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Atomic Precision Advanced Manufacturing

Assess the opportunities presented
by having atomic-scale control over
devices and processing for the digital
microelectronics of the future

Sandia
National
Laboratories
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Where is microelectronics headed?
Historically, shrink transistor 4
more functionality and declining cost

6r5 nm

•

5-7 nm

Unclear technology path.
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Emerging risk in manufacturing-driven ecosystem
Process technology development cost by node

2,000

1,500

0.13 earn 15- Fri 2211.91

Fab costs by node
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Source: Carrarvon Flapirn &,AJimParInersArialyn

Ask what opportunities exist given atomic-scale control
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How does Atomic Precision Advanced Manufacturing (APAM) work?

"Chemical contrast" at Si surface
• Unterminated Si: 1 reactive bond/ atom
• H-terminated Si: unreactive

Si

STM Tip Junction
Bias

Scanning tunneling microscope (STM)
can image and pattern the surface

Sandia
National
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Area-selective chemistry with phosphine

Phosphorus 'donates' an electron to silicon.

PH3

HHHHH

Mil

Si(100)

PH3

HLIPHH

11111

Si(100)

`Artificial molecule'

lor
•

Double
quantum dot

Source

Drain
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Chemical error
correction : need
3 open sites for
phosphine

Ward, Elec. Dev. Fail. Anal. (2020)

Opportunities outside of quantum demonstrations
Opportunities outside of atomic-scale widgets
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How to get to digital electronics at the atomic scale?

ffl- 1. APAM devices 2. CMOS integration 

ooppApp
epApp+ep
••••••+•
6W.*
foe....

Simple planar devices
Only work at cryogenic temp.

Incompatible with CMOS
workflows / parts
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3. APAM toolkit 

PHz PH3

HHHHH HHPHH

Mil 1 11 '1

Si(100) Si(100)

One working chemistry
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What does APAM do that's special? "Ultra-doping"

(,,1 CB

Normal doping

Sandia
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Ultra-doping: dopant potentials/
wavefunctions overlap significantly

APAM doping: 1 in 4 surface sites is a donor
Exceeds solid solubility for P in Si by 10x
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Consequences: confinement

Cross-section

Si cap

APAM layer

•E

High density (1014cm-2)
Low mobility (50 cm2/V-s)

Ward, Elec. Dev. Fail. Anal. (2020)
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Dopants give you confinement
Y Extremely high current density.
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Consequences: electronic structure
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This isn't really silicon like you know it.

0.4  
-01

0.0 0.2

0.0 0.1
Holt, arXiv:1911.08274
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APAM-inspired transistor

Body Source Gate Drain

A

APA \
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Schottky barrier manipulation
Low contact resistance

Confinement
High current density

Band-to-band tunneling
Low voltage operation
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Can you make a 'real' transistor with APAM?

Now (3 US labs, 6 labs worldwide) 

Source ['Drain

oppAppp
coop"♦•♦•
•App+e*
•••••••eeeeee•

• Only works at cryogenic temperatures
• Devices consist only of phosphorus!

Body

Desired future state 

Source Gate Drain

A

n-type
implant

p-type
implant

Gate
oxide

• Works above room temperature
• Device is complex

Sandia
National
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Field
oxide
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"Real" APAM transistor

Body Source Gate 
(

Drai•

Surface gate

Surface-gated SET: 
Anderson, arXiv:2002.09075

Doping profiles to
confine current

Sandia
National
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Surface gate challenge: thermal budget
Dopants readily diffuse - 350 - 550 °C
Low defect silicon oxide needs - 800 °C

Modern high-k dielectrics require temperatures that are accessible

Low temperature

r Metal

M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-b

APAM

Is there a sweet spot?

High temperature

r Metal

Sandia
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dielectric

APAM

Poor quality interface shields gate High quality interfaces
Dopants have remained in place Dopants have diffused
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Follow strategy for high-k/metal gates

Metal

dielectril

Al - polycrystalline

Al oxide - amorphous

Si substrate

20 nm

1.2

0.8
u_

0.4

0.2

lkHz — 100 kHz

-2 -1 0 1

Voltage Bias (V)
2

Thermally compatible with APAM (250 °C). Low density of interface defects: 4 x 1010 cm-2

Sandia
National
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First-ever CV curve on an APAM layer

Metal

dielectril

si cap'
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Surface charge: 1 x 1011 cm-2
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Soon: finite frequency TCAD model
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Metal

dielectric

APAM

L 
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"Real" APAM transistor

Body Source Gate Drai r

L°6‘•

APAM

Surface gate

Doping profiles to
confine current

Sandia
National
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1 019

Room Temperature Device Operation
Unintentional doping of cap and substrate

Leakage paths freeze out only at low temperatures

n-type APAM layer

_x

"undoped" silicon cap contains Al

XX X -
X 5<x

X

X APAM sample prep produce
x

_XX x xx X

_ XXX X XNK X x

_ X XXX XXX )IX

1 0150
XXXXX XX.N.:KKX XXX

surface, diffuses into sample

100 200 300 400

Depth (nm)
500

s B at the
aggressively

600

source

IL-
possible leakage paths

Aluminum

Silicon cap

Phosphorus

Silicon substrate

drain
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TCAD Simulations

APAM layer depletes the substrate and cap

Simulation Structure

Ohmic
contact

Hole Density from TCAD

,

Hole Density
1,Oe+18

1,0e+17

I
.0e+16

1,0e+15

.0e+14

1-1.0e+13

1,0e+12

Sandia
National
Laboratories

19



Contact isolation

N+ contact

After wire bonding
25 g force

Mesa region with n+ and cap contact
(not to scale)
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Cap contact

After wire bonding
35 g force

Tracy, Campbell



1st measurement of APAM wire at room temp. ur [lanes

5

Temperature Resistivity Carrier density Mobility

4 K 600 Q/sq 1.7 x 1014 cm-2 55

293 K 1070 Q/sq 0.8 x 1014 cm-2 65

Rxx: 4.80 mV/450 nA

(20-40 nA leakage at 1V)

-1-

-2

-3

slope = -7.7 Q/T

-4
-0.2 -0.1 0.0 011 0.2

B (T)

Unclear why density goes down,
mobility stays same.

Agrees with IR measurements
Katzenmeyer, in submission to JMR (2020) 21
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What's next?

Body Source Gate Drain

A

IV 
NI 0,4r 4/0777251

APAM

Sandia
National
Laboratories

Understand contact resistance

Understand electrical
properties in stressful
conditions

Design a transistor
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How to get to digital electronics at the atomic scale?

1. APAM devices 2. CMOS integration 3. APAM toolkit 

Body Source Gate Drain

91,...www%Nt, NIP"
Npr

APAM

n-type
implant

ID-tYpe
implant

Gate Field
oxide oxide

V Surface gated APAM devices
V Operate at room temperature
❑ APAM transistor

Incompatible with CMOS
workflows / parts

Sandia
National
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PHz PH3

HHHHH HHPHH

Mil

Si(100) Si(100)

One working chemistry
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Is APAM thermally compatible with CMOS fab?
Direct CMOS Integration

4tt To

o

(7)

FEOL

o

(7)

Sandia
National
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B QL

T > 850 °C T< 450 °C

Post CMOS Integration

o

(7)

FEOL

To

o

(7)

BEOL

111

T > 850 °C T < 450 °C



APAM process flow

Oxide

1200 °C

Sample clean

270 °C

Hydrogen termination

Ultra-hi• h vacuum

High-temperature clean destroys anything on chip before APAM.

STM tip

STM lithography

300 °C

Phosphorus incorporation

Ultra-hi• h vacuum

300 °C

Silicon capping

APAM will start to diffuse above 350 — 550 °C

Sandia
, National
--== Laboratories
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APAM process flow
1200 900 °C

Oxide

Sample clean

Plasma clearim=11

270 °C

Hydrogen termination

Ultra-hi• h vacuum

Ward, Appl. Phys. Lett. (2017)

Direct Integration: can we do
wafer-scale APAM processing?

Post-CMOS integration: how low can we
drive down process temperatures, even
with sub-optimal results?

Sandia
National
Laboratories
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Scale APAM using hard masks

Thick oxide

Thick oxide

Thin oxide

Thick oxide

Thick oxide

*
*
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log
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Oxide film + thermal prep works.

For CMOS integration —
- Nitride films
- Sputter clean
- Check local interconnects survive

27
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Not just 'atom-sized transistors'... atomic-scale processing

Traditional polymer resist

• Shot noise of light
• Statistics of e- generation
• Statistics of polymers

>- y

mask

euv light

11

electrons \ 1 1

resist

substrate

Atomic-scale resist

H HHHH

l l l l1
substrate

Underexpose = like no exposure

74
H H

I substrate I substrate 1

Exposure 1 Exposure 2

No overexposure on multiple exposure

Sandia
National
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• Can't be over-exposed or under-exposed
4 solves problems with shot noise

• Stable to arbitrary pitch
• Katzenmeyer, Proc. SP1E (2020) 

Katzenmeyer28



Scale APAM process

',e) : electrodes

Wafer-scale processing by adding on
to existing tool (ALD or CVD)

• • • • • • • • • • • • • • • •

(c): source gas
+ carrier gas

(a): substrate

....00.

 ___I---

(d): to pump
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Challenges:
• Elevated pressure

o After wafer clean — proceed to
doping, or preserve surface with H?

o Kinetics of dopant incorporation

• Low temperature growth
o Only MBE known to work at these

temperatures
o Radical growth? Beam-assisted?

Chemical - TCS/DS?

Looking for partners.
Skywater Technologies can host a tool.
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APAM process flow

.rocareons
Oxide

Mr Plasma clearim=11

1200 900 °C

Sample clean

270 °C

Hydrogen termination

Ultra-hi• h vacuum

Ward, Appl. Phys. Lett. (2017)

Direct Integration: can we do
wafer-scale APAM processing?

1"e' 1

Post-CMOS integration: how low can
we drive down process temperatures,
even with sub-optimal results?

Sandia
National
Laboratories
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Hydrogen passivation & lithography

300 4 20° C
\

H

HHHHH

Mil

Si(100)

H
HH

H H H
H

Illl i

Si(100)

20° C: Hydrogen physisorbed on
top of hydrogen passivated silicon

Lithography now requires multiple

passes, but works great!

Sanda
National
Laboralui ieb
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Phosphorus incorporation and capping

350 4 200° C

n — 1.7 x 1014 cm-2
p — 50 cm2/V-s
6 — 2 mS/sq.

Electrical transport
degrades only by a factor
of 3 vs. optimal process

n — 1.4 x 1014 cm-2
p — 20 cm2/V-s
6 — 0.6 mS/sq.

Sandia
National
Laboratories
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Reduced temperature sample prep

. EAG ,aratins
ti materiak Science

DEPTH ran)

Wet preparation is not working
Hines, J. Phys. Chem. C (2009)

IR differential spectra of hydrogen stretch region

Sandia
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S004_RIE_JM
S005_RI E_LG
S007_RI E_JM
S008_RIE_JM

bulk hydrides

Corresponding
decrease in Si02 LO
phonon at 1230 cm-1

2400 2300 2200 2100

Wavenumbers (cm-1)

Surface hydrides

2000 1900

RIE has shown promising results, but
reproducibility problems. Trying in a
variety of tools.
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What's next? Go for it!

Physical Layout
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Full-stack simulation
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Squares in APAM wire

Measure effect of APAM on real CMOS parts

0
3
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How to get to digital electronics at the atomic scale?

1. APAM devices 2. CMOS integration r 3. APAM toolkit 

Body Source Gate Drain

NIP"
%\\ pr 4,05.

'faAPAM

n-type
implant

ID-tYpe
implant

Gate Field
oxide oxide

✓ Surface gated APAM devices
✓ Operate at room temperature
❑ APAM transistor

✓ Direct integration: wafer-scale
APAM litho

CI Wafer-scale APAM process
✓ Post-CMOS: reduction of

process temperatures
CI Reduced temp. sample prep

Sandia
National
Laboratories

PHz PH3

HHHHH H HPHH

Ill ll I l '
Si(100) Si(100)

One working chemistry
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Need an acceptor chemistry

NMOS PMOS

B

PMOS

S D CMOS S 1_1_1 D

°  
0

p-substrate

PH-

n-well

13+

Source

Gate—I

Drain

Gate

Source

VDD VDD

Sandia
National
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Efficient digital logic requires complementary
switches

Complementary devices require acceptors.
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Diborane provides selective p-type doping

B2H6

HHHHH

Mil

Si(100)

B2H6

HH131-11-1

Hill

Si(100)

Skeren, arXiv:1912.06188

B2H6 sticks selectively!

(a

a. h

12

20 40 60 80 100
Tm (K)
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Electrical quality is questionable
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Why does diborane have a high resistivity?
0.5- 0.32 eV

2 0.91 eV 0.89 eV0.0-
bare

—0.5

0_
16 —2.0

-0

—2.5

—3.0

—3.5

A1
A2

0.82 eV
Smallest barrier is to
electrically inactive dimer

0.11 eV

B2

1.34 eV

B1 
C1

H BH H

Si Si si

sj §i Si
I I
H BH H

B7 if 3.12 WV)

1.15 eV

B3

 1 11 eV

0.01 eV

B6

B7

1.53 eV

0.01 eV

B4

B5 
C2
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13j-12

Si Si
I3H

5i Si Si
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Acceotor chemistry with monomer precursor
BCI3 is a monomer, modest barrier

0.5 -

0.00 eV) A1 (-1.74 eV)

BCI2

'SI Si Si

I \ I +Ba3 I \ I

-
Si Si Si 5i Si Si- -.. .., .. ... . - ... - .. - , .........- — 

..

CI

(-0.70 eV)11

(-0.81 eV)

C1 (-2.18 eV)

(-0.73 eV)

—2.5-

-3.0-
B1 (-0.76 eV)

BC13‘,

{gas) t%
Ea — 1.04 eV

i

t 

93 e

(

11V

BCI
BCI2 + CI + 2 CI

Sandia
National
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= 1.18 eV

B (br) + 3 CL

BCI (br) + 2 CI

Ea = 0.03 eV
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BCI3 selective to Cl/bare silicon
1E+22

1E+21

1E+20

o
-C6

0 
z 1E+19

I— 1E+18

Lu
C.)

0 1E+17
C.)
co

3.6 L BCI on bare and Cl-terminated Si

1E+16 -

1E+15

B on Si

B on CI-Si

0 10 20 30 40 50 60

DEPTH (nm)

70 80 90 100

BCI3

TI ?I ?I

Si(100)

BCI3

CI CI B CI CI

11111

Si(100)
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Atomic Precision
Patterning

uwyer, J. Phys. Chem. A (2019) 
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0.5

First electrical measurements

x10-5 Two terminal ly Contact 2 x104
1.82

1.815

1.81

1.8

1.795

DEAL544-A3-Rxx

1.79  
-0.5 0 0.5 1 -1 -0.5 0 0.5 1

Vcontactsic (V) B (T)

Resistivity of 2.25 Icf2/sq
- 4x worse than phosphine
- 6x better than diborane

Sandia
National
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What's next?

Need wider range of chemistries,
but hard to try... try wet chemistry

B-13,

How do people clean up
wet chemistry?

Sandia

IrLUL National
Laboratories
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How to get to digital electronics at the atomic scale?

Body

1. APAM devices 

Source Gate Drain

NIP"
%\\ pr 4,05.

'faAPAM

n-type
implant

ID-tYpe
implant

Gate
oxide

V Surface gated APAM devices
V Operate at room temperature
❑ APAM transistor

Field
oxide

2. CMOS integration 

V Direct integration: wafer-scale
APAM litho

CI Wafer-scale APAM process
CI Post-CMOS: Reduced temp.

sample prep

3. APAM toolkit

Sandia
National
Laboratories

PH3 BCI3

H H P H H CI 4 CI CI

1111 1 I l

Si(100) Si(100)

V Working chemistry with PH3 / H
and BCI3 / CI

CI Chemistries for oxides, metal,
etching, etc.
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