assessment and accurate determination of performance in

the regimes of interest.

Figure 2: Distribution of published crystal densities in the curated HE-related dataset.

Featurization methods

The assumption that molecular structure can map to quantitative molecular com-

pound properties requires that molecules be encoded with features that are accessi-

ble to ML models. To transform molecules into valid inputs for prediction models,
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various featurizations have been developed that attempt to appropriately summarize

relevant characteristics while encoding that information in model-specific, small, or

fixed dimensional spaces.27 For instance, the SMILES representation21 was developed

to encode the structure of a chemical species into short ASCII strings, making it suit-

able for text-based models. Molecular fingerprints, such as ECFP28 and E3FP,29 are

another commonly used approach that represent molecules with fixed-length bit vec-

tors in which the vector components correspond to the presence or absence of some

feature. While the features that result from constructing these fingerprints are not

easily interpretable, the fingerprints are suitable for most ML approaches that require

vectorized inputs. Additionally, this approach allows molecules to be easily compared

despite having different numbers and types of atoms and bonds because all molecules’

vector representations are the same length and molecules with similar chemistries tend

to map to vectors having many overlapping bit elements. Briefly, these methods ap-

ply an iterative process in which a hash function is used to aggregate information

about the neighborhood of an atom as defined by its graph representation. Initially,

the neighborhood consists of the nearest neighbors of an atom, and at each iteration,

the neighborhood expands to include the neighbors of the neighbors considered so far.

E3FP extends this approach by leveraging 3D information about a molecule to de-

fine the neighborhood of an atom,29 and we consider E3FP as a means of molecular

representation in one of our models.

In addition to E3FP fingerprints, we also evaluated the 2D molecular descriptors

that are available in RDKit30 as a means of featurizing molecules for input into our

models. RDKit is a widely-used open source toolkit for cheminformatics that provides

functionalities for working with molecules and calculating a variety of molecular de-

scriptors from input molecules. RDKit’s earliest adopters were in the pharmaceutical

and drug discovery communities, and this history is reflected in many of the molecular

featurizations included in RDKit, which are pharmacologically relevant (i.e., Lipinski’s

rule of five31). In general, the features included in RDKit encompass different chemi-

cal and mathematical aspects of molecules that are potentially relevant to estimating
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molecular compound characteristics. These features include basic information, such

as the types and numbers of atoms and other chemical entities, as well as higher-level

features, such as graph theory-based calculations that synthesize information about

groups of bonds and surface area-related measurements that take into account, for ex-

ample, partial charges and other physical properties. Details about these descriptors

may be found in their respective publications.30,32–40 We note that while 3D-type de-

scriptors are also available in RDKit, our results (further discussed in the Results and

Discussion section) demonstrate that the 2D molecular descriptors alone are sufficient

in making reasonably accurate density predictions.

To obtain the feature representations of our 10k dataset of molecules, we use

deepchem41 release 2.3.0 with RDKit30 release 2019.09.1. Any package options and

function parameters for accessing the molecules and features with these packages have

been left at their default values. Starting with 111 features, we preprocessed the

data by removing any perfectly correlated features and any constant variables, leav-

ing 98 features for our models to learn from for density estimation. In addition, we

log-transformed the “information on polynomial coefficients” or Ipc feature.37 Ipc is

an example of one of the hand-engineered molecular descriptors in RDKit’s standard

list of 2D molecular descriptors; first proposed in 1977, it provides a measure of the

information content of a molecule’s graph representation based on its characteristic

polynomial and number of possible matchings, which spans several orders of magni-

tude. A complete list of the features and additional exploratory details may be found

in the Supporting Information.

In general, the RDKit descriptors represent manually derived features that incor-

porate chemical domain knowledge to explicate additional molecular properties from

a more basic set of features. While this approach is suitable for traditional ML ap-

proaches that require a predetermined set of engineered features, these features may

not necessarily be important to predicting a target property of interest. In contrast,

neural network-based methods are able to automatically derive hidden but relevant

feature representations that are conducive to highly accurate predictions as part of the
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model-fitting procedure. For instance, message passing neural networks (described in

the following section) are able to learn an internal representation of a molecule using

only node- and bond-level information. The potentially high accuracy, low-level feature

space requirement, and lack of an explicit featurization step make these approaches ap-

pealing for property prediction. Thus, we also consider using such a more generalized

neural network-based model for crystalline density prediction. With this graph-based

model, we utilize RDKit’s atom and bond descriptors to provide node- and bond-level

information; this information, along with the graph structure itself, together represent

the featurization of a molecule.

Methods

While machine learning approaches hold great promise for predicting the properties of

still unrealized molecular materials, a consistent challenge remains as to what mod-

els and molecular featurization methods—fixed or learned representations—will yield

the best results. There are two primary reasons for this ambiguity. First, not all

featurizations are compatible with all models and vice versa, which makes it challeng-

ing to decouple the effects of featurizations and model methods on the overall model

performance. Second, the performance of models varies greatly depending on the

problem—specifically the dataset and parameters being predicted. Thus, in creating a

model to predict bulk crystalline properties of molecular materials from their chemical

structures alone, we began by evaluating a number of possible molecular featurization

methods and models, as outlined in Figure 3.

Among the potential methods we examine, we focus on several regression-based

methods, which are compatible with the molecular-level featurization methods of RD-

Kit and the E3FP fingerprints. Because of the large number of molecular features in

the RDKit dataset and possible complex relationships between features and targeted

property (i.e., crystalline density), we consider approaches that can discover potential

nonlinear dependencies between the features and density values while handling the

high-dimensionality and correlations of the features. For example, support vector ma-
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chines42 are supervised learning models that can be adapted for regression.43 With an

appropriate kernel function, these models can scale to high dimensional data, handle

nonlinear relationships, and use the similarities to a subset of the training samples of

a model to make accurate predictions.

One prominent regression-based method that addresses potential modeling issues

such as high-dimensionality and correlations of the features and outlier target values

is random forests (RF) regression,44 an ensemble learning method that has been used

successfully in many prediction tasks. RF is a supervised learning algorithm that uses

feature and sample bagging45 to learn ensembles of decision trees for classification and

regression tasks. By using bagging to learn from subsets of features and samples in a

dataset, RF produces decision trees that are robust to high-dimensionality and overfit-

ting, can handle outliers and non-linearities without data scaling and transformations.

Additionally, by analyzing changes in model performance when different features are

used at the various branching points in decision trees, RF models can also provide a

measure of variables’ relative importance for achieving good model performance.44,45

Thus, in the context of our current problem, an RF model can provide scientific in-

sights by elucidating what molecular features are most important for predicting and

tuning crystalline density.

Partial least squares regression (PLSR) is another popular statistical method that

has been used to model systems and solve regression problems.46,47 In contrast to RF,

PLSR is a dimensionality reduction that maximizes the covariance between the sets

of latent variables of the predictor and response spaces of a dataset and removes la-

tent sources of variance with little predictive value. As a result, PLSR can produce

parsimonious models that consider the predictor-response variation while reducing the

number of predictors that are used, accounting for multicollinearity among the predic-

tors, and producing variable importance in projection (VIP) scores47,48 that summarize

the importance of the predictors in the latent variable construction.

In recent years, neural network-based methods have also seen increased usage and

success in chemical prediction problems.12,13,49–55 One framework, the Message Passing

11



Neural Network (MPNN), encompasses several neural network-based approaches that

rely on message passing algorithms for graph-structured data to make target property

predictions.49 In general, these approaches are able to derive their own features from

molecular graphs and supplemental information about the graph’s nodes and edges

through a message passing algorithm and aggregation framework to predict molecu-

lar properties, thereby eliminating the need for complicated feature engineering while

achieving high prediction accuracy. However, neural network-based methods tend to

be computationally expensive to fit, and the internal representations that are learned

by these methods generally do not admit interpretable models. Here, we consider the

MPNN variant and implementation by Yang et al. in which messages are directed and

associated with edges or bonds instead of undirected and associated with vertices or

atoms.50 By using a directed graph, this variant prevents messages from being instantly

passed back to a source node from its original target in order to reduce noise in the

resulting models.

In this work, we consider a number of different fixed or learned molecular featuriza-

tions in combination with the above-described modeling methods to predict the crys-

talline densities of energetic materials from their chemical structure alone. Specifically,

we developed and evaluated: 1) a support vector regression (SVR) model42,43 using

E3FP fingerprints, a common fixed molecular representation; 2) RF- and PLSR-based

models with RDKit molecular-level features, also fixed molecular representations; and

3) an MPNN-based model, which utilizes RDKit atom- and bond-level features to de-

scribe network nodes (atoms) and edges (bonds) but yields a learned overall molecular

representation. Before fitting the RF and PLSR-based models, we preprocess and fil-

ter the densities as described in the Dataset section. We also normalize the filtered

features to have a mean of 0 and a standard deviation of 1. In the case of PLSR,

we also apply a power transformation56 to the features. For the MPNN model, the

implementation by Yang et al. uses a set of basic features for each atom and bond that

is appropriate to the message passing framework, and we use this implementation as-is,

including any one-hot encoding and other preprocessing steps that are applied to the
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features; a summary of these features may be found in Ref. 50 and in the Supporting

Information.

To fairly assess the models, we apply stratified k-fold cross-validation. In particu-

lar, we use 5 stratified folds with bins defined by boundaries between 1.0 and 2.0 at

increments of 0.05 to handle the density imbalance and ensure that each fold is repre-

sentative of the distribution of densities; a list of the molecules and their groupings are

provided in the Supporting Information. For each method, we summarize its overall

performance by computing the averages of the R2 score and root mean squared error

(RMSE) across the stratified folds.

As an alternative to stratified splitting, scaffold splitting may also be used to evalu-

ate a method’s ability to generalize to structurally different molecules;57 results based

on this approach are provided in the Supporting Information.

Molecular Featurization 
Methods Models

1) Extended 3D FingerPrint (E3FP)

2) 2D Molecular Descriptor Sets from RDKit

3) Graph representation with Atom and Bond 
Descriptors from RDKit

a) Support 
Vector 
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b) Random Forest (RF)

c) Partial Least Squares Regression (PLSR)

d) Message Passing Neural Network 
(MPNN)
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Figure 3: Overview of density regression models.
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Results and Discussion

HE-related density prediction

Using the HE-related dataset and models described in Figures 2 and 3 and in the Mate-

rials and Methods section, we first evaluate the goodness of fit for the various combina-

tions of featurizations and methods to predict the densities of the HE-related molecules

in CSD. In Figure 4, the predicted densities are plotted against the true densities for

each feature-method combination. Generally, the predicted values tend to be close to

their corresponding true values for all of the models. This result demonstrates that

ML models can indeed be trained to predict crystalline properties of molecules from

their chemical structure alone—remarkably even in the absence of any crystal structure

information.

Table 1 shows the R2 and root mean square error (RMSE) values for the RDKit

molecular features each of the feature-method combinations that we considered. Com-

pared with the other methods, the E3FP/SVR combination performs poorly with an

R2 value of 0.683, suggesting that the E3FP fingerprint may not capture information

that is as relevant for density predictions as the other three models do. The RF- and

PLSR-based models both use RDKit’s standard set of 2D molecular features that are

pre-computed before training the models—a fixed molecular representation—and yield

R2 values of 0.878 and 0.900, respectively. That these two models have comparable

and good performance despite using different regression methods demonstrates that

the featurization method they utilize—RDKit’s 2D molecular descriptors—adequately

captures the necessary molecular information for predicting density. Interestingly, the

MPNN-based model, which utilizes a learned molecular representation, has an even

slightly better performance, yielding an R2 value of 0.914. While the performance dif-

ference between these three models appears small, that the MPNN utilizing a learned

molecular representation performs so well is encouraging because it suggests that hand-

crafted molecular features like those included in RDKit may not be necessary for pre-

dicting crystalline properties. As one may appreciate by perusing RDKit’s references,
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such handcrafted features are often developed by experts over decades and include

domain knowledge tailored to specific topics, such as drug design. Though neural

network-based methods like MPNNs have their own drawbacks (i.e., they are compu-

tationally expensive and the model complexity hinders human interpretability), such

approaches may be particularly adept when appropriate handcrafted features have not

yet been developed or identified.

To further discriminate between our best models, we examined their performance

more closely in the context of our problem of interest: predicting the density of HE-

related molecules. As discussed in the introduction, the HE community typically con-

siders density predictions with errors less than 0.03 g/cc as “excellent” and those with

errors within 0.03 and 0.05 g/cc as “informative;” prediction with errors larger than

0.05 g/cc are “barely usable” or even “deceptive”.16,17 Figure 5a shows the distribu-

tion of absolute errors in this context for the RF-, PLSR-, and MPNN-based models.

Notably, the PLSR-based model has 56% of predictions as “excellent” with errors less

than 0.03 g/cc and 76% as “informative” with errors less than 0.05 g/cc, and the

MPNN model performs even better, yielding 61% of predictions as “excellent” with

errors less than 0.03 g/cc and 83% with errors less than 0.05 g/cc. For context, the

DFT-based density prediction method with electrostatic correction factors introduced

by Politzer et al., which we discussed in the introduction, produced only 50% of its den-

sity predictions as “excellent.”18 We find it rather remarkable that a machine learned

model using a learned molecular representation and without explicitly knowing any

information about the molecular volume or intermolecular interactions can perform so

well at predicting density.

As discussed earlier, HE compounds tend to have high densities (i.e., 1.6 g/cc or

higher), but as illustrated in Figure 2 , this high-density regime has significantly fewer

data points from which models can learn. Thus, in evaluating our models, we were

also interested in understanding the distributions of models’ errors as a function of the

molecules’ true, experimentally validated densities, paying particular attention to the

error distribution in the high-density, low-data regime of interest. Figure 5b illustrates
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this concept and shows the median error within bins defined by the true densities,

with a bin width of 0.01. Interestingly, we see that while the median error of the

RF- and PLSR-based models increases at densities greater than 1.5 g/cc, the MPNN

has a relatively constant error that is less than 0.05 g/cc across most of the density

regime, including the data-sparse, high-density regime. Of particular note is TATB,

an important test HE molecule with a density of 1.93 g/cc. Existing density prediction

methods have thus far been challenged in accurately predicting the density of this

molecule, producing errors in excess of 0.1 g/cc; here, the MPNN model performs

exceptionally well, yielding a prediction of 1.95 g/cc and error of 0.02 g/cc, while our

remaining models produce errors greater than 0.09 g/c for this molecule. Though it

remains to be understood precisely why the MPNN is better able to generalize and

predict in this high density regime, this result is very encouraging for neural network-

based methods like the MPNN and suggests that the learned molecular representations

may capture more subtleties in molecules’ chemistries than the handcrafted RDKit

molecular features, as discussed further below.

Table 1: R2 and RMSE values of different featurization and method combinations for HE-
related density prediction.

Feature Input information Feature processing Method R2 RMSE
E3FP atomic, 3D positions Precomputed SVR 0.683 0.085
RDKit (molecular) physicochemical/mathematical Precomputed RF 0.878 0.053
RDKit (molecular) physicochemical/mathematical Precomputed PLSR 0.900 0.048
RDKit (atom/bond) atomic/bond, molecule graph Learned MPNN 0.914 0.044

Feature importance

In practice, one of the primary goals in fitting the density regression models is using

them to accurately predict the densities for novel molecules designed by domain ex-

perts, but understanding which features are relevant and actively contribute to the

predicted densities is also valuable to help build fundamental scientific understanding,

particular as it applies to designing novel molecules. While the MPNN-based model

has better predictive performance than the RF- and PLSR-based models, its algorith-
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Figure 4: Predicted vs. true densities. In general, the approaches using RDKit with RF,
PLSR and MPNN perform better than the baseline E3FP/SVR approach and produce den-
sity predictions that are close to the true density values. However, errors tend to be large
for extreme values of the true density.
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Figure 5: (a) Distributions of predicted density errors and (b) median predicted density error
within bins defined by the true densities of the HE-related molecules at 0.01g/cc intervals
for RF, PLSR, and MPNN. For clarity, the few errors above 0.25g/cc are not shown. The
distributions are concentrated around small values, with the MPNN-based model tending to
make the smallest errors and the RF-based model making the largest errors. However, all
three approaches contain large outliers and tend to make errors that are larger for values at
the tails of the density distribution than for the intermediate density values.
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mic structure makes it difficult to interpret in the context of higher level features a

scientist could control, i.e. important functional groups, as the primary focus has been

on specific node importance.58 In contrast, the RF- and PLSR-based methods have

well-known heuristics and procedures for determining measures of variable importance

and natively accept highly interpretable and actionable features. To determine the

most important variables in our models for density prediction, we consider Gini and

permutation importances44,45 for our RF model and VIP scores47,48 for our PLSR

model.

Table 2 shows the 20 RDKit molecular features with the highest Gini, permutation,

and VIP scores for the RF- and PLSR-based models, which indicates their importance

to the accurately predicting density of HE-like molecules; the rankings of the remaining

features may be found in the Supporting Information. While the precise rank-order of

feature importance varies between the three approaches, many features are common

among the three list, and in fact, each approach has the same set of top 6 predictors:

NO Count, VSA EState8, SlogP VSA5, TPSA, SMR VSA5, and MolLogP. We explain

these features individually below.

• NO count: The NO count provides a count of the number of nitrogen and

oxygen atoms present on the molecule. The inclusion of this feature in RDKit

is reflective of its pharmaceutical origins since nitrogen and oxygen atoms are

commonly present in pharmaceutics, and in fact, one of Lipinkski’s rule of five31

to evaluate the likelihood of a given molecule being a pharmaceutic states that no

more than 10 nitrogen and oxygen atoms, which act as hydrogen bond acceptors,

can be present. Serendipitously, nitrogen and oxygen atoms are also commonly

occurring in energetic molecules, most often as nitro (-NO2) or amine (-NH2)

functional groups. Hydrogen bonding is an important type of intermolecular

interaction between hydrogen atoms and highly electronegative atoms, like oxygen

and nitrogen, that can affect how molecules crystallize, which in turn affects their

density.

• VSA EState8: The E-state or “electrotopological state” index of an atom sum-
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marizes the differences in electronegativity between the atom and the other atoms

in a molecule, scaled by their physical distances, and this value can be inter-

preted as the level of accessibility of an atom to interactions.59 In RDKit, the

VSA EState values accumulates the total E-state values over atoms with a par-

ticular van der Waals surface area. In particular, the VSA EState8 value of a

molecule is equal to the sum of the E-state values of atoms in the molecule with

a van der Waals surface area between 6.45 and 7.00.

• MolLogP: The logP value or “octanol-water partition coefficient” provides a

measure of the lipophilicity.39 This parameter is an important criterion used by

medicinal chemists to screen potential pharmaceutical candidates as it provides

an indication of how likely the compound is to reach the intended target tissue

in the human body. In RDKit, the MolLogP value is based on the method by

Wildman and Crippen39 and calculated as the sum of the logP contributions over

the atoms of the molecule, the values of which have been estimated a priori by

least-squares fitting.

• SlogP VSA5: The SLogP VSA values also summarize information related to

the octanol-water partition coefficient. In this case, the SLogP VSA considers

the amount of a molecule’s surface area that can be attributed to atoms with

certain logP values. In particular, SLogP VSA5 is equal to the sum of the van

der Wals surface areas of atoms with estimated logP contribution values (based

on the method by Wildman and Crippen39) that are between 0.10 and 0.15.

• SMR VSA5: MR or “molar refractivity” is a descriptor that reflects the polar-

izability of a molecule. Like the logP value, the MR value can be estimated as

the sum of the individual MR contributions that can be attributed to each atom,

each of which has been estimated beforehand.39 The SMR VSA values then sum-

marize the amount of a molecule’s surface area that can be attributed to atoms

with certain MR values. In particular, SMR VSA5 is equal to the sum of the van

der Wals surface areas of atoms with estimated MR contribution values (based
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on the method by Wildman and Crippen39) that are between 2.45 and 2.75.

• TPSA: The TPSA,60 or topological polar surface area, value is an estimate of

the molecular polar surface area, a property that has been shown to correlate

with drug transport properties. Analogous to the MR and logP calculations by

Wildman and Crippen,39 Ertl et al. calculate the TPSA value by taking sum

of the polar surface areas over the fragments of a molecule, each of which are

estimated a priori.60

The fact that the handcrafted molecular features designed to capture pertinent

details for pharmaceutics are relevant and important in predicting the crystalline den-

sity of HE-like molecules is surprising; however, this observation suggests that these

features capture more fundamental attributes about molecules that are more broadly

applicable. Indeed, looking more holistically at the molecular features included in RD-

Kit, we classified them according to categories that describe the type of information

they capture (see Supporting Information), and on the basis of the features’ relative im-

portance in predicting density according to their category classifications, features that

pertain to a combination of electronic and topological information appear to be most

important. We can rationalize this result in the context of DFT-based methods of den-

sity predictions, which rely entirely on accurately approximating a molecule’s volume

from an electron density isosurface; the hand-crafted electronic-topological features are

conceptually similar in that they also capture information about the molecules’ shape

and electron distribution.

Although MPNNs are not as readily interpretable for scientific application, compar-

ative studies between the MPNN and RF models can help shed insights as to why the

MPNN achieves better performance for density regression. During the readout phase

of the MPNN model, each updated node feature is aggregated, and this aggregation

is transformed into a fixed length vector. The final density prediction is calculated

through a weighted sum of the readout vector, similar to classical linear regression.

Consequently, the weights connecting the final layer to the output node can be inter-

preted as coefficients of a linear model and provide feature importance to the newly
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Table 2: Top 20 predictors based on random forest Gini and permutation importance and
partial least squares regression VIP scores.

rank RF (Gini) RF (permutation) PLSR (VIP)
1 VSA EState8 TPSA VSA EState8
2 SlogP VSA5 VSA EState8 SlogP VSA5
3 TPSA SMR VSA5 TPSA
4 SMR VSA5 SlogP VSA5 NO Count
5 MolLogP NO Count SMR VSA5
6 NO Count MolLogP MolLogP
7 PEOE VSA6 EState VSA10 PEOE VSA7
8 EState VSA7 FractionCSP3 Chi2n
9 EState VSA10 PEOE VSA6 RingCount

10 PEOE VSA7 EState VSA7 EState VSA10
11 Chi2n VSA EState6 PEOE VSA6
12 VSA EState3 Chi2n NumHAcceptors
13 FractionCSP3 Kappa2 Chi1n
14 MaxPartialCharge Kappa3 Chi3n
15 VSA EState6 VSA EState3 Chi4n
16 Chi1n Chi0n BalabanJ
17 Chi3n NumHAcceptors EState VSA7
18 NumHAcceptors HallKierAlpha VSA EState3
19 Chi0n Chi1n Chi0n
20 MinEStateIndex MolMR MolMR
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learned features. By analyzing the correlation between the top features identified by

RF and MPNN, where the RF features are interpretable, we can start to understand

what the MPNN is learning as well as determine if it has extracted new information

missed by the RDKit feature engineering process.

In Figure 6, we plot the absolute values of the pairwise correlations between the top

MPNN and RDKit features which have a 0.005 g/cc or higher impact on the density

prediction, determined by final layer weights and permutation importance, respectively.

There are two immediate takeaways we find from this experiment: 1) the newly learned

features from the last layer of the MPNN model seems to correlate well with many of

the hand-engineered RDKit features, and 2) the MPNN model has learned multiple

new features that are not captured by the RDKit feature set.

Figure 6: Absolute values of Pearson correlation coefficients between MPNN features and
RDKit features where the RDKit features are sorted (in descending order) according to
importance determined by RF. Only features with an impact of 0.005g/cc or higher on
the final predicted density are considered. Yellow and green indicate a strong correlation
(positive or negative) while purple indicates no correlation.

Although deciphering the exact salient information embedded within the MPNN’s

final layer remains challenging, our analysis makes clear that the MPNN’s graph level
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features are capable of re-deriving many of the relevant hand-engineered properties

when given enough data. Moreover, despite being independent of the RDKit feature

ranking, the maximum absolute value of the correlation coefficients generally trend

with this ranking, as seen by the prominence of yellow and lighter green indicative

of high correlations near the top of Figure 6, underscoring the prominence of these

features for density estimation. Together, these results indicate chemical awareness

within the graph-based NN model, which is crucial to both understanding how to

better design molecules and developing trust in applying deep learning to molecular

data. In addition, we attribute the increase in MPNN performance, relative to both RF

and PLSR, to the MPNN features that are not represented within the RDKit feature

set. While we are unable to decipher what these new features represent in the context

of chemical information, the isolation of these relevant new features offers a starting

point for further analysis and interpretation.

Testing model performance on an out-of-distribution dataset

A key challenge to many ML models’ practical utility is that their performance does

not translate well when molecules are provided as inputs that are very different than

the molecules and data used in model training. Thus, to further demonstrate the

utility of our models, we chose to also test our models’ performance on an out-of-

distribution dataset. We chose as our test a small dataset of 109 chemically diverse

energetic molecules originally assembled and reported by Huang and Massa.61 Treating

the Huang and Massa dataset as our test dataset, we removed from our 10k dataset

molecules also present in the Huang and Massa dataset and re-trained our models. The

Huang and Massa dataset represents an out-of-distribution test dataset for our models

in two ways: 1) This dataset has much more chemical diversity than our 10k training

dataset and includes non-traditional HE. For example, 21% of the test dataset consists

of molecules having fluorine atoms, which are completely absent from our 10k training

dataset, and a handful of molecules in the test dataset do not have a N-O bond of any

kind, a common feature of most HE molecules and a selection requirement in creating
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our 10k training dataset. 2) As shown in Figure 7, the distributions of densities for

our training and testing datasets are concentrated around different values; the Huang

and Massa dataset is centered at high densities of approximately 1.9 g/cc, whereas

the 10k dataset is centered at densities of approximately 1.35 g/cc. Also, we removed

high-density datapoints from our training dataset, which already has few high-density

examples, that were common to the test dataset, thereby furthering the differences

between the training and test datasets.

Figure 7: Distributions of the HE-related (red) and Huang and Massa (blue) crystalline
density values used as training and test datasets, respectively. The test dataset values are
concentrated at the high-density values where the training dataset is sparsely distributed
and the trained models are expected to perform poorly (see Figure 5).

Figure 8 shows the predicted densities for Huang and Massa dataset plotted against

the true densities using the same feature-method combinations considered previously

in the HE-related density prediction analysis. Table 3 reports the corresponding R2

and RMSE values. As expected given the challenges discussed above with this test,

the performance of our models on this high-density, chemically diverse dataset is lower

(R2 decreased; RMSE increased) than the performance we reported earlier on the
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stratified k-fold splits of our 10k HE-related dataset. In particular, the E3FP/SVR

combination—previously our worst performing model—highly underpredicts densities,

producing errors that are essentially unreliable. Interestingly, while the RF- and PLSR-

based models, both of which utilized fixed molecular representations from RDKit, had

comparable performance when predicting on the 10k HE-related dataset, their per-

formance on this out-of-distribution dataset diverges. The RF-based approach also

largely underpredicts densities in the out-of-distribution dataset, yielding an R2 of

0.206, while the PLSR-based model yields an R2 of 0.708. This result highlights the

potential impact and importance of model selection, particularly when the data that

a model is expected to predict on is uncharacteristic of the distribution of data that

the model was trained on; in this case, two models with nearly equivalent performance

when testing on in-distribution data have contrasting performance when testing on

out-of-distribution data. Finally, the MPNN-based model, previously our best per-

forming model, performs slightly worse than the PLSR-based approach, yielding an R2

of 0.624. Though both the PLSR- and MPNN-based models tend to underpredict den-

sities for this test dataset, their performance on the out-of-distribution dataset is still

remarkably reasonable, especially in light of the distributional disparities observed in

Figure 7. This demonstrates that they are learning patterns from low-to-intermediate

density molecules that are still useful to predicting high density HE, but these re-

sults underscore the need for improved methodologies and datasets for more thorough

practical applications.

Table 3: R2 and MSE values scores of different featurization and method combinations using
the HE-related dataset for training and Huang and Massa dataset for testing.

Featurization Method R2 RMSE
E3FP SVR -2.402 0.254
RDKit (molecular) RF 0.206 0.123
RDKit (molecular) PLSR 0.708 0.074
RDKit (atom/bond) MPNN 0.624 0.084
RDKit (atom/bond ordinal encoding) MPNN 0.798 0.062

Since the distributions of densities of the HE-like dataset and the Huang and Massa
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Figure 8: (a) Predicted and (b) error (true – predicted) vs. true packing density values using
the HE-related dataset for training and Huang and Massa dataset for testing.
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dataset are highly pronounced, the large differences in scores between the two datasets

may be a result of overfitting to the relatively smaller densities of the HE-like dataset.

To assess overfitting when predicting the high density values, we now recompute the

R2 and RMSE values in Tables 1 and 3 by limiting their computations to true density

values that are above a certain threshold. Here, we limit the test densities to values

that are above 1.589 g/cc to retain 95% (104 molecules) of the Huang and Massa

dataset. The R2 and RMSE values for the trimmed test datasets are shown in Table 4.

We again see that R2 values are smaller and the RMSE values are larger on the test

dataset. However, the changes to these values are more severe with the SVR and RF-

based approaches, so these two approaches may be highly overfitting to the HE-related

dataset. The R2 and RMSE values for MPNN also change by large amounts, but not

to the same extent. Of the four approaches, the RDKit/PLSR combination appears

to be the most robust, with the smallest changes in RMSE at 0.005 g/cc and in R2 at

0.160, indicating its relatively better generalizability in the high-density range.

Table 4: Trimmed R2 and MSE values scores using test densities above 1.589 g/cc for different
featurization and method combinations in the cross-validation analysis on the HE-related
densities (HE) and when using the Huang and Massa densities (HM) for testing.

Featurization Method R2 (HE) R2 (HM) RMSE (HE) RMSE (HM)
E3FP SVR -0.823 -5.738 0.150 0.259
RDKit (molecular) RF 0.387 -0.551 0.087 0.125
RDKit (molecular) PLSR 0.595 0.435 0.070 0.075
RDKit (atom/bond) MPNN 0.660 0.27 0.064 0.086

To remedy MPNN’s poor generalizability, as seen in the large decrease in RMSE

between the HE-related and Huang and Massa datasets, we also consider an ordinal en-

coding on the originally one-hot encoded feature vectors (see Supporting Information).

This different encoding scheme drastically reduces the dimensionality of the features,

a common technique to reduce overfitting, and significantly improves MPNN’s perfor-

mance in the high-density regime. As a result of this modification, MPNN outperforms

PLSR based on the R2 and RMSE values (0.798 and 0.062, respectively) and appears

to be more in line with projections based on the training dataset, indicating an increase
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in generalization.

Conclusions

In this work, we demonstrate that machine learning models can be created to predict a

bulk crystalline property—specifically density –of energetic molecular materials using

information only from the chemical structure of the molecule and without knowing any

information about the crystal structure. Our best models outperform current state-

of-the-art methods, including more computationally expensive DFT-based methods,

and yield good prediction even on high-density molecules known to be challenging, like

TATB. We find that both models utilizing handcrafted features and learned molecular

representations perform well, with the learned molecular representation model (MPNN-

based) even slightly outperforming those utilizing handcrafted feature methods. This

result should be encouraging for the chemical informatics community as a whole, as

it suggests that current machine learning methods capture at least as much, if not

more, information than what we can master via subject matter expert-informed feature

engineering.

The ability to predict crystalline properties from chemical structure is particularly

powerful given that computationally predicting molecular crystal structures is still

challenging. In this sense, the ability to predict the properties of crystalline molecular

materials may also aide such computational efforts to directly predict crystal structures

since accurate property prediction, like density, can significantly reduce the potential

crystal structure variable search space. However, more immediately, such models may

be utilized by domain experts to quickly screen HE candidates, and longer term, may be

used in combination with generative models for expedited and computer-aided design

of new molecular materials.
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(46) Höskuldsson, A. PLS regression methods. J. Chemom. 1988, 2, 211–228.
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CSD/RDKit additional details

CSD densities

In our construction of the HE-related dataset from the molecules in CSD, we noted in the

Materials and Methods section of the main text that we used the published density values

that were available in CSD. However, the CSD Python API contain several other approaches

to obtain a density value for a given molecule. Listing 1 shows an example containing three

1
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such approaches, the last of which was used for our dataset.

In Figure S1, pair plots of the densities for the three approaches are shown. We see that

most of the molecules have similar densities across the three approaches, but there are some

large differences for some molecules. More specifically, the first (crystal calculated density)

and second approaches (entry calculated density) are the same for almost all of the

molecules, but there are densities that are different by a multiple of two. Comparing the sec-

ond and third approaches (entry published density), we see that the densities are largely

the same, and any differences between the two approaches are on the order of 10−1.

Since the entry published density density entries were obtained from their respec-

tive publications, we chose to use these values for our dataset, but given the similarities

between the three approaches, we do not expect any fitted models to drastically change

if another approach were to be used. However, one should still be aware of these differ-

ences when using the CSD densities for other analyses. Moreover, these differences, espe-

cially the doubling of some of the density values between entry calculated density and

crystal calculated density should prompt a need for explanations as to how these values

were obtained or calculated.

from ccdc import io

csd_reader = io.EntryReader('CSD')

mol_name = 'JUVMOC '

crystal_calculated_density = csd_reader.crystal(mol_name ). calculated_density

entry_calculated_density = csd_reader.entry(mol_name ). calculated_density

entry_published_density = csd_reader.entry(mol_name ). _entry.editors_info (). published_calculated_density (). value()

Listing 1: Example code for different approaches to obtain densities from CSD.

RDKit features

In Table S1, a list of the 98 RDKit filtered features that were used with the RF and PLSR-

based density regression models is shown. We also classified the features into 6 feature

types: electronic/topological combination, bond information, lipophilicity, atoms/group in-

2
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Figure S1: Pair plot of crystal densities based on different approaches available in the CSD
Python API and shown in Listing 1. While many of the values are the same across the three
methods, there are still inconsistencies that need to be scrutinized.
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formation, connectivity/topology, and electronic

For convenience, Table S2 summarizes the list of features used in MPNN, replicated from

Ref. 1. Additional details about how these features are incorporated into MPNN may be

found in Ref. 1.

Feature correlations

An important step in regression problems is data pre-processing, and certain methods may

benefit from specific preparation steps before applying the method to the data to fit a model.

The RDKit molecular features described in the Materials and Methods section of the main

text were subject to several pre-processing steps based on exploratory data analyses. In

Figure S2, a heatmap of the correlations between the RDKit molecular features with the

constant variables removed and before filtering for perfectly correlated variables is shown.

The features have also been clustered using hierarchical clustering. We see that there are

many groups in which the features are highly correlated or anti-correlated with each other,

and in some cases, some variables are perfectly correlated with each other. Since the presence

of high correlations of the features can adversely affect the performance and interpretation of

many approaches, we retained only one of the features of any group of correlated predictors

in the dataset, and we selected methods such as random forests and partial least squares

regression that can handle potential multicollinearity in a dataset.

Additional pre-processing steps were also performed based on the distributions of values

of each feature. Figure S3 shows these distributions for all of the RDKit molecular features.

We first note the Ipc feature was log-transformed and replaced with logIpc, since the original

values span large orders of magnitude (∼ 100 − 1080) that can lead to numerical problems

during model-fitting. We also see that several predictors are constant and therefore have no

predictive value, so they were removed from the dataset. Lastly, many of the features are

skewed, so a power transform may be applied in combination with certain methods.
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Table S1: RDKit features and classification after filtering to exclude constant or perfectly
correlated variables.

Type Count Features
Electronic/
topological combination 55 TPSA, Chi0, Chi0n, Chi1, Chi1n, Chi2n, Chi3n,

Chi4n, MaxEStateIndex, MinEStateIndex,
MinAbsEStateIndex, VSA EState1, VSA EState2,
VSA EState3, VSA EState4, VSA EState5,
VSA EState6, VSA EState7, VSA EState8,
VSA EState9, EState VSA1, EState VSA10,
EState VSA11, EState VSA2, EState VSA3,
EState VSA4, EState VSA5, EState VSA6,
EState VSA7, EState VSA8, EState VSA9,
SMR VSA1, SMR VSA10, SMR VSA2, SMR VSA3,
SMR VSA4, SMR VSA5, SMR VSA6, SMR VSA7,
SMR VSA9, PEOE VSA1, PEOE VSA10,
PEOE VSA11, PEOE VSA12, PEOE VSA13,
PEOE VSA14, PEOE VSA2, PEOE VSA3,
PEOE VSA4, PEOE VSA5, PEOE VSA6,
PEOE VSA7, PEOE VSA8, PEOE VSA9,
HallKierAlpha

Bond information 11 NumRotatableBonds, NumAliphaticCarbocycles,
NumAliphaticHeterocycles, NumAliphaticRings,
NumAromaticCarbocycles,
NumAromaticHeterocycles, NumAromaticRings,
NumSaturatedCarbocycles,
NumSaturatedHeterocycles, NumSaturatedRings,
FractionCSP3

Lipophilicity 10 SlogP VSA1, SlogP VSA10, SlogP VSA11,
SlogP VSA2, SlogP VSA3, SlogP VSA4,
SlogP VSA5, SlogP VSA6, SlogP VSA8, MolLogP

Atom/
group information 8 MolWt, HeavyAtomMolWt, HeavyAtomCount,

NHOHCount, NOCount, NumHAcceptors,
NumHDonors, RingCount

Connectivity/topology 7 BalabanJ, BertzCT, LabuteASA, Ipc, Kappa1,
Kappa2, Kappa3

Electronic 6 MaxPartialCharge, MinPartialCharge,
MaxAbsPartialCharge, MinAbsPartialCharge,
NumValenceElectrons, NumRadicalElectrons, MolMR
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Figure S2: Correlations between RDKit molecular features for the HE-related dataset, col-
ored by feature classification and clustered with hierarchical clustering. There are many
clusters of highly correlated variables, some of which are perfectly correlated.
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Table S2: RDKit features used in MPNN.

Type Feature Description Size
atom atom type type of atom (ex. C, N, O), by atomic number 100

# bonds number of bonds the atom is involved in 6
formal charge integer electronic charge assigned to atom 5
chirality unspecified, tetrahedral CW/CCW, or other 4
# H number of bonded hydrogen atoms 5
hybridization sp, sp2, sp3, sp3d, or sp3d2 5
aromaticity whether this atom is part of an aromatic system 1
atomic mass mass of the atom, divided by 100 1

bond bond type single, double, triple, or aromatic 4
conjugated whether the bond is conjugated 1
in ring whether the bond is part of a ring 1
stereo none, any, E/Z or cis/trans 6

VSA_EState9

SMR_VSA9 TPSA VSA_EState1 VSA_EState10 VSA_EState2 VSA_EState3 VSA_EState4 VSA_EState5 VSA_EState6 VSA_EState7 VSA_EState8

SlogP_VSA8 SlogP_VSA9 SMR_VSA1 SMR_VSA10 SMR_VSA2 SMR_VSA3 SMR_VSA4 SMR_VSA5 SMR_VSA6 SMR_VSA7 SMR_VSA8

RingCount SlogP_VSA1 SlogP_VSA10 SlogP_VSA11 SlogP_VSA12 SlogP_VSA2 SlogP_VSA3 SlogP_VSA4 SlogP_VSA5 SlogP_VSA6 SlogP_VSA7

PEOE_VSA12 PEOE_VSA13 PEOE_VSA14 PEOE_VSA2 PEOE_VSA3 PEOE_VSA4 PEOE_VSA5 PEOE_VSA6 PEOE_VSA7 PEOE_VSA8 PEOE_VSA9

NumHDonors NumHeteroatoms NumRadicalElectrons NumRotatableBonds NumSaturatedCarbocycles NumSaturatedHeterocycles NumSaturatedRings NumValenceElectrons PEOE_VSA1 PEOE_VSA10 PEOE_VSA11

MolMR MolWt NHOHCount NOCount NumAliphaticCarbocycles NumAliphaticHeterocycles NumAliphaticRings NumAromaticCarbocycles NumAromaticHeterocycles NumAromaticRings NumHAcceptors

LabuteASA logIpc MaxAbsEStateIndex MaxAbsPartialCharge MaxEStateIndex MaxPartialCharge MinAbsEStateIndex MinAbsPartialCharge MinEStateIndex MinPartialCharge MolLogP

EState_VSA7 EState_VSA8 EState_VSA9 ExactMolWt FractionCSP3 HallKierAlpha HeavyAtomCount HeavyAtomMolWt Kappa1 Kappa2 Kappa3

Chi3v Chi4n Chi4v EState_VSA1 EState_VSA10 EState_VSA11 EState_VSA2 EState_VSA3 EState_VSA4 EState_VSA5 EState_VSA6

BalabanJ BertzCT Chi0 Chi0n Chi0v Chi1 Chi1n Chi1v Chi2n Chi2v Chi3n
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Figure S3: Distributions of values for each RDKit molecular feature for the HE-related
dataset.
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Oxygen balance

Oxygen balance is an important characteristic of energetic materials that could have been

used as an additional filtering criterion for our HE-related dataset. In Figure S4, the oxygen

balance values are plotted against the densities for the molecules of our dataset. Since the two

values appear to be strongly correlated, filtering based on oxygen balance would eliminate

many molecules with low-to-moderate density values, which are still important for training

models to correctly screen for candidate HE materials. Any models fit to the reduced dataset

would only produce reliable predictions in the high-density range and therefore cannot be

used to discriminate between low and high density materials.

Feature importance ranking

In Table 2 of the main text, the top 20 predictors based on random forest Gini and permu-

tation importance and partial least squares regression VIP scores where shown. Table S3

shows the rankings of all of the predictors for each variable importance approach.

Table S3: Variable importance rankings based on random forest Gini and permutation
importance and partial least squares regression VIP scores.

rank RF (Gini) RF (permutation) PLSR (VIP)

1 VSA EState8 TPSA VSA EState8

2 SlogP VSA5 VSA EState8 SlogP VSA5

3 TPSA SMR VSA5 TPSA

4 SMR VSA5 SlogP VSA5 NOCount

5 MolLogP NOCount SMR VSA5

6 NOCount MolLogP MolLogP

7 PEOE VSA6 EState VSA10 PEOE VSA7

8 EState VSA7 FractionCSP3 Chi2n

9 EState VSA10 PEOE VSA6 RingCount
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rank RF (Gini) RF (permutation) PLSR (VIP)

10 PEOE VSA7 EState VSA7 EState VSA10

11 Chi2n VSA EState6 PEOE VSA6

12 VSA EState3 Chi2n NumHAcceptors

13 FractionCSP3 Kappa2 Chi1n

14 MaxPartialCharge Kappa3 Chi3n

15 VSA EState6 VSA EState3 Chi4n

16 Chi1n Chi0n BalabanJ

17 Chi3n NumHAcceptors EState VSA7

18 NumHAcceptors HallKierAlpha VSA EState3

19 Chi0n Chi1n Chi0n

20 MinEStateIndex MolMR MolMR

21 Chi4n EState VSA5 Kappa3

22 PEOE VSA8 SlogP VSA6 MaxPartialCharge

23 MolMR Kappa1 Kappa2

24 Kappa2 PEOE VSA8 EState VSA1

25 EState VSA1 PEOE VSA7 LabuteASA

26 HallKierAlpha MinEStateIndex FractionCSP3

27 SlogP VSA6 EState VSA6 HallKierAlpha

28 Kappa3 SlogP VSA4 log Ipc

29 PEOE VSA2 EState VSA1 Kappa1

30 EState VSA6 MaxPartialCharge VSA EState6

31 SlogP VSA4 PEOE VSA2 MinEStateIndex

32 EState VSA5 Chi3n Chi1

33 Kappa1 RingCount NumAliphaticRings

34 VSA EState2 EState VSA4 EState VSA4

35 EState VSA8 VSA EState9 NumValenceElectrons
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rank RF (Gini) RF (permutation) PLSR (VIP)

36 MinAbsPartialCharge VSA EState2 HeavyAtomCount

37 EState VSA4 BertzCT VSA EState2

38 LabuteASA Chi4n SlogP VSA6

39 BalabanJ BalabanJ BertzCT

40 VSA EState4 EState VSA8 MolWt

41 SMR VSA7 SMR VSA3 Chi0

42 MaxEStateIndex SMR VSA6 HeavyAtomMolWt

43 VSA EState7 NumRotatableBonds EState VSA6

44 SMR VSA3 SMR VSA7 VSA EState7

45 BertzCT MinAbsPartialCharge MinAbsPartialCharge

46 MinPartialCharge LabuteASA PEOE VSA2

47 SMR VSA1 SMR VSA1 SlogP VSA4

48 PEOE VSA13 VSA EState7 SlogP VSA3

49 MinAbsEStateIndex PEOE VSA9 PEOE VSA8

50 SlogP VSA10 SlogP VSA3 NumAromaticCarbocycles

51 SMR VSA10 SlogP VSA10 VSA EState5

52 NumValenceElectrons SMR VSA10 NumAromaticRings

53 PEOE VSA9 MaxEStateIndex SlogP VSA10

54 VSA EState5 MinPartialCharge SMR VSA1

55 log Ipc PEOE VSA13 SMR VSA7

56 PEOE VSA14 NumAromaticRings PEOE VSA14

57 SlogP VSA3 PEOE VSA14 NumAromaticHeterocycles

58 VSA EState9 NumAromaticCarbocycles MaxEStateIndex

59 SMR VSA6 log Ipc PEOE VSA13

60 Chi1 SlogP VSA8 NumAliphaticHeterocycles

61 Chi0 VSA EState4 NumSaturatedRings
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rank RF (Gini) RF (permutation) PLSR (VIP)

62 SlogP VSA2 NumAromaticHeterocycles NumRotatableBonds

63 HeavyAtomMolWt EState VSA3 VSA EState4

64 EState VSA2 VSA EState1 NumAliphaticCarbocycles

65 MolWt PEOE VSA3 SMR VSA4

66 NumAromaticCarbocycles NumAliphaticRings EState VSA3

67 EState VSA3 NumValenceElectrons EState VSA8

68 PEOE VSA3 EState VSA2 NumSaturatedCarbocycles

69 MaxAbsPartialCharge Chi1 MinPartialCharge

70 RingCount Chi0 EState VSA5

71 NumRotatableBonds HeavyAtomMolWt SlogP VSA8

72 VSA EState1 SMR VSA4 NumRadicalElectrons

73 PEOE VSA1 MinAbsEStateIndex SMR VSA10

74 HeavyAtomCount MolWt NumSaturatedHeterocycles

75 PEOE VSA11 SlogP VSA2 EState VSA9

76 EState VSA9 VSA EState5 SlogP VSA2

77 PEOE VSA10 PEOE VSA11 EState VSA2

78 NumAromaticRings PEOE VSA10 PEOE VSA11

79 SMR VSA4 NumAliphaticHeterocycles VSA EState9

80 SlogP VSA8 NumHDonors NHOHCount

81 NumAromaticHeterocycles EState VSA9 NumHDonors

82 NumAliphaticRings HeavyAtomCount PEOE VSA1

83 SlogP VSA1 NumSaturatedRings PEOE VSA9

84 PEOE VSA12 PEOE VSA1 VSA EState1

85 NHOHCount MaxAbsPartialCharge MinAbsEStateIndex

86 NumHDonors PEOE VSA12 MaxAbsPartialCharge

87 NumAliphaticHeterocycles NHOHCount SMR VSA2
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rank RF (Gini) RF (permutation) PLSR (VIP)

88 NumSaturatedRings NumSaturatedHeterocycles SMR VSA3

89 SMR VSA9 SlogP VSA1 SMR VSA6

90 PEOE VSA5 NumAliphaticCarbocycles SlogP VSA1

91 NumSaturatedHeterocycles PEOE VSA4 PEOE VSA3

92 PEOE VSA4 SlogP VSA11 SlogP VSA11

93 NumAliphaticCarbocycles SMR VSA9 SMR VSA9

94 NumSaturatedCarbocycles SMR VSA2 PEOE VSA10

95 SlogP VSA11 PEOE VSA5 PEOE VSA4

96 NumRadicalElectrons NumSaturatedCarbocycles PEOE VSA12

97 SMR VSA2 NumRadicalElectrons PEOE VSA5

98 EState VSA11 EState VSA11 EState VSA11

Elton et al. additional analyses

While we curated and utilized a large 10k dataset, Elton et al. recently reported ML models

to predict properties of HE,2 including density, using a small dataset previously curated by

Huang and Massa3 that consists of 109 energetic molecules. To featurize HE molecules in

their dataset, Elton et al. created 21 custom features that incorporated domain knowledge,

such as oxygen balance and configurations of bonds involving of C, N, O, and H, and con-

sidered more standardized feature sets, including sum over bonds (SoB), Coulomb matrices,

and fingerprints. In their analyses, they showed that SoB features in combination with ker-

nel ridge regression (KRR) had the highest average performance across the different target

properties that were considered. Since their features and methods exhibited encouraging re-

sults for molecular property prediction from small datasets, we also applied our methods to

the same smaller 109 HE dataset to compare the approaches. Specifically, using this dataset,

we now compare the density prediction performance of our approaches against that of the
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Figure S4: Oxygen balance vs. density for the molecules of the HE-related dataset.
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SoB features with KRR.

To compare our methods and results against those of Elton et al.2 on the dataset by

Huang and Massa,3 we only consider their results for density prediction with SoB features

and kernel ridge regression (KRR), which had the highest average Pearson R scores across

all predicted target properties. In the analysis by Elton et al., method performance was

evaluated by using 5-fold cross-validation on 80-20 train-test splits of the data. For each

method and set of features, this cross-validation procedure was repeated 20 times, and the

average of various performance metrics were taken across the 20 runs, including the R2 and

Pearson R scores. However, the combination of the small dataset and lack of stratification in

the cross-validation procedure may produce dissimilar training and test datasets with high

variance in any performance metrics, and averaging may obscure this variance and the true

performance of a method.

To fit and assess the density regression models, we implement the same training procedure

by Elton et al., using 5-fold cross-validation with an 80-20 train-test split. We repeat this

procedure multiple times, and for each run, we compute the mean R2 and Pearson R across

the folds of that run. Since these statistics may be highly variable across runs on a small

dataset, rather than compute an average of metrics over different cross-validation runs,

we instead consider the distribution of performance metrics over those runs. Due to the

computational demands of fitting MPNN-based models, we only use RF and PLSR to model

density as a function of the RDKit features in this analysis. In addition, Elton et al. imposed

that hydrogen atoms were explicitly present in a molecular topology before computing any

features, whereas RDKit assumes by default that these atoms are implicitly known for any

feature computations. To enable an equitable comparison, we first make the hydrogen atoms

explicit for the RDKit featurization in the following analysis.
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Comparison

Figure S5 shows the distribution of R2 and Pearson R values for 200 runs using the RDKit

molecular features with RF and PLSR as well as the SoB features with KRR. Table S4

shows the corresponding means and standard deviations of these distributions. Generally,

for every approach considered, the distributions of both accuracy measures tend towards

positive values, but the distributions are highly variable, with some containing negative

scores that are indicative of poor performance, so the perceived accuracy of an approach can

heavily depend on the train-test split of the data.

Of the three approaches, KRR with the SoB features had the highest average Pearson R

value, while PLSR with the RDKit features had the highest average R2 value. However, the

large overlap between the distributions for all of the methods with both performance metrics

and the lack of robustness between train-test split iterations make it difficult to ascertain

a best-performing method for critical applications to novel molecules. Moreover, the large

variance in scores and potential poor performance illustrate the difficulties with learning

and deploying models based on small datasets in materials discovery and other chemical

prediction problems. Nevertheless, the tendency of the Pearson R and R2 distributions for

all of the methods to incline towards larger values suggests that the volume of information

that is covered by the featurizations but restricted by the small Huang and Massa dataset

still contains information that is relevant to estimating crystal densities. In addition, the

models that were considered were able to elicit suitable dependencies to reasonably predict

densities from the features over many train-test splits, but the analysis, interpretation, and

utility of the fitted models should be subject to additional scrutiny.

Implicit vs. explicit H

In their analyses, Elton et al. assumed that hydrogen atoms should be explicitly present in

any molecular representations from which any features were to be computed. However, this

step was never fully justified by the authors, and the RDKit documentation cautions that
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Figure S5: Distributions of Pearson R values and R2 over 200 train-test split iterations of
the Huang and Massa density dataset using the RDKit molecular features with RF and
PLSR as well as the SoB features with KRR. While the Pearson R distributions tend toward
high values, they exhibit large variance and are similar across the three approaches, making
it uncertain which method and features should be preferred on the small dataset based on
these metrics alone. With respect to R2 scores, the PLSR- and KRR-based approaches tend
to perform similarly across the iterations, while RF tends to perform worse.

Table S4: Mean and standard deviation of the Pearson R and R2 values for various combi-
nations of methods and features.

score method features mean sd
R2 RF RDKit 0.443 0.156
R2 PLSR RDKit 0.563 0.242
R2 KRR SoB 0.550 0.331
Pearson R RF RDKit 0.570 0.176
Pearson R PLSR RDKit 0.650 0.146
Pearson R KRR SoB 0.669 0.179
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much of the code for RDKit assumes that any hydrogen atoms are implicit in the molecular

topology. However, the documentation also notes that the hydrogen atoms may need to be

added in order to obtain realistic geometries.

In Figures S6 and S7, we compare the effectiveness of using implicit and explicit hydrogen

atoms in the feature computations based on the Pearson R values and R2 values, respectively.

As with the analysis in the main text, we compute these values over multiple train-test splits

and aggregate the values into distributions rather than take the average of the values. In

general, the distributions for both metrics suggest that forcing the hydrogens to be explicit

in the molecular representations helps to improve the accuracy for PLSR and KRR over

different train-test splits, but the difference in the distribution of scores for RF appears to

be negligible. Nevertheless, the potential improvements shown in the PLSR and KRR cases

suggest that the explicitness of the hydrogen atoms may be an important consideration when

fitting a model and should be treated as another parameter that may need to be tuned.
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Figure S6: Comparison of Pearson R distributions using implicit and explicit hydrogen atoms
in feature computations for the RDKit molecular features with RF and PLSR as well as the
SoB features with KRR. Each distribution is based on 200 train-test split iterations of the
Huang and Massa density dataset.

We now revisit the HE-related dataset and examine the effect of making the hydrogens

explicit in the RDKit features. Table S5 shows the R2 values for RF, PLSR, and MPNN when
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Figure S7: Comparison of R2 distributions using implicit and explicit hydrogen atoms in
feature computations for the RDKit molecular features with RF and PLSR as well as the
SoB features with KRR. Each distribution is based on 200 train-test split iterations of the
Huang and Massa density dataset.

the hydrogen atoms are implicit and explicit in the featurizations. Unlike the applications to

the Huang and Massa dataset, there is no considerable improvement in making the hydrogen

atoms explicit; the R2 are almost the same in the implicit and explicit cases for the three

methods. Similar observations can also be made about the prediction errors. In Figure S8

and S9, the distribution of errors for the predicted densities and the median error within

bins defined by the true densities with a bin width of 0.01 are shown. As with the R2 scores,

the differences between the implicit and explicit cases are marginal. Therefore, while the

explicitness of the hydrogen atoms should be a consideration when fitting a model in certain

problems, using the RDKit features based on the default implicit setting does not appear to

be detrimental to the accuracy of a method.

Ordinal feature MPNN

A common technique to help reduce overfitting and improve generalization in a machine

learning model is to decrease the dimensionality of the feature set. This is commonly seen in
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Table S5: R2 scores when using the RDKit features with implicit and explicit hydrogen
atoms for HE-related density prediction. The differences between the implicit and explicit
scores are marginal for each method.

Featurization Method R2 (implicit H) R2 (explicit H)
RDKit (molecular) RF 0.878 .888
RDKit (molecular) PLSR 0.900 .895
RDKit (atom/bond) MPNN 0.914 0.912
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Figure S8: Distributions of predicted density errors when using the RDKit features with
implicit and explicit hydrogen atoms for HE-related density prediction.
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Figure S9: Median predicted density error within bins defined by the true densities of the
HE-related molecules at 0.01g/cc intervals when using the RDKit features with implicit and
explicit hydrogen atoms for HE-related density prediction.
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techniques such as LASSO which aim to find a sparse feature representation which concur-

rently minimizes a given loss function. We perform a manual feature reduction by ordinally

encoding the features described in Table S2 that possess a clear ordered relationship across

categories. Compared to the 127 features created from the original one-hot encoding, this

ordinal encoding creates a set of just 7 features, where each feature is simply an integer

mapping to a single discrete category. The edge features are not ordinally encoded due to

the lack of an obvious ordering within a categorical bond type feature. While this reduction

limits the feature size, we believe that it also introduces an inductive bias that helps better

contextualize categorical features’ discrete categories

In order to verify that the ordinal encoding is not overfitting to the high-density data,

the new feature set is also used to re-train models using the HE-related dataset. In order

to fairly assess the two methods, an ensemble of 5 independently initialized models are

averaged to reach a final predicted value for each molecule. As seen in Figures S10 and S11,

the ordinal encoding method performs nearly identically to the previous one-hot encoding

method, indicating that the generalization is not hurting our predictive performance in other

regions of the target space while giving better performance in the high-density regime.

MPNN y-scrambling

To test for the possibility of chance correlation with our dataset and models, we perform

y-scrambling with our HE-like dataset and train with MPNN. In particular, we use one of the

predetermined folds as our test dataset, we treat the remaining folds as a training dataset,

and we permute the density values of the training dataset before fitting models with MPNN.

We then evaluate the fitted model on the test fold. We repeat this multiple times, and we

compare the resulting RMSE values to those of the original experiment.

Figure S12 shows the results of this experiment with fold 0 of our dataset used for testing.

Over all of the random permutations that we perfomed, the test RMSE of this fold (0.047)
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Figure S10: Median predicted density error within bins defined by the true densities of the
HE-related molecules at 0.01g/cc intervals for MPNN with the original and ordinally encoded
features.
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Figure S11: (a) Predicted and (b) error (true – predicted) vs. true packing density values
using the HE-related dataset for training and Huang and Massa dataset for testing.

was always considerably less than the test RMSEs obtained by training on scrambled labels,

indicating very little, if any, risk of chance correlation with our approaches.

Scaffold splitting

In the Results and Discussion section of the main text, we evaluated the performance of our

approaches using k-fold cross-validation with stratified splits based on the density values. An

alternative approach that has been applied to assess method performance is scaffold splitting.

Instead of using stratified splits based on the outputs of interest, scaffold splitting attempts to

separate structurally different molecules into different subsets based on their two-dimensional

structural frameworks.4 In doing so, this approach is expected to better simulate realistic

experimental conditions in which the interest is in evaluating novel structures. However,

creating the folds in this manner is also expected to provide a greater challenge for models

to learn and generalize from the data.

We now evaluate the performance of our approaches using scaffold splitting with the

functions available in deepchem and RDKit. As was done with stratified splitting, we sum-

marize the overall performance of a method by computing the averages of the R2 and RMSE
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Figure S12: y-scrambling experiment with the HE-like dataset. The blue distribution shows
the RMSE values on the unscrambled test set after fitting MPNN models that were trained
on permutated density values of the training dataset. The red line shows the RMSE on the
test set when MPNN was trained on the original training density values.
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scores across the stratified folds. Table S6 compares these scores for the RF-, PLSR-, and

MPNN-based methods with stratified and scaffold splits. Even though the methods are

trained on splits designed to contain molecules that are structurally different from those

contained in the test split, they still achieve good overall performance on unseen data. With

each approach, there is a decrease in performance across when switching from stratified split-

ting to scaffold splitting, but the changes are small; the largest changes occur with random

forests, with a decrease of .029 in R2 and increase of 0.004 g/cc in RMSE. Therefore, these

approaches also demonstrate an ability to predict densities of molecules containing novel

structural characteristics with a reasonably low amount of error.

We also consider the individual predictions and errors made by these models. Figure S13

compares the predicted and true density values using scaffold splitting, and Figure S14 shows

the error distribution and median errors at 0.01 g/cc intervals. Qualitatively, the results are

largely similar to those observed using stratified splitting (see Figures 4 and 5 of the main

text). There is a shift towards larger errors at the low end of the error distributions, but

as with the R2 and RMSE scores, the shift is small, so the comparisons made between the

approaches with the stratified split in the main text are also applicable here.

Table S6: R2 and RMSE values of different featurization, method combinations, and data-
splitting procedures for HE-related density prediction.

Feature Method Split R2 RMSE
RDKit (molecular) RF Stratified 0.878 0.053
RDKit (molecular) RF Scaffold 0.849 0.057
RDKit (molecular) PLSR Stratified 0.900 0.048
RDKit (molecular) PLSR Scaffold 0.888 0.048
RDKit (atom/bond) MPNN Stratified 0.914 0.044
RDKit (atom/bond) MPNN Scaffold 0.902 0.045

Score details

In main and supplementary texts, some of our approaches were evaluated using the R2 score,

available in the scikit-learn package. In the supplementary text, we also use the Pearson R
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Figure S13: Predicted vs. true densities using scaffold splitting
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Figure S14: ((a)) Distributions of predicted density errors and ((b)) predicted density error
within bins defined by the true densities of the HE-related molecules at 0.01g/cc intervals
for RF, PLSR, and MPNN using scaffold splitting. For clarity, the few errors above 0.25g/cc
are not shown.

25



score, available in the Molecular Machine Learning Toolkit by Elton et al.,2 respectively. In

scikit-learn, the R2 score is defined as

R2 = 1−

∑
i

(
yi − ypredi

)2
∑

i (yi − ȳ)2
.

In the Molecular Machine Learning Toolkit, the Pearson R score is defined as

Pearson R =

(∑
i (yi − ȳ)

(
ypredi − ȳpred

))2
√∑

i (yi − ȳ)2
∑

j

(
ypredj − ȳpred

)2
+ 10−9

,

where yi and ypredi are the true and predicted values of the ith sample, respectively, and ȳ and

ȳpred are the mean of the true and predicted values, respectively. As defined in the toolkit,

this score is equivalent to the square of the Pearson correlation, with a small correction to

account for potentially constant targets or predictions. For comparison purposes, we also

use this defintion.

We note that as used here and in other publications2,5,6 to evaluate models with cross-

validation or when applied test datasets, the R2 score7 is not the same as the coefficient of

determination. Depending on the field and context, other names for this score include q2ext,
8

Q2,9,10 Q2
F2,

11 and Q2
CV .12
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