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Abstract—The simulation environment of any HPC platform
is key to the performance, portability, and productivity of
scientific applications. This environment has traditionally been
provided by platform vendors, presenting challenges for HPC
centers and users including platform-specific software that tend
to stagnate over the lifetime of the system. In this paper, we
present the Tri-Laboratory Operating System Stack (TOSS), a
production simulation environment based on Linux and open
source software, with proprietary software components inte-
grated as needed. TOSS, focused on mid-to-large scale commodity
HPC systems, provides a common simulation environment across
system architectures, reduces the learning curve on new systems,
and benefits from a lineage of past experience and bug fixes. To
further the scope and applicability of TOSS, we demonstrate its
feasibility and effectiveness on a leadership-class supercomputer
architecture. Our evaluation, relative to the vendor stack, in-
cludes an analysis of resource manager complexity, system noise,
networking, and application performance.

Index Terms—Scientific computing, Accelerator architectures,
Parallel architectures, Multicore processing, Multiprocessor in-
terconnection networks, Parallel machines, Supercomputers, Pro-
cessor scheduling, Cluster computing, High performance comput-
ing, Software performance, Software reusability, System software,
Operating systems, Utility programs, Programming environ-
ments, Runtime, Runtime environment, Software libraries.

I. INTRODUCTION

A critical aspect of any HPC platform is the simula-
tion environment provided to address the programming, code
building, performance analysis, and workflow requirements of
the supercomputing center’s user community. A tremendous
amount of technical effort and time is required to harden
this environment for a given HPC hardware platform. A new
system and simulation environment can easily take a year or
more to debug and harden, with ongoing support and system
upgrades requiring additional debugging and hardening over
the lifetime of the system.

Traditionally, the simulation environment has been provided
by the platform vendor, and strongly coupled to the provider’s
hardware and software offerings as part of an end-to-end turn-
key solution. To date, Lawrence Livermore National Labora-
tory (LLNL) has followed this approach for its leadership
class Advanced Technology Systems (ATS), such as Sierra
and Sequoia, for the National Nuclear Security Administra-
tion’s (NNSA) Advanced Simulation and Computing (ASC)
program. However, these platform-specific simulation environ-
ments present significant challenges. They vary across system
generations and providers, and vendor-provided simulation

environments often stagnate over the lifetime of the system,
with limited to no software updates after the first few years
of use. Performance, stability, and scalability bugs are often
repeated across vendors and even across software updates
from one vendor. All of these challenges result in additional
labor overheads for computing center support staff, and user
inefficiencies in managing and performing their computational
workflows.

With the rise of commodity clusters in the early 2000’s,
LLNL began providing a production simulation environment
based on Linux and open source software, with proprietary
software components integrated as needed. This work provided
the foundation for the Tri-Laboratory Operating System Stack
(TOSS) environment [1] that was deployed on commodity
technology systems at LLNL and other NNSA laboratories
beginning in 2007. Ever since, TOSS has provided a common
simulation environment across multiple generations of com-
modity HPC systems ranging from tens to over 3,000 nodes,
and from (x86 and arm) CPU-only nodes to those containing
GPUs. Currently, TOSS is running on most LLNL systems,
with a limited support staff administering a growing number
of systems. This common simulation environment has created
a more robust and efficient user experience that enables a
wide range of HPC workflows, benefits from a lineage of
past experience and bug fixes, propagates improvements across
all TOSS systems, reduces the user learning curve on new
systems, and provides the flexibility to evolve the simulation
environment over the lifetime of the system.

In this paper, we present the TOSS simulation environment
and demonstrate its feasibility on a CORAL [2] platform
supercomputer similar to the top two supercomputers in the
world, Summit and Sierra, but of lesser scale. The architecture
of these leadership-class systems have shifted from highly
customized hardware and software towards commodity pro-
cessors, accelerators, and open-source software, thus align-
ing with the standard technologies supported by TOSS. We
demonstrate the effectiveness of TOSS and address the TOSS
feature and performance gaps relative to the vendor-provided
simulation environment.

Enabling user productivity is an important aspect of a
software environment. Being able to express resource needs
for a job rapidly without error is important to users, who
interact with resource and job management software [3]–
[6] provided by the software stack. They present different
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tradeoffs in terms of features, scalability, and usability, with
recent software managers enabling more complex workflows
natively [7]. A highly scalable system requires, in part, a
software stack that minimizes system noise. System noise
is caused by operating system (OS) processes interfering
with application threads on compute nodes, which impacts
application performance and scalability, and produces runtime
variability [8]–[11]. Because applications have no control over
when and where these system processes run, the interference
appears as noise to the application. In addition, network and
communication performance is important for applications to
communicate scalably across a parallel machine [12]–[14]. In
turn-key solutions this layer is usually enabled by vendor-
provided software. Thus, this work evaluates the success of
TOSS by demonstrating that it: (1) enables user productivity
natively; (2) sufficiently mitigates system noise; (3) provides
high-performance networking capability; and (4) enables good
application performance.

The rest of this paper is organized as follows. Section II
describes TOSS while Section III highlights initial key chal-
lenges in running TOSS on ATS systems. The experimental
methodology and execution environment are described in
Section IV. Sections V, VI, VII, and VIII evaluate TOSS
relative to the vendor stack in the context of resource manager
complexity, system noise, networking, and application perfor-
mance, respectively. Finally, Section IX concludes this work
with our key findings and recommendations on additional work
to enable future systems.

II. TOSS: THE TRI-LABORATORY OPERATING SYSTEM
STACK

TOSS provides a common, robust operating environment for
HPC clusters across the NNSA laboratories. TOSS integrates a
commodity base operating system with cluster administration
tools, a parallel filesystem, batch scheduler, and reference de-
velopment environment. These components are then rigorously
tested on hardware platforms and with codes that are relevant
to the NNSA missions.

TOSS follows a regular release cadence, with monthly
updates to address routine bug and security fixes. Each update
is integration tested using LLNL’s Synthetic WorkLoad to
ensure that it is stable for production use. Minor releases
include more significant component updates, and occur every
6-9 months, generally in line with upstream vendor releases.
New major releases occur every 3-5 years, and involve major
version changes to the base operating system. TOSS endeavors
to provide a stable user ABI throughout the entire life cycle
of a major release, limiting the need for users to recompile
their code after system updates.

A major goal of TOSS is the reduction of costs across
NNSA laboratories. Standardization on a single operating
environment across platforms reduces the time spent by appli-
cation developers porting and optimizing codes and workflows,
and enables system administrators to more easily work across
clusters without requiring platform-specific training. Stan-
dardization across multiple sites enhances collaboration and

reduces duplication of efforts. Maintaining the project across
platform lifecycles helps to ensure that previously-encountered
issues are not replicated on new platforms. Finally, TOSS
reduces development and support costs by using off-the-shelf
components when possible, and performing local development
only when necessary to fill gaps or ensure efficient code
execution.

A. TOSS Components

Red Hat Enterprise Linux (RHEL) [15] is the base operating
system for TOSS, and provides the majority of packages (see
Table I). Additional packages are brought in from Fedora’s
Extra Packages for Enterprise Linux (EPEL [16]) collection.
The current major version of TOSS, TOSS 3, is based on
RHEL 7. Building on a commercial Linux distribution enables
TOSS developers to leverage Red Hat’s extensive engineering
resources to mitigate many non HPC-specific bugs and secu-
rity issues. Additionally, managing and working on a TOSS
system remains similar to RHEL, and software built for RHEL
generally works out-of-the-box on TOSS.

TABLE I
TOSS 3.5-8 PACKAGES BY SOURCE AND ARCHITECTURE

Source x86 64 ppc64le aarch64

RHEL (unmodified) 4009 3851 3893
RHEL (rebuilt) 35 37 42
EPEL 707 657 757
Vendor-proprietary (unmodified) 48 11 31
Locally built 203 186 180

Total 5002 4742 4903

While nearly all RHEL packages are used unmodified,
a small number are rebuilt. These modified versions often
remain in place for only a few releases, providing additional
diagnostics for root cause analysis, critical bug fixes, or
new hardware support until RHEL’s packages incorporate the
necessary funcitonality. The RHEL kernel is also minimally-
modified to add additional missing hardware drivers and crit-
ical bug fixes. TOSS thus further hardens RHEL for existing
NNSA platforms and workloads, while rapidly supporting
incoming platforms of interest.

TOSS integrates several additional components to create
a robust HPC environment. These include the Slurm batch
scheduler [3], and support for Lustre clients and servers [17],
including support for ZFS [18]. Singularity [19] and Char-
lieCloud [20] are provided for containerized workflows.
The Mellanox OpenFabrics Enterprise Distribution for Linux
(MOFED [21]) is provided as an optional replacement for
RHEL’s InfiniBand fabric stack.

A number of HPC-centric system management tools are also
added, many developed at LLNL or by other national labo-
ratories. These include conman [22], munge [23], pdsh [24],
powerman [25], and the LDMS metrics collection system [26].

TOSS includes a small reference development environ-
ment (DE), including multiple compilers, and GPU and MPI
libraries. This environment is used for integration testing,
verification, and cross-site compatibility.



B. TOSS Limitations

TOSS’s focus on cross-platform compatibility and produc-
tion stability impose some limitations on the platforms and
software features that it can easily support. For instance, sys-
tem architectures that diverge considerably from commodity
platforms, such as IBM Blue Gene/Q [27], would impose
significant maintenance costs for TOSS. Similarly, TOSS is not
a fitting proving ground for experimental software features that
may have unintended stability or performance consequences,
such as invasive changes to the Linux kernel’s scheduler or
memory management.

While TOSS provides the necessary tools to operate an
HPC cluster, it is not a turn-key solution. Sites retain great
latitude in how TOSS runs on their systems, including choices
in configuration management, provisioning, and monitoring.
Consequently, sites running TOSS still require highly skilled
HPC system architects and administrators, albeit in fewer
numbers.

Rather than providing a complete and fast-moving devel-
opment environment, TOSS aims to provide stable systems
and ABIs that rich DEs can be built upon. LLNL separately
maintains a DE on TOSS systems, containing a broad range
of compilers, debuggers, MPIs, and other development tools.
This separation enables the DE to more rapidly incorporate
new software and respond to user needs with few worries
about overall system stability. Separate work is being done
to expand this Tri-Laboratory Computer Environment (TCE)
for use at other computer centers with the next major version
of TOSS. LLNL also supports Spack [28], which enables users
to easily build and deploy custom development environments
on TOSS systems.

C. Comparisons with other HPC Operating Environments

Scientific Linux [29] shares a common goal with TOSS—
providing a common, reliable OS platform for a particular
group of scientific sites. Like TOSS, Scientific Linux is also
based on RHEL, but re-compiles the RHEL source packages
rather than including them directly. By doing so, Scientific
Linux is unencumbered by Red Hat’s licensing and is freely
distributable, but is not eligible for Red Hat support. Scientific
Linux also does not directly target HPC, and as such does not
integrate features like a batch scheduler or parallel filesystem.

The Cray Linux Environment (CLE) [30] also extends a
commodity Linux distribution (SUSE [31]) to support HPC
users. Unlike TOSS, it is highly optimized to run only on
Cray’s systems, and is not supported across multiple hardware
vendors. Similarly to TOSS, CLE supports the Slurm resource
manager, but also provides support for several additional batch
systems. CLE also bundles custom provisioning, configuration
management, and monitoring tools into a turn-key operating
environment.

The OpenHPC project provides repositories of HPC-centric
packages compiled for multiple operating systems [32]. Unlike
TOSS, OpenHPC does not provide a base operating system,
and much of its focus is on the development environment
rather than system software. The TCE environment provides

similar functionality to OpenHPC, but better optimized for
TOSS and NNSA platforms and workloads. As a community
project, OpenHPC is not able to integrate commercial compo-
nents, such as compilers, and support is only provided on an
ad-hoc basis.

III. TOSS CHALLENGES ON ADVANCED TECHNOLOGY
SYSTEMS

The shift in ATS architectures from highly customized
(e.g., IBM Blue Gene) to standard commodity (e.g., CORAL)
components allows us to explore the possibility of leverag-
ing TOSS across a wider range of NNSA platforms. Our
investigation identified gaps in software support or features
that had to be addressed in order to support the CORAL
architecture. We describe those initial challenges and the
employed solutions that helped to narrow the gaps and allow
us to begin developing TOSS support for CORAL systems.

The most significant challenge was to determine the com-
ponent versions necessary to pass various functionaity, perfor-
mance, and stability (FPS) tests. Since TOSS includes more
recent versions of many of the components found in the IBM
stack, initial expectations were that few modifications would
be necessary. Early performance results however identified a
number of issues. In some cases, such as OpenMPI, upgrading
to the latest available version improved results. However,
incompatibilities and regressions were determined to still exist
when using the latest versions of the RHEL kernel, MOFED
stack, and NVIDIA drivers together. Since prior versions of
these components were known to perform acceptably in the
IBM stack, an iterative process was used to identify and install
versions of these components from prior TOSS releases that
did not show these misbehaviors.

In other cases, interactions between existing TOSS and
CORAL software caused performance issues. For instance, a
significant slowdown was discovered when moving very large
blocks of data from main to GPU memory. Profiling revealed
that the slowdown was due to an NVIDIA driver kernel
thread spending significant time in ZFS filesystem memory
management code, even with no ZFS filesystems mounted.
Removing the unused ZFS modules eliminated the slowdown.
No similar behavior has been witnessed on other ZFS systems,
but without access to the NVIDIA driver source code, it is
difficult to conclusively determine which component is at fault.

The complexity and abundance of software regressions in
CORAL components demonstrated the need to thoroughly test
all components at each layer. Effort may be wasted by, for
example, attempting to optimize an MPI when the underlying
GPU and network drivers have not been sufficiently tested.
We also found that it was important for the tests to do
meaningful work. Many existing testing and reporting tools
perform simple operations that do not catch most issues. For
example, while the CUDA deviceQuery call may succeed,
more complicated calls such as threadMigration may
still routinely fail, exposing a deeper underlying problem.

While such compatibility issues are common when bringing
up new platforms, these challenges are compounded when



dealing with multiple proprietary software components. As a
result, vendors have typically focused on providing a single
working OS version, which is only upgraded with relatively
major sofware upgrades. In contrast, TOSS provides smoother
rolling updates that can incorporate minor changes and se-
curity fixes without significant FPS issues. This is enabled
through the combination of open source software and extensive
collaborative integration testing by Red Hat and LLNL.

IV. METHODOLOGY AND EXECUTION ENVIRONMENT

We use the Lassen supercomputing system at LLNL, an
IBM system comprised of 792 heterogeneous nodes. Each
node has two IBM Power9 processors coupled with two
NVIDIA Volta GPUs per processor. There are 22 cores per
Power9 processor and 4 hardware threads per core (SMT-
4). Each node has 256 GB of DDR4 memory and 16 GB
of HBM memory per GPU. A Power9 processor has up to
170 GB/s peak DDR4 bandwidth and each GPU 900 GB/s
peak bandwidth to local HBM. As Figure 1 shows, there are
two groups within a node, each consisting of two GPUs and
a Power9 processor. Each pair of devices within a group is
interconnected with three NVLink channels for a 75 GB/s
unidirectional bandwidth. Each node includes a dual-port EDR
InfiniBand NIC. Each port’s theoretical peak bandwidth is
12.5 GB/s (100 Gb/s).
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Fig. 1. Node architecture of the Lassen supercomputer.

We configure the Lassen machine using two different soft-
ware stacks, one at a time. The first machine configuration—
Ice—utilizes the vendor-provided software stack, while the
second configuration—Fire—uses TOSS. The only difference
between Ice and Fire is the software; we summarize the key
components in Table II.

One of the differences between Fire and Ice is the batch
scheduler and resource manager components. The batch sched-
uler is responsible for finding and allocating the resources that
fulfill a job’s request. When a job is scheduled to run, the
scheduler instructs the resource manager to launch the appli-
cation across the job’s allocated resources. Fire uses Slurm [3]

TABLE II
COMMON COMPONENTS OF TOSS AND THE IBM STACK.

TOSS IBM Stack

OS RHEL 7.6 RHEL 7.6

Network MOFED 4.5 MOFED 4.5

GPUs
NVIDIA 440.64.00 NVIDIA 418.87.00

CUDA 10.2 CUDA 10.1
GDRCopy GDRCopy

MPI OpenMPI 4.03 Spectrum MPI 10.3.0, OpenMPI 4.03
UCX 1.7 PAMI, UCX 1.7

BatchSched Slurm 19.05.5 IBM LSF 10.1
ResMgr IBM CSM 1.6.0

Compilers GCC 7.3.1 IBM XL 16.1.1, GCC 7.3.1
NVCC 10.2.89 NVCC 10.1.243

while Ice uses the IBM Spectrum Load Sharing Facility (LSF)
and the Cluster Systems Management (CSM) [4]. Another
difference is the MPI software stack. Fire uses the Open-
MPI library implemented on top of the UCX communication
framework [33], while Ice uses IBM Spectrum MPI, an MPI
library based on OpenMPI and implemented on top of the
Parallel Active Message Interface (PAMI) [34]. In addition to
Spectrum MPI, we also built OpenMPI–UCX on Ice to have
another point of reference for our network evaluation.

Testing a full HPC software stack is a complex endeavor.
Instead of evaluating each component, our strategy focuses
on assessing the efficacy of the system determined through
key micro-benchmarks, mini-applications, and full-fledged ap-
plications. We perform an empirical evaluation that measures
various aspects of the system to quantitatively score the readi-
ness of the TOSS software stack. We focus on evaluating how
well each software stack deals with system noise, leverages
the network capability, and, ultimately, delivers application
performance. The next few sections describe our experiments
and findings in each of these areas.

V. REDUCING RESOURCE MANAGER COMPLEXITY

As described in Table II, TOSS and the IBM stack use
different batch schedulers and resource managers. On one
hand, the IBM stack uses IBM-specific packages: the LSF
batch scheduler and the CSM resource manager. On the
other, TOSS uses the Slurm workload manager, an open-
source, broadly-used software package for Linux systems. In
this section, we qualitatively compare the resource managers
of both stacks focusing on the complexity associated with
mapping applications efficiently onto the hardware.

CSM uses jsrun, a powerful tool that allows a high degree
of customization. CSM exposes a myriad of ways to map an
application’s MPI tasks to the hardware through the notion of
a resource set, an abstraction to assign resources to a task or
a set of tasks. A resource set assigns cores and GPUs to MPI
tasks and can be modified with affinity and binding options
to prevent unnecessary migrations by the Linux scheduler. A
common application configuration is to use the same number
of MPI tasks per GPU. A program launch with two tasks per
GPU on Ice follows:



jsrun−r4−a2−c10−g1−dpacked−bpacked :5 app

This commands creates four resource sets per node, each
set with two MPI tasks, ten cores, and one GPU; assigns
tasks into the first resource set before using the next set (-d);
and binds each task to five cores (40 cores per node / 8
tasks) within a resource set (-b). With CSM’s high degree of
customization comes high complexity in expressing a simple
concept: two MPI tasks per GPU. Note that without specifying
similar controls for placement, the default policy is to map the
tasks to the first eight cores and the first GPU. This results
in oversubscription of certain resources while leaving most of
the node resources idle.

Slurm uses srun to launch commands onto the hardware.
While it may not have the same degree of customization
as CSM, particularly for heterogeneous systems, it presents
a familiar interface to most Linux users. Slurm also pro-
vides options for resource affinity and binding including
--cpu-bind and --accel-bind. These compute-driven
options are available in TOSS.

However, the default TOSS affinity and binding policy is
provided by coupling Slurm with mpibind [35]–[37], which is
called implicitly with the number of tasks as input. Mpibind is
a memory-driven algorithm that maps hybrid applications onto
heterogeneous hardware. It is designed to map applications to
the memory hierarchy, not the compute resources. Mapping
by the memory hierarchy, mpibind prioritizes spreading tasks
evenly across NUMA domains within a node, reduces remote
memory accesses, and leverages locality of CPUs and GPUs
within NUMA domains transparently to users.

On Fire, the same program configuration and affinity pre-
sented above is expressed as follows:

srun−ntasks-per-node=8 app

To launch an application in TOSS a user only needs to
know the ratio of MPI tasks to GPUs and the number of
GPUs in a node. However, with the IBM stack, a user needs
to know the number of cores and GPUs on a compute node,
distribute them accordingly to MPI tasks, bind each task to
the corresponding CPUs, and distribute the ranks across the
resource sets. Not following this recipe can have substantial
penalties on performance and scalability (e.g., default policy).

From a user’s perspective using CSM, it is easy to inad-
vertently over- or under-subscribe resources, run into errors,
or have conflicting options. The high learning curve and com-
plexity of using CSM, prompted us to develop an abstraction
similar to the TOSS systems where mpibind provides the
default mapping, but jsrun is still employed to launch jobs.
Such abstraction is called lrun. The example above on Ice
with lrun follows:

lrun− T8 app

With lrun’s simple interface, users can rapidly execute
their applications onto the system with a reasonably efficient

mapping. And, if custom mappings are necessary, jsrun is still
an option.

TOSS presents a familiar and easy-to-use interface that
leverages the investments made on a broadly used re-
source manager for commodity systems. The IBM stack
provides a rich resource manager capable of highly cus-
tomizable mappings, but is more prone to user error due
its complexity and is limited to IBM systems.

VI. MITIGATING SYSTEM NOISE

System noise is a prominent cause of performance degra-
dation and scalability limitations [38]–[40], particularly on
commodity technology systems. For instance, the performance
of a finite-element hydrodynamics application can vary up to
2.4X [8]. We refer to system noise as any process, hardware
or software, that delays an application’s execution and is not
directly controlled by the application. In this section, we study
the impact of system noise on performance using FWQ-MPI, a
parallel version of a well-known noise benchmark (we discuss
the impact on applications in Section VIII). We use a number
of approaches to mitigate noise and compare them on both
TOSS and the IBM software stack. These approaches include
variations of core specialization [27], [41], [42] and what we
call the free-core strategy. Other strategies to mitigate noise
can be found in the literature [9], [40], [43]–[46]. Table III
summarizes the studied configurations. We also note that this
study does not consider I/O, which is a subject of future work.

TABLE III
SYSTEM NOISE CONFIGURATIONS. System cores REFER TO CORES

DEDICATED EXCLUSIVELY FOR OS SERVICES, WHILE App-free cores
REFER TO CORES NOT USED BY APPLICATIONS—IT IS UP TO THE OS TO

SCHEDULE SYSTEM SERVICES ON THEM. CORE SPECIALIZATION IS
ACHIEVED WITH IBM CSM ON Ice AND RHEL TUNA ON Fire.

Configuration #usr
cores

System
cores

App-free
cores

CSM
Blink

Ice w/
IBM
CSM

Baseline 44 — — —
FreeCore 40 — 0,1,22,23 —
CoreSpec 40 0,1,22,23 0,1,22,23 off
CoreSpecBlink 40 0,1,22,23 0,1,22,23 on

Fire w/
RHEL
Tuna

Baseline 44 — — —
FreeCoreFirst 40 — 0,1,22,23 —
FreeCoreLast 40 — 20,21,42,43 —
CoreSpec 40 0,1,22,23 0,1,22,23 —

The rest of this section is structured as follows. First, we
describe FWQ-MPI and provide a performance baseline—
performance without noise mitigation. Then, we describe and
evaluate a simple technique that leaves one or more compute
cores free from an application’s perspective so that the OS
can use them for system processing. Finally, we evaluate
core specialization, which uses dedicated cores for system
processing.

A. FWQ-MPI: Parallel FWQ

The Fixed Work Quantum (FWQ) benchmark [47] records a
series of samples, where each sample records the time required
to execute a fixed amount of work. FWQ-MPI executes



multiple concurrent instances of FWQ as an MPI job [8],
where each instance or task is bound to a core. The tasks only
communicate to synchronize their start time and to aggregate
sample data at the end. On a noiseless system, each sample
time should be identical. On a noisy system, some samples
take longer than normal to complete, because the application
process is interrupted to allow system processes to execute.

B. Baseline: Use all the cores of a node

The baseline configuration consists of running FWQ-MPI
using all the cores of a node in a manner similar to many
applications: one MPI task per core for a total of 44 MPI
tasks. In this section, we refer to FWQ-MPI as the application
to distinguish it from OS and system processes.

Figure 2a shows the baseline results on Fire. The horizontal
axis is the sample number, while the vertical axis is the time
taken for each sample in milliseconds. All cores recorded
samples in parallel, and all are displayed individually on the
graph. FWQ was configured to record 100,000 samples each
with a nominal execution time of ∼1.4 milliseconds.

In a noise-free environment, each iteration would take
roughly the same time. As the figure shows however, some
iterations take much longer. This is the result of interference
from the OS and system processes running on the same cores
as FWQ. Since many of these processes execute at regular
intervals and with a fixed duration, some of the affected
iterations show at regular intervals on the horizontal axis and
with a fixed added delay on the vertical axis. For example,
core 19 shows repeated execution times of ∼2.6 ms—about 4
instances per 20,000 iterations.

Although possible to discern from Figure 2a, the most
affected cores are salient with a box-and-whiskers plot as
shown in Figure 2c. System processes are running mostly on
cores 1 and 19. We ran this experiment multiple times and
found that only one or two cores are significantly affected and
the actual cores vary from run to run. Table IV shows basic
statistics for the most affected core, based on the standard
deviation (σ), for any given noise configuration. In particular,
core 19 was the most affected core in Fire’s baseline.

TABLE IV
STATISTICS FOR THE VARIOUS SYSTEM NOISE CONFIGURATIONS FOR THE

MOST-AFFECTED CORE BASED ON THE STANDARD DEVIATION (σ).

Min Mean Max Std

Ice

Baseline 1.483 1.582 10.552 0.095 C22

FreeCore 1.461 1.539 3.373 0.081 C5

CoreSpec 1.463 1.532 1.640 0.016 C38
CoreSpecBlink 1.485 1.533 1.713 0.011 C42

Fire

Baseline 1.483 1.580 2.836 0.069 C19

FreeCoreFirst 1.463 1.537 2.764 0.066 C15
FreeCoreLast 1.463 1.536 2.764 0.066 C18

C
or

eS
pe

c Clean+irqbal 1.463 1.541 2.762 0.067 C24
Clean+snmpd 1.505 1.531 2.749 0.023 C2
Clean 1.507 1.536 2.523 0.011 C32
Clean-nvidia 1.484 1.535 2.675 0.010 C40

We now contrast the noise from Fire with Ice. Figure 2b
shows a large number of samples are being affected on many
cores, and the magnitude of the interference is significantly
larger than on Fire—as table IV shows, the maximum sample
time on Fire is 2.8 ms and on Ice is 10.6 ms (the y-axis of
Ice’s plot is capped to the same limit as Fire’s). Thus, the
system processes on Ice cause significantly more interference.

The box-and-whisker representation of the data from Fig-
ure 2d also shows that over half the cores are affected
significantly and most of them are on the first socket (cores
0-21). We obtained a similar result across multiple repetitions
of the same experiment.

C. Free-core strategy

This configuration leaves two cores per socket idle from an
application’s perspective, i.e., FWQ-MPI uses only 20 cores
per socket. The idea is that the idle cores can be utilized by
the OS to perform system services, thus, reducing application
interference. There is no guarantee however that the OS will
do so based on how the system is being utilized. As we will
also show, the choice of idle cores matters. We study two
modes: idling the first two cores of each socket and the last
two cores of each socket.

The free-core strategy can be particularly beneficial when
a compute node has many cores. Application developers
typically reach performance bottlenecks, such as memory and
network contention, with far fewer cores than the total cores on
the node. Thus, a few cores can be dedicated for this purpose.
Another advantage, compared to core specialization and from
a system administration point of view, is that there is no special
setup to migrate system processes to the idle cores and isolate
these cores from the application.

First, we analyze the performance of Fire when leaving the
first two cores of each socket idle as shown in Figure 3a.
Compared to the baseline, we observe an improvement: the
number of cores significantly affected is down to one (core
15) and the iteration elapsed times on this core have not
increased—the OS is running some of its services on the
free cores, which is the desired behavior. Table IV shows
an improved maximum execution time and standard deviation
compared to the baseline for the most affected core.

Second, Figure 3b shows that leaving the last two cores of
each socket free still results in two cores being significantly
affected—cores 18 and 1—as is the case for the baseline.
Unlike the baseline though, the most affected core shows
improvement as shown in Table IV. Further examination shows
that Cores 0 and 1 are still being used by the OS to run services
even though other cores are free. This finding is consistent with
a previous observation that certain services scheduled by the
OS have an affinity to the first (few) core(s) of a system [48].
Thus, when choosing cores for the OS, using the first (few)
core(s) compared to the last is more effective.

Third, we analyze the free-core strategy on Ice. Compared
to the baseline, Figure 3c and Table IV show a major im-
provement. For example, the maximum execution time on



(a) FWQ-MPI on Fire: Scatterplot. (b) FWQ-MPI on Ice: Scatterplot.

(c) FWQ-MPI on Fire: Boxplot by core. (d) FWQ-MPI on Ice: Boxplot by core.

Fig. 2. Execution time of FWQ-MPI for 100,000 samples per core. All cores recorded samples in parallel. Scatter plots on the top and box-and-whisker plots
on the bottom. Ice with the IBM software stack is significantly affected by system noise, while Fire with TOSS is more resilient.

the most affected core went from 10.6 ms to 3.4 ms. How-
ever, the variability in execution time still varies substantially
(σ = 0.081)—Fire is significantly better.

The free-core strategy on the IBM stack mitigates noise
noticeably over the baseline, but FWQ performance still
varies widely. The free-core strategy on TOSS is more
effective when using the first two cores of each socket
(rather than the last) due to system affinity to these cores.

D. Core specialization

In this configuration, a number of cores are dedicated for
running the OS and system processes—system cores. Un-
like the free-core strategy, this configuration requires system
administration tasks to explicitly bind system processes to
the system cores, leaving the remaining user cores free for
application’s work. Fire and Ice use two different strategies for
core specialization. On Ice, IBM provides two configurations.
The first one dedicates a configurable number of cores for
system processes and binds those processes to these cores.
The second one, as far as we know, is a more comprehensive

method moving as much system processing as possible to
the system cores [4]. We refer to the first configuration as
CoreSpec and the second as CoreSpecBlink. All of the core
specialization configurations described in this section use the
first two cores of each socket as the dedicated system cores.

We now describe the core specialization strategy used for
Fire, which follows a similar strategy found in prior work [8].
Instead of grossly moving as many system processes as possi-
ble to the system cores, we determined what processes matter
most and selectively moved those to the system cores. Since
there are hundreds of system processes running on a compute
node, we sorted them by the amount of CPU time each had
accumulated. Using the FWQ-MPI benchmark as an indicator,
we moved each of these processes to the system cores until we
reached a state where noise was significantly reduced—clean
configuration—as shown in Figure 4a. The resulting processes
leading to the clean configuration are shown in Table V. It is
important to mention that the clean configuration substantially
reduces noise; the most affected core has a standard deviation
of σ = 0.011.

Then, from the selected processes, we determined which



(a) Free cores on Fire: Cores 0,1,22,23. (b) Free cores on Fire: Cores 20,21,42-43. (c) Free cores on Ice: Cores 0,1,22,23.

Fig. 3. Execution time of FWQ-MPI for 100,000 samples per core under the free-core strategy. Ice has less noise compared to the baseline, but Fire is
significantly better. When given a choice, the first cores of each socket absorb noise more effectively than the last cores.

(a) Clean configuration. (b) Clean+snmpd. (c) Clean+irqbalance.

Fig. 4. Execution time of FWQ-MPI on Fire under the core specialization strategy.

TABLE V
SELECTED PROCESSES FOR CORE SPECIALIZATION BASED ON CPU TIME

ACCUMULATED. THE clean CONFIGURATION DOES NOT INCLUDE
ISOLATING THE nvidia PROCESSES.

Processes Description

slurm* Slurm resource manager compute node daemons.
snmpd Agent servicing SNMP management software requests.
cerebrod TOSS agent for cluster monitoring.
crond Daemon to execute scheduled commands.
systemd* Linux initialization system and service manager.
ntpd Network time protocol daemon.
irqbalance Daemon to distribute hardware interrupts across CPUs.

nvidia* NVIDIA’s processes for GPU management.

ones most impacted noise. We started with the clean config-
uration, which isolates the selected processes to the system
cores, and moved one process at a time to the user cores to
determine its impact on FWQ-MPI. As shown in Figures 4b
and 4c, we found that two processes have a significant impact:
snmpd and irqbalance. As Table IV indicates, irqbalance has

a stronger effect on noise, σ = 0.067, than snmpd, σ = 0.023.
Note that there is an insightful body of work characterizing
the sources of noise [10], [11], [39], [49]–[53].

Given that Ice and Fire are heterogeneous systems with
GPUs, we then evaluated the impact of NVIDIA’s processes
that help manage the GPUs, e.g., nvidia-persistenced. We
started from the clean configuration and then moved the nvidia
processes from the user cores to the system cores. Compared
to the clean configuration from Figure 5a, the new setup
shows an improved noise signal as shown in Figure 5b—fewer
horizontal lines in this configuration as shown by the arrows. It
is important to note that these figures use a lower Y-axis range
compared to previous plots to visualize the impact. In other
words, the impact of the nvidia processes on execution time
is much lower than that of snmpd and irqbalance. However,
these nvidia processes fire frequently as shown in Figure 5a.

We now compare the core specialization strategies from Ice
and Fire using Figure 5. Starting with Ice, on the right-hand
side, the Blink configuration reduces noise further compared to



(a) Clean on Fire. (b) Clean−nvidia on Fire.

(c) CoreSpec on Ice. (d) Blink on Ice.

Fig. 5. Zoomed-in execution time of FWQ-MPI on Fire and Ice under the core specialization strategy. The noise signal in these configurations is low; to show
the differences between them we use a lower y-range than previous figures.

CoreSpec—most of the green data points are eliminated—and
both of these configurations show a substantial improvement
over the baseline and the free core strategy. For example, as
shown in Table IV, the maximum execution time went from
10.6 ms and 3.4 ms (Baseline and FreeCore) to 1.6 ms and
1.7 ms (CoreSpec and Blink). Thus, the core specialization
strategy on Ice is effective (and necessary) to mitigate noise.
Fire shows a similar range of execution times as shown by the
left-hand side plots, but it is not as effective as Ice (2.5 ms
maximum time) since only a selected set of processes were
isolated into the system cores. The core specialization process
on Fire, on the other hand, is simpler than Ice.

Core specialization is an effective technique to mitigate
noise on both the IBM stack and TOSS. IBM’s robust
strategy shows the best results. At the same time, us-
ing a selective approach to isolating system processes
yields similar low-noise signatures. Important processes
contributing to noise include snmpd and irqbalance.

VII. ASSESSING MESSAGING WORKFLOWS CAPABILITY

Communication at scale is important for application perfor-
mance. This section evaluates some of the key communica-
tion operations by stress-testing the communication stacks of
different MPI implementations on both platforms. This evalu-
ation includes a MPI micro-benchmarks comparison between
the Fire and Ice MPI implementations, Spectrum MPI and
OpenMPI, leveraging CPUs and GPUs in collective and point-
to-point operations.

GPU accelerators are increasing node complexity. They
increase the number of locations data can be sent from between
nodes, and new transport paradigms, including GPUDirect
and GPUDirect async, increase the options of how to send
messages. In this section, we investigate how performance
varies with messaging location, and the performance and
coding tradeoffs presented by new technologies.

Our goal is to compare the different software stacks. To
do this we tested many microbenchmarks and present here
the most interesting subset relevant to many applications.
Benchmarks are used to compare communications stack im-



plementations rather than stress-testing the interconnect itself.
After testing, the following MPI Benchmarks were selected
from the OSU Micro Benchmark Suite [54] to present:

1) osu_allgather: A benchmark testing the collective
MPI_Allgather operation.

2) osu_bibw: A point-to-point, bi-directional bandwidth
test using the MPI_Send operation.

Collective operations have long presented challenges for
MPI implementers. [55]. We chose to benchmark the collective
operations MPI_Allgather and MPI_Allreduce. The
MPI_Allreduce results are omitted in the interest of brevity
and because they demonstrated the same performance pattern.

Point-to-point operations are common in codes that ex-
change nearest-neighbor data, commonly known as halo-
exchanges [56]. Hence, the MPI implementation communi-
cations stack is meaningfully utilized while the latency char-
acteristics of the interconnect itself are minimized.

The above benchmarks were run in the following different
scenarios:

1) Between CPU/Host-allocated buffers
2) Between GPU device-allocated buffers
3) Between GPU driver-managed (“unified”) buffers with

CPU-based integrity checking
The three different MPI implementations described in Sec-

tion IV, Table II were tested. All of the benchmarks run with
OpenMPI were built with the GNU C Compiler while the
benchmarks run with Spectrum MPI were built with the XL
C compiler.

A. Collective Benchmark Results

In all of the collective operation benchmarks, 64 nodes
were used. For CPU-based benchmarks, tasks were distributed
among the 40 CPUs available for computation. For GPU
benchmarks, the ranks were allocated to each of the 4 GPUs
on each of the 64 nodes.

Figure 6a shows Spectrum MPI to have the lowest CPU-
CPU latency on Ice. However, when GPU buffers are lever-
aged, OpenMPI has a lower overall latency, as shown in Fig-
ure 6b and 6c. In all of the collective benchmarks, OpenMPI
outperforms Spectrum MPI for 64 KiB or larger messages.
Figure 6b, shows for the GPU device-allocated buffer bench-
mark Fire outperforms both MPIs on Ice.

B. Point-to-Point Benchmarks

The Bidirectional Bandwidth (osu_bibw) micro bench-
mark is a point-to-point benchmark which mixes through-
put and latency characteristics of messaging workflows. The
benchmark was run between two nodes placed as closely as
possible on each system, limiting the max hop count to 2.
While this may not fully replicate real-world scenarios, this
was done in order to stress the MPI implementations rather
than the interconnects themselves. Furthermore, it provides
a controlled environment in which contention from other
coresident applications is minimized. The original OSU micro
benchmarks were modified by adding the buffer flushing and
checking code mentioned earlier and cudaMemAdvise hints
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(c) GPU Managed buffers

Fig. 6. An MPI_Allgather latency benchmark comparison of different
systems and MPI implementations, with different buffer allocation strategies.
The source and target buffer allocation strategies always match. These are
log-log plots.

whenever a managed buffer was allocated to push the buffer on
to the device. As with the collective benchmarks, Host/CPU,
GPU Device and GPU driver-managed buffers were tested.

CPU-to-CPU point-to-point bandwidth was comparable be-
tween the different MPI libraries (as shown in Figure 7a). In
the GPU device-allocated scenario, OpenMPI running on Fire
outperformed Ice, starting at the 64 KiB threshold, shown in
Figure 7b. While Spectrum MPI performed better in the GPU
driver-managed buffer scenario, the performance was highly
variable across different message sizes.

Strong GPU-based collective performance illustrates the
benefit of rapidly deploying emerging technologies in
Fire’s open-source platform. This performance benefit is
crucial since the GPU represents the vast majority of
available cycles on the hardware underlying Fire and Ice.
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Fig. 7. An MPI_ISend + MPI_Barrier Bidirectional Bandwidth bench-
mark comparison of different systems and MPI implementations, with dif-
ferent buffer allocation strategies. The source and target buffer allocation
strategies always match. These are log-log plots.

VIII. TOSS EFFECTIVENESS ON SCIENTIFIC
APPLICATIONS

We evaluate two scientific codes to determine the effec-
tiveness of TOSS relative to the vendor stack. While the
benchmark-based evaluation presented in the previous sections
is important, ultimately, application runtime or throughput
performance—Figure of Merit (FOM)—is the key indicator.
From the Exascale Computing Project [57], we employ a proxy
application and a full-fledged application that simulates ground
motion due to earthquakes. We chose these codes because they
stress different resources: CPUs vs GPUs. Finally, we use the
open-source OpenMPI on TOSS and the vendor-proprietary
Spectrum MPI on the IBM stack.

SW4 solves the seismic wave equations on Cartesian and
curvilinear grids [58]–[60]. In the RAJA port of SW4 [61], the
solve phase accounts for 99.6% of the runtime with all of the
computation taking place on GPUs while four CPU cores per

node (one task per GPU) are used for kernel launches, data
transfers, message passing, and I/O. The solve phase of SW4
was built with NVCC on both machines and linked using GCC
on TOSS and XL on IBM’s stack (see Table II). For our tests
a problem with 107,518,000 grid points per node was used.

The measured runtimes in Table VI show comparable per-
formance of the solve phase between TOSS and the vendor
stack. Since most of the CPU cores are not used, system
noise effects on SW4 runtime are minimal, but present in
the CoreSpecBlink configuration. Outside this configuration,
TOSS shows slightly better performance, but it is unclear why.
We had to use 69 nodes compared to 72 nodes with the vendor
stack—three nodes experienced transient hardware failures and
the differences could be due to problem decomposition or
something about the job rather than the software stack.

TABLE VI
SW4 RUNTIME (SECS) ON Ice AND Fire WITH VARIOUS NOISE STRATEGIES.

Baseline Core Specialization Nodes

Ice 84.22 CoreSpec 84.05 CoreSpecBlink 80.80 72
Fire 82.82 CoreSpecClean 82.70 69

AMG is a parallel algebraic multigrid solver for linear
systems arising from problems on unstructured grids [62]. We
use problem 1, which uses conjugate gradient preconditioned
with AMG to solve a Laplace-type problem on a 3D grid of
1600x800x500 with a 27-point stencil. This is a CPU-intensive
code and was chosen to represent a worst case scenario for
TOSS. AMG is highly sensitive to noise due to frequent
AllReduce operations, and Spectrum MPI on Ice benchmarks
better for this operation than OpenMPI on Fire. We built AMG
using GCC on both systems and ran it with 40 tasks per node
(one per core) on 8, 16, 32, and 64 nodes.

Figure 8 shows the mean FOM (higher is better) of AMG
on both configurations. The FOM trend is the same across
number of nodes, thus, we focus on the 64-node case. With the
baseline configuration, Fire is 5.3% better than Ice, while with
core specialization Ice is better: Compared to CoreSpecClean
on Fire, CoreSpec is 2.5% better and CoreSpecBlink is 4.5%
better. In all cases run to run variation was less than 1% of
runtime.

The FOM trends are consistent with the noise and MPI
measurements from the FWQ-MPI and OSU benchmarks
discussed in Section VI and Section VII: IBM’s comprehensive
strategy performs better, while TOSS’s selective and easy-to-
setup configuration provides a competitive approach. Finally,
while noise was less than 1% for all runs, the best noise
mitigation strategies on both systems drove this down to less
than 0.1%, which provides a better base for large-scale runs.

TOSS provides comparable performance to the vendor
stack for a CPU-intensive code (within 5%) that is a worst
case scenario due to frequent AllReduce operations and
noise sensitivity. For a GPU intensive-code, the gap was
smaller (within 3%). Both of these represent important
codes for the US Department of Energy.



Fig. 8. AMG FOM on Ice and Fire comparing noise mitigation strategies.

IX. CONCLUSION AND RECOMMENDATIONS

In this paper we analyzed the system deployment challenges
and benefits, application and microbenchmark performance
impacts, user support advantages, and user workflow advan-
tages of using the TOSS simulation environment on an ad-
vanced technology system. Using a vendor-supplied software
stack comes with a set of tradeoffs versus using a customer-
supplied stack. Vendor stacks are often, but not always, better
optimized for their their hardware. We found mixed results
for key microbenchmarks, and a small 2-5% advantage for
the vendor stack on applications. Customer-supplied stacks
require more customer effort for configuration, integration,
and testing to deploy. However, a customer-deployed stack
allows uniformity across machines within a computer center.
Uniformity benefits system administrators, user environment
support staff, and users who now only need to learn or support
a single environment.

While there are significant savings from a uniform envi-
ronment, there are costs as well. Configuring middleware li-
braries, such as MPI, to get good performance takes significant
effort. Determining how to integrate various vendor-supplied
software stacks with a customer stack is time-consuming and
can lead to dead ends. In addition, some performance features
may not be available at certain times. However, using one’s
own software stack allows new features to be integrated more
quickly than using the vendor-supplied stack, which often only
has a few major releases per year.

Moving a customer-supplied stack onto a system that is
already deployed with a vendor stack for production purposes
is not the goal of this paper. Instead, we provide empirical
evidence that a customer-supplied stack is viable on advanced
technology systems, which are now composed of commodity
technology nodes. This transition gives TOSS a timely oppor-
tunity to extend its scope to leadership-class systems that, in
the past, were operated under vendor-specific software envi-
ronments. We judge the advantages of moving in this direction

significant for large computer centers with many machines.
Considering the productivity advantages, many users have
expressed a preference for a familiar, commodity, and uniform
environment, even at a small performance loss. As a computer
center, building-in a plan from the beginning to either run the
center’s own stack or have the option to will make this process
easier. Our recommendations for HPC centers, based on the
lessons we learned from evaluating TOSS on an advanced
technology system, include the following:

• Include in a request for proposals (RFP) details of the
customer-supplied stack and what a vendor needs to do
to make it work.

• Provide mechanisms for the system vendor to ask for
non-recurring engineering (NRE) funding to make sure
various pieces of their software work with the customer
environment.

• Make certain support contracts for the system cover the
need to continue to update and integrate new software
releases and features.

• Retrain support and system administration staff to better
serve this different environment.

While some of these requirements may impose new work on
a vendor, others involve shifting effort from the vendor to the
HPC center, which may reduce system costs. In addition, while
there will be a one-time extra cost on computer center support
staff from the switch, the long-term savings of user effort and
staff time should more than make up for the slight performance
loss caused by moving from a vendor stack, which should
improve over time (as a result of open-source community-
driven components).

In this paper, we demonstrated the viability of the TOSS
simulation environment on an advanced technology system.
Our results show comparable performance with the vendor-
based software stack. While not a forgone conclusion since
more testing is needed, we believe the shift to a commodity-
based software stack on advanced technology systems will be
a large productivity win.

We plan to continue to work on TOSS on advanced
technology systems. The next steps in this process involve
demonstrating TOSS at scale on Lassen and Sierra. Tests with
more complex and diverse applications, including I/O, will be
used to show the stack is capable of full production runs on
one of the largest machines in the world.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
(1) We ran FWQ-MPI, a modified version of FWQ available

at https://asc.llnl.gov/CORAL-benchmarks/#ftq, on LLNL’s
Lassen supercomputer with both TOSS and with the IBM
software stack. We used several noise mitigation strategies
including no noise-mitigation (baseline), the free-core strat-
egy, and core specialization, as described in the paper. We
ran 100,000 samples per core and reported the min, median,
max, and standard deviation. In addition to scatter plots, we
included two representative box-and-whisker plots.

(2) We ran the OSU Micro-Benchmarks, available at http://
mvapich.cse.ohio-state.edu/benchmarks/ with minor modifi-
cations so that the receive buffers are checked and refreshed
after each transfer. In order to check buffers, a simple buffer
comparison function was added to /util/osu_util_mpi.c
and the corresponding header file. The benchmark source
code files in /mpi/ were then modified to call this function
outside of their timed loops. For buffer refreshing, after trans-
fers, and outside the timed loops, extra calls were made to
set_buffer_pt2pt(...) to disable caching. For point-to-
point communications and for each message size, the bench-
marks execute 100 runs and report averages. For collective
communications and for each message size, the benchmarks
execute 1000 runs for message sizes up to 16 KiB and then
100 runs after that. The graphs include error bars, but there
were such small margins that the error bars appear as if
they are ordinary markers (they are displayed in the legends,
though).

(3) We ran the RAJA version of SW4 available at https://github.
com/geodynamics/sw4.git on Lassen with both TOSS and
the IBM software stack. In both cases, NVCC was used to
compile RAJA code with GCC and XLC as the host compilers,
respectively. We ran each experiment 3 times and reported
averages. Run-to-run variation was less than 1% of runtime.

(4) We ran the AMG proxy-application, available at https://
github.com/LLNL/AMG.git on Lassen with both TOSS and
the IBM software stack. AMGwas compiled using the default
options in the Makefile using GCC. We ran each experiment
10 times and reported averages. Run-to-run variation was
less than 1% of runtime.

ARTIFACT AVAILABILITY
Software Artifact Availability: There are no author-created soft-

ware artifacts.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Each compute node has two IBM
Power9 processors coupled with two NVIDIA Volta GPUs per pro-
cessor. There are 22 cores per Power9 processor and 4 hardware
threads per core (SMT- 4). Each node has 256 GB of DDR4 memory
and 16 GB of HBM memory per GPU. A Power9 processor has up
to 170 GB/s peak DDR4 bandwidth and each GPU 900 GB/s peak
bandwidth to local HBM.

Operating systems and versions: TOSS 3.5-4: Linux 4.14.0-
115.17.1.1chaos.ch6a.ppc64le, RHEL 7.6, MOFED 4.5, NVIDIA
440.64.00 and GDRCopy, Slurm 19.05.5. IBM stack: Linux 4.14.0-
115.10.1.1chaos.ch6a.ppc64le, RHEL 7.6, MOFED 4.5, NVIDIA
418.87.00, and GDRCopy, IBM LSF 10.1, IBM CSM 1.6.0.

Compilers and versions: TOSS: GCC 7.3.1, NVCC 10.2.89. IBM
stack: IBM XL 16.1.1, GCC 7.3.1, NVCC 10.1.243.

Applications and versions: FWQ-MPI based on FWQ 1.1. OSU
Micro-Benchmarks 5.6.2, modified. SW4 (RAJA branch) com-
mit f0efb7712f310035a4977c288274073f6ab96f36. AMG commit
3ada8a128e311543e84d9d66344ece77924127a8.

Libraries and versions: TOSS: OpenMPI 4.0.3 with UCX 1.7.0. IBM
stack: IBM Spectrum MPI 10.3.0 with PAMI, OpenMPI 4.0.3 with
UCX 1.7.0.

Key algorithms: Two simulation environments on the same ma-
chine: TOSS and the vendor-based stack. Several mitigation strate-
gies on each simulation environment. On the IBM vendor stack: IBM
CSMwith ’-core_isolation 0,’ ’-core_isolation 2,’ and ’-core_isolation
2 -alloc_flags "cpublink autonumaoff"’. On TOSS: various deriva-
tives of ’tuna -t slurm* snmpd cerebrod crond systemd* ntpd irqbal-
ance -c0-7,88-95 -m -P’

Input datasets and versions: FWQ with parameters ’-n100000
-w4096’. OSU Micro-Benchmarks Collectives Parameters ’-m
2:4194304 -x 20 -f’ with ’-d’ and ’-r’ arguments used with appro-
priate parameters for GPU collectives. OSU Micro-Benchmarks
Point-to-Point Parameters ’D D’ and ’M M’ were used for the point-
to-point cases. The range of message sizes was set in the constants
in the code before compilation. AMGwith options ’-n 200 100 100 -P
8 8 5 -problem 1’ for the 8 node case. The ’-P’ task-topology values
differ for increasing node counts while the rest of the options are
kept constant. SW4 with parameters ’69.in’

https://asc.llnl.gov/CORAL-benchmarks/#ftq
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/geodynamics/sw4.git
https://github.com/geodynamics/sw4.git
https://github.com/LLNL/AMG.git
https://github.com/LLNL/AMG.git

