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Atomic Precision Advanced Manufacturing e

Assess the opportunities presented
by having atomic-scale control over
devices and processing for the digital
microelectronics of the future




Where is microelectronics headed? e

Historically, shrink transistor -
more functionality and declining cost
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Emerging risk in manufacturing-driven ecosystem @ &..

Process technology development cost by node
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Ask what opportunities exist given atomic-scale control




How does Atomic Precision Advanced Manufacturing (APAM) work? () ===

“Chemical contrast’ at Si surface

 Unterminated Si: 1 reactive bond/ atom
 H-terminated Si: unreactive

STM Tip JJunction
Bias

Scanning tunneling microscope (STM)
can image and pattern the surface




Area-selective chemistry with phosphine

Phosphorus ‘donates’ an electron to silicon. ‘Artificial molecule’

Chemical error
correction : need
3 open sites for
phosphine

PH, PH; & ™ Source

\/ \ ' Double

T T T H T H H quantum dot

|—
20 nm

Ward, Elec. Dev. Fail. Anal. (2020)

Opportunities outside of quantum demonstrations
Opportunities outside of atomic-scale widgets




How to get to digital electronics at the atomic scale? (@) &,

f 1. APAM devices \

Source Drain

AP

1 Simple planar devices

QOnly work at cryogenic temp./

2. CMOS integration 3. APAM toolkit

PH PH,
\/ .
HHHHH H H
| 1| ] | | 1| ]

Si(100) Si(100)

1 Incompatible with CMOS
workflows / parts

1 One working chemistry




What does APAM do that’s special? “Ultra-doping”
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— Ultra-doping: dopant potentials/
wavefunctions overlap significantly

APAM doping: 1 in 4 surface sites is a donor
Exceeds solid solubility for P in Si by 10x
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Consequences: confinement .

Cross-section

Ward, Elec. Dev. Fail. Anal. (2020)
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Dopants give you confinement
Y Extremely high current density.
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Consequences: electronic structure .

This isn’t really silicon like you know it.

k
111] axis [100] axis - - r !
” N 0457700 04

Holt, arXiv:1911.08274
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APAMe-inspired transistor () e,

Schottky barrier manipulation
Body Source Gate Drain Low contact resistance

1L

& ‘ﬂ ~ Contrement

Band-to-band tunneling
Low voltage operation
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Can you make a ‘real’ transistor with APAM?

Now (3 US labs, 6 labs worldwide)

Desired future state

Source

Gate

Source Drain

APAM

2 AAn-type

7 A implant

* Only works at cryogenic temperatures
» Devices consist only of phosphorus!

p-type
implant

Gate
oxide

* Works above room temperature
« Device is complex

Field
oxide




“Real” APAM transistor (i)

Surface gate
Body Source | Gate Draip Surface-gated SET:

w ( A/ Anderson, arXiv:2002.09075
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\\\i YUY Y .—‘[ _ Doping profiles to
confine current
\




Sandia

Surface gate challenge: thermal budget B

Dopants readily diffuse ~ 350 — 550 °C
Low defect silicon oxide needs ~ 800 °C

Modern high-k dielectrics require temperatures that are accessible

Low temperature High temperature

" Metal " Metal )

Is there a sweet spot?

Poor quality interface shields gate High quality interfaces
Dopants have remained in place Dopants have diffused




4 "\ BN
Metal |[*&

Follow strategy for high-k/metal gates

Sandia
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Voltage Bias (V)

Thermally compatible with APAM (250 °C). Low density of interface defects: 4 x 1010 cm-2
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First-ever CV curve on an APAM layer
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Soon: finite frequency TCAD model

Si cap
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“Real” APAM transistor )

Bo dy Source )
( W \ (
TR m.




Room Temperature Device Operation C

Unintentional doping of cap and substrate

. Leakage paths freeze out only at low temperatures
10 L | I [ T T ]
g : n-type APAM layer |
- “undoped” silicon cap contains Al | source drain
10"°F # |
o . '
z :
g s
S 0l + _ possible leakage paths
<7 e A m&%}% -
2 ek i
o + o WR N Loy
g : | 7 Alumi
apThs ~ APAM sample prep produce_s B at the uminum
- - .’ surface, diffuses into sample aggressively l Silicon cap
o o ¥ | B Phosphorus
1015 R— . L I L I o
0 100 200 300 400 500 600 l Silicon substrate
Depth (nm

18



TCAD Simulations e

Hole Density from TCAD
APAM layer depletes the substrate and cap o menstyrem -

Hole Density
1.0e+18
Simulation Structure b1 0e+17
1.0e+16
. 18 .
p-type: 10 Ohmic 1.0e+15

n-type—1x1029, 5 -nm contact 1 Det14

1 1.0e+13
1.0e+12

Source

p-type: 1016
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Contact isolation e

Mesa region with n+ and cap contact
N+ con (not to scale)

oxide

P doped cap

N doped well P doped substrate
BE% 0.00012-
0- 0.0001-
e 8E-5-
. . 2E-5- 4E-5- . .
After wire bonding = = 2ses = s After wire bonding
25 g force g o 35 g force
5E.5- -6E-5-
S5E-5-, 8E-5- .
-2 0 2 4 6 8 10 = 0 2 4 6 8 10
Vi Vi




15t measurement of APAM wire at room temp. @ ==

R,: 4.80 mV/450 nA

5 (20-40 nA leakage at 1V)

R, (@)

slope =-7.7 QIT

02 01 00 01 02
B (T)

Resistivity | Carrier density Moblllty Unclear why density goes down,

mobility stays same.

600 Q/sq 1.7 x 10" cm

293K 1070Q/sq  0.8x10™cem= 65 Agrees with IR measurements
Katzenmeyer, in submission to JMR (2020) 21




What’s next? () ==

Understand contact resistance

Body Source Gate Drain
\

( W e

e A

Design a transistor




How to get to digital electronics at the atomic scale? @&z

1. APAM devices

Body Source Gate Drain

[

;' s n-type Q p-type Field
/s }' implant \\\ implant i oxide

v Surface gated APAM devices
v' Operate at room temperature
O APAM transistor

/ 2. CMOS integration \

1 Incompatible with CMOS
\ workflows / parts /

3. APAM toolkit

PH PH,
\/\
HHHHH H H
| 1| ] | | 1| ]

Si(100) Si(100)

1 One working chemistry
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Is APAM thermally compatlble with CMOS fab? (@)

Direct CMOS Integration

FEOL

T>850°C

Silicon

Post CMOS Integration

FEOL -

T >850 °C

Metal

Silicon

Silicon

24
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APAM process flow : e
> 270 °C
1200 °©
Oxide E————

 Uiahigheown 2

High-temperature clean destroys anything on chip before APAM.

300 °C 300 °C

APAM will start to diffuse above 350 — 550 °C

25




APAM process flow i

- 270 °C
1200900 °C

Oxide
Sample clean Hydrogen termination

Silicon

Plasma clean

H bake Ultra-high vacuum

Ward, Appl. Phys. Lett. (2017)

Direct Integration: can we do Post-CMOS integration: how low can we
wafer-scale APAM processing? drllve down process temperatures, even
with sub-optimal results?
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Scale APAM using hard masks e

Thick oxide - Oxide film + thermal prep works.
Thin oxide

For CMOQOS integration —

- Nitride films

- Sputter clean

Thick oxide . ;
- Check local interconnects survive

Thick oxide

Thick oxide




Sandia

Not just ‘atom-sized transistors’... atomic-scale processing s

Traditional polymer resist

» Shot noise of light
« Statistics of e- generation
» Statistics of polymers

EE]

euv light

electrons

resist

substrate

Atomic-scale resist

substrate

Underexpose = like no exposure

substrate

substrate

Exposure 1 Exposure 2

No overexposure on multiple exposure

« Can’t be over-exposed or under-exposed
—> solves problems with shot noise

« Stable to arbitrary pitch

« Katzenmeyer, Proc. SPIE (2020)
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Scale APAM process =

Wafer-scale processing by adding on

to existing tool (ALD or CVD) Challenges:

» Elevated pressure

(a): substrate o After wafer clean — proceed to
I'=TI doping, or preserve surface with H?

Gl &lscEFiiss m o Kinetics of dopant incorporation
H""‘ {d} to pump
|""""""""| « Low temperature growth
o Only MBE known to work at these
temperatures
‘ (c) : source gas o Radical growth? Beam-assisted?

+ carrier gas

Chemical - TCS/DS?

Looking for partners.
Skywater Technologies can host a tool.




APAM process flow i

National _
1200 ° 270 °C
00 C
Oxide
Sample clean Hydrogen termination
H bake Ultra-high vacuum

Ward, Appl. Phys. Lett. (2017)

Direct Integration: can we do

Post-CMOS integration: how low can
wafer-scale APAM processing?

we drive down process temperatures,
even with sub-optimal results?




Hydrogen passivation & lithography .

300 = 20° C
\ '
& H H
HHHHH THTxlT

Si(100) Si(100)

20° C: Hydrogen physisorbed on

top of hydrogen passivated silicon
Lithography now requires multiple
passes, but works great!

31
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Phosphorus incorporation and capping .
350 = 200° C

A—

Defected -
silicon cap

n~1.7 x 101 cm-2 n~1.4x 10" cm2
u~ 50 cm?/V-s ; u~ 20 cm?/V-s
5 ~ 2 mS/sq. Electrical transport 5 ~ 0.6 mS/sq.

degrades only by a factor

of 3 vs. optimal process 5
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Reduced temperature sample prep e

IR differential spectra of hydrogen stretch region

1E#22 '
i 00072} 5504 RIE_JM

000741 5005 _RIE_LG

0.0076: S007_RIE_JM
0.0078! S008_RIE_JM
1621 |

0.0080 :

Surface hydrides
bulk hydrides

0.0082
0.0084

0.0086
0.0088 ¢
0.0090
0.0092-2
0.0094
0.0096 ;

0.0098 1
0.01001
00102}

os.  CoOrresponding

| | o decrease in SiO, LO
|1 o, phonon at 1230 cm? | , |
B L

O,C.N,PH,B CONCENTRATION {atoms/scs)
Gy
@

TE#TT

Wavenumbers (cm-1)

EAG | Euofins IEIHEP*"IHH@mmB
el RIE has shown promising results, but
Wet preparation is not working rep.roducibility problems. Trying in a
Hines, J. Phys. Chem. C (2009) variety of tools.
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What’s next? Go for it! =

Physical Layout Full-stack simulation

\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\
m§ APAl\g Cell

\\\\\\\

Res. Freq. (MHz)
N

10° 10’ 10° 10°

Squares in APAM wire

Measure effect of APAM on real CMOS parts

34




How to get to digital electronics at the atomic scale? @&z

1. APAM devices

Body Source Gate Drain

1[

[

-\ n-type =) p-type Gate Field
] implant \\\ implant - oxide oxide

v’ Surface gated APAM devices
v' Operate at room temperature
O APAM transistor

2. CMOS integration

v Direct integration: wafer-scale
APAM litho

0 Wafer-scale APAM process

v' Post-CMOS: reduction of
process temperatures

0 Reduced temp. sample prep

ﬂ. APAM toolkit \

PH PH,
\/\
HHHHH H H
| 1| ] | | 1| ]

Si(100) Si(100)

1 One working chemistry

\_

35




Need an acceptor chemistry () e,

- NMOS "+ PMOS o SD-D
A B
G X G o-(” 2 0-4‘ 2 r
B D i D cMOS S -OL D B
) ) ]
A—q[ 4

A o—
] F
oA e
B o—
:'T— e
Gate_l - Gate_q Efficient digital logic requires complementary
switches

Drain Drain
Complementary devices require acceptors.

36
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Diborane provides selective p-type doping e
Skeren, arXiv:1912.06188
B,H, (@)
~— 12\, T,=250°C
HHHHH
| ] ] _
C 8¢t
Si(100) =
= T,=600°C
B,Hs i \  T,=750°C
N\ N\ Th=850°C
HHBHH ‘ N e —
AN 20 40 60 80 100
| 1] ] | - Ty (K
Si(100)

B,H; sticks selectively! Electrical quality is questionable




e [ ] [ ] [ ] [ ] m
Why does diborane have a high resistivity? e
0.5 0.32eV
0.0k 0.91 eV 0.89 eV
bare
—0.5 Smallest barrier is to
< electrically inactive dimer
L _10 [\ 0.11 eV
>
2
L% e — \ 1.15,5\ev . 1.53 eV
E 7S
° 1.34 eV e ©
5 -2.0
-8 — L B6
<L Bl
—2.5 0.01 eV ,
‘ BH, H
H BH H B3 B4 .= ).
30 S|IS|| S!; | Si Sl Si
[\ ]/ BS o / \BH /
SiSiosi B7 Sm' R Si'
-3.5 N g
H BH H CZ{SU&GWH
_ === === B7 (-3.12 eV)




Acceotor chemistry with monomer precursor

BCl; is a monomer, modest barrier
f\ 0.5

0.0 1
(0.00 eV) A1(-1.74 eV)
) B|CI2 ; c1(218ev)
~“ 1'“-‘_.:,’ ‘._‘ ,;_.‘:éa . ‘ ,..“' , S‘-
SiSi Si SiSi Si osrewy O i SR 0.5
sioosiosi Bk g s S s 5 -1.01
R | P ol IR
c a c
o =1.071
(0709\’4 //r-o.73ew ‘E_
4
BICI‘ cT*l E =2.0
S & B <
[\ |/ _2.5
S Sioosi
s\“’- |“_’- g
Cl =3.0-
B1 (-0.76 eV)

BCl; +Cl + 2 Cl

E. = 0.03 eV

Ea

Sandia

= 1.18 eV

B (br) + 3 Cl

BCI (br) + 2 Ci

39
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. “qe cha
BCl; selective to Cl/bare silicon s
3.6 L BCl; on bare and Cl-terminated Si
1E+22
BCl,
1E+21 \/’
Atomic Precision

o . Cl Gl €l ¢l C -
B 1E+20 1 Patterning
g | L] — _—
Z reo | Si(100) g2 .S
= : - - - o
s | ss 3
E 1E+18 BCI3 .e - -
& | N s s 3
S 1EH7 ¢ Cl Cl SEIe. S S
m i - . . . - -,

_ B on CI-Si | | | | | m E 5 E

i S |( 1 OO) 216N, 007 A,
1E+15 | r r r r T T T T .
0 10 20 30 40 50 60 70 80 90 100

DEPTH (nm) Dwyer, J. Phys. Chem. A (2019)
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First electrical measurements s

«10° Two terminal IV Contact 2 - %10 DEAL544-A3-Rxx _

1.815

181}
R Resistivity of 2.25 kQ/sq
1%95_ - 4x worse than phosphine
o - 6x better than diborane
1.8+
1.795
1.5 1.79

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1




What’s next? e

1 40_~Re5|dual STD ‘ 12870#

1351
Need wider range of chemistries,

but hard to try... try wet chemistry ® 130]
O
125_:
/O O\ — 120_:
b / |
B_B ‘ I152' ‘ I1éBI ’ I18|4' ' '18|0I | '1'}'6
’ \ Binding Energy (eV) ~
\O O/ — 1{)();Resndl STDZ 63485
1453
140_:
@
O 135
How do people clean up il
wet chemistry?
125
i T B | | o o i
192 188 184 180 176
Binding Energy (eV) 42




How to get to digital electronics at the atomic scale? @&z

1. APAM devices 2. CMOS integration 3. APAM toolkit
PH BCI
Body Source Gate Drain 3 3
C( ~ N
TLT T
Si(100) Si(100)
Yt QN e [ o5 o
v’ Surface gated APAM devices v’ Direct integration: wafer-scale v Working chemistry with PH; / H
v" Operate at room temperature APAM litho and BCl; / Cl
 APAM transistor 0 Wafer-scale APAM process L Chemistries for oxides, metal,
0 Post-CMOS: Reduced temp. etching, etc.

sample prep

43
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