

1 Manuscript number: NP-P200203A

2 Corresponding author and email address: F. Akif Tezcan, tezcan@ucsd.edu

3

4 Number of:

5 Figs: 8

6 Tables: 1

7 Boxes: 0

8 List of SI:

9 Supplementary Figure 1 | 1 H NMR spectrum of O-tritylhydroxylamine. (400 MHz, DMSO-d6)

10 Supplementary Figure 2 | 1 H NMR spectrum of 2-chloro-N-hydroxyacetamide. (300 MHz, DMSO-d6)

11 Supplementary Figure 3 | 13C NMR spectrum of 2-chloro-N-hydroxyacetamide. (500 MHz, DMSO-d6)

12 Supplementary Figure 4 | 1 H NMR spectrum of 2-iodo-N-hydroxyacetamide. (300 MHz, DMSO-d6)

13 Supplementary Figure 5 | 13C NMR spectrum of 2-iodo-N-hydroxyacetamide. (500 MHz, DMSO-d6)

14 Supplementary Figure 6 | 1 H NMR spectrum of N1 ,N4 -dihydroxyterephthalamide. (500 MHz, DMSO-d6)

16 Supplementary Figure 7 | 13C NMR spectrum of N1 ,N4 -dihydroxyterephthalamide. (500 MHz, DMSO-d6)

18 Supplementary Figure 8 | 1 H NMR spectrum of N2 ,N3 -dihydroxyterephthalamide. (500 MHz, DMSO-d6)

20 Supplementary Figure 9 | 13C NMR spectrum of N2 ,N3 -dihydroxyterephthalamide. (500 MHz, DMSO-d6)

22 CFIs: N/A

23

24 EDITORIAL SUMMARY

25 To design new multiprotein systems, Tezcan and coworkers describe how to combine natural
26 metal-coordinating motifs and hydroxamic acid groups to direct metal-mediated assembly of
27 polyhedral protein architectures and 3D crystalline protein frameworks.

28

29 TWEET

30 @TezcanLab

31

32

33

34 DATA AVAILABILITY

35 The authors declare that all the data supporting the findings of this study are available within the article.
36 All the data analysis was performed using published tools and packages and has been provided with the
37 paper.

38 RELATED LINKS

39

40 **Key reference(s) using this protocol**

41 [These are primary research papers where the protocol has been used. Limit of 5. The reference is an
42 example of the format used for this citation.]

43 Sontz, P.A., Bailey, J.B. et. al. J. Am. Chem. Soc. 137 (36), 11598-11601 (2015).

44 <https://pubs.acs.org/doi/10.1021/jacs.5b07463>

45 Bailey, J.B. et. al. J. Am. Chem. Soc. 139 (24), 8160-8166 (2017).

46 <https://pubs.acs.org/doi/10.1021/jacs.7b01202>

47 Golub, E. et. al. Nature. 578, 172-176 (2020). <https://www.nature.com/articles/s41586-019-1928-2>

48 Bailey, J.B. et. al. J. Am. Chem. Soc. 142 (41), 17265-17270 (2020).

49 <https://pubs.acs.org/doi/10.1021/jacs.0c07835>

50

51

52

53

54

55

56

57

58

59

60

61

Design of Metal-Mediated Protein Assemblies via Hydroxamic Acid Functionalities

Rohit H. Subramanian¹, Jie Zhu¹, Jake B. Bailey¹, Jerika A. Chiong¹, Yiying Li¹, Eyal Golub¹, F. Akif Tezcan^{1, 2*}

65

66 ¹Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
67 92093, USA

68 ²Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093,
69 USA

70 *e-mail: tezcan@ucsd.edu

71

72 **Abstract**

The self-assembly of proteins into sophisticated multicomponent assemblies is a hallmark of all living systems and has spawned extensive efforts in the construction of novel synthetic protein architectures with emergent functional properties. Protein assemblies in nature are formed via selective association of multiple protein surfaces through intricate noncovalent protein-protein interactions, a challenging task to accurately replicate in the *de novo* design of multiprotein systems. In this protocol, we describe the application of metal-coordinating hydroxamate (HA) motifs to direct the metal-mediated assembly of polyhedral protein architectures and 3D crystalline protein frameworks (protein-MOFs). This strategy has been implemented using an asymmetric cytochrome *cb*₅₆₂ monomer through selective, concurrent association of Fe³⁺ and Zn²⁺ ions to form polyhedral cages. Furthermore, the use of ditopic HA linkers as bridging ligands with metal-binding protein nodes has allowed the construction of crystalline 3D protein-MOF lattices. The protocol is divided into two major sections: (1) the development of a Cys-reactive HA molecule

85 for protein derivatization and self-assembly of protein-HA conjugates into polyhedral cages and
86 (2) the synthesis of ditopic HA bridging ligands for the construction of ferritin-based protein-
87 MOFs using symmetric metal-binding protein nodes. Protein cages can be analyzed using
88 analytical ultracentrifugation (AUC), transmission electron microscopy (TEM) and single-crystal
89 X-ray diffraction (sc-XRD) techniques. HA-mediated protein-MOFs are formed in sitting-drop
90 vapor diffusion crystallization trays and are probed via sc-XRD and multi-crystal small-angle X-
91 ray scattering (SAXS) measurements. Ligand synthesis, construction of HA-mediated assemblies,
92 and post-assembly analysis as described in this protocol can be performed by a graduate-level
93 researcher within six weeks.

94

95 **Introduction**

96 The self-assembly of proteins into higher-order structures is a cornerstone of all cellular
97 functions.¹ Biological processes as diverse as the conversion of light into chemical energy in
98 photosynthesis² or the packaging of DNA into nucleosomes³ require large, multicomponent
99 protein architectures and extended arrays. Given the sophistication of such natural protein
100 assemblies and their central roles in biology, a fundamental goal in biomolecular engineering has
101 been the development of new design tools and strategies for the construction of artificial protein
102 assemblies, which possess structural and functional properties that match or even surpass those
103 produced by natural evolution⁴⁻⁷.

104 The simple composition of polynucleotides from four building blocks coupled with the
105 high specificity of Watson-Crick base pairing has enabled the programmable assembly of DNA or
106 RNA into virtually any nanoscale architecture⁸. By contrast, the complex chemical composition
107 and 3D structures of proteins pose an enormous challenge in terms of predictably constructing

108 desired multiprotein arrays and architectures. Natural protein assemblies are built through the
109 selective association of protein monomers (protomers). Predominantly, the contact points are
110 multiple, extensive patches of each protein surface (surface patches) held together by
111 heterogeneous, noncovalent protein-protein interactions¹. In light of the difficulty of designing (or
112 evolving) such associative patches on protein surfaces from scratch, a powerful strategy exploited
113 both by nature and protein designers has been to create new structures by the symmetric
114 arrangement of protein components (symmetrization)⁹. Applying symmetry principles enables the
115 engineering of fewer associative surface patches to generate sophisticated multimeric assemblies;
116 these principles are used to develop geometric design rules to generate discrete protein oligomers
117 or periodic/crystalline protein arrays with predictable structures.

118 The first step, however, still involves designing stable and extensive protein-protein
119 interactions. There are many approaches to address this challenge; our group has previously shown
120 that the strength, reversibility, and directionality of metal-coordination interactions could be used
121 to bypass the necessity of designing large, noncovalent protein interfaces while also imposing
122 symmetry⁷. These advantages in turn have enabled the construction of many protein assemblies
123 with unique structural, functional and dynamic properties¹⁰⁻¹⁴.

124 In this Protocol, we describe the development and applications of the versatile hydroxamic
125 acid (HA) functionality, which is a bidentate chelate that is capable of binding many metal ions
126 with high affinity and is exploited in bacterial siderophores for selective Fe³⁺ capture^{18,19} (**Fig. 1a**).
127 In particular, we focus on two classes of HA-based reagents and synthetic linkers, which have
128 enabled the construction of 1) cage-like, polyhedral protein assemblies with unique structural and
129 stimuli-responsive properties¹⁰ (**Fig. 1b**), and 2) a series of chemically-designed, crystalline 3D
130 protein networks (Protein-Metal-Organic Frameworks or protein-MOFs) with tunable symmetries

131 and unit cell metrics^{11,20,21} (**Fig. 1c**). Both types of protein assemblies are distinguished from other
132 artificial protein architectures and arrays by their ease of design, modularity, reversible formation
133 and dynamic features.

134

135 **Development of the Protocol**

136 Given the challenges of *de novo* protein design, many construction strategies have relied
137 on linking natively oligomeric proteins via binary protein-protein interactions to form
138 multidimensional assemblies⁵. One approach has been to create genetic fusions of natively
139 oligomeric proteins to position proteins into higher-order structures and promote *in vitro* and *in*
140 *vivo* assembly without further manipulation (**Fig. 2a**). Early reports from Yeates and coworkers
141 implemented the fusion of two symmetric components to generate polyhedral protein cages and
142 1D filaments²². Natively dimeric and trimeric proteins were covalently tethered using alpha-helical
143 linkers at different orientations to afford 0D cage-like assemblies and bundles of 1D protein
144 filaments, serving to validate genetic fusion of symmetric components as a viable protein design
145 strategy. Further efforts, using both peptide and protein components as structural nodes, have
146 produced tetrahedral, octahedral, and icosahedral protein cages²³⁻²⁶ as well as 2D crystalline
147 arrays²⁷. These studies couple symmetric elements, through a rigid or flexible linker, to afford
148 modular control of protein assemblies. In the meantime, significant advances in computational
149 design have enabled the creation of tight, associative interfaces (consisting of electrostatic and/or
150 hydrophobic interactions similar to those present in biological assemblies) between symmetric
151 proteins to form megadalton-scale protein cages^{28,29} and extended 2D assemblies³⁰ (**Fig. 2b**). As
152 an alternative approach, the introduction of directional bonding interactions (*e.g.*, disulfide bond

153 formation^{31,32} between Cys residues and metal coordination^{12,33,34}) between pairs of symmetric
154 modules has been used to generate robust 0-, 1-, 2-, and 3D protein assemblies (**Fig. 2c, d**). From
155 this it is clear that there are several methods to generate protein oligomers by installing a C_2
156 symmetric or binary protein-protein interaction. However, achieving symmetric association via
157 higher order symmetries (*e.g.*, introducing C_3 symmetric nodes) has been relatively unexplored.

158

159 ***Higher-order symmetry achieved using metal coordination***

160 One approach that could facilitate the introduction of multiple symmetric elements with
161 specificity is metal coordination. Metal ions perform vital functions in biological systems³⁵ (*e.g.*,
162 as catalytic centers, cofactors, and structural anchors for protein folds) and indeed, metal binding
163 provides many desirable properties for protein design, including strong and directional bonding,
164 chemical tunability and reversibility (*e.g.*, by pH, metal chelators, and redox potential).

165 With these advantages in mind, our group developed a strategy termed Metal-Directed
166 Protein Self-Assembly (MDPSA), whereby metal-coordination motifs are incorporated onto
167 protein surfaces to promote oligomerization upon the addition of late-first-row transition metal
168 ions (*e.g.*, Ni^{2+} , Cu^{2+} , and Zn^{2+}). Such metal-mediated assemblies have largely relied on the surface
169 installment of natural metal-coordinating amino acid functionalities like histidine (His), cysteine
170 (Cys), glutamic acid (Glu) and aspartic acid (Asp). This method was first implemented on a
171 monomeric four-helix bundle protein, cytochrome cb_{562} , by installing a pair of bis-His “clamps”
172 at i and $i+4$ positions on an α -helix to promote oligomerization upon the introduction of Zn^{2+}
173 ions³⁸. Further experiments conducted with other first-row transition metals revealed that the
174 coordination preference of the metal ion could directly influence the oligomerization state and
175 symmetry of the protein scaffold (*e.g.*, square planar Cu^{2+} binding yielded C_2 symmetric protein

176 dimers and octahedral Ni^{2+} binding produced C_3 symmetric trimers)³⁹. Optimization of this
177 strategy, through the introduction of associative interfaces via computational design³⁶ and
178 additional chemical bonding via disulfide formation⁴⁰, enabled the creation of *in vivo* assembling
179 oligomers⁴¹, infinite 1D helical nanotubes and 2D crystalline arrays^{12,42}, hydrolytic enzymes
180 through the introduction of distinct structural and catalytic Zn^{2+} sites^{13,43}, and allosteric assemblies
181 via strained intermolecular disulfide bonding coupled to Zn^{2+} binding^{14,44}. These results
182 demonstrated that a diverse set of protein oligomers can be obtained from a single, monomeric
183 protein building block through the judicious incorporation of metal coordinating residues.

184 ***More complex architectures require additional metal-binding sites***

185 In studies germane to this Protocol, we set out to construct cage-like, polyhedral protein
186 assemblies and crystalline, 3D protein arrays using MDPSA. Cage-like architectures have been
187 particularly attractive targets for protein design due to their highly symmetric structures as well as
188 their potential uses in encapsulation, delivery and biocatalysis^{45,46}. Similarly, the ability to
189 rationally design 3D protein crystals would not only expand their ever-growing applications as
190 porous materials for catalysis⁴⁷ and encapsulation⁴⁸, but it also constitutes an important goal in
191 terms of X-ray protein crystallography, where obtaining protein crystals is generally a rate-limiting
192 step⁴⁹. However, the construction of both cage-like protein assemblies and 3D crystals is a
193 considerably more complex task for MDPSA (compared to simple metal-mediated oligomers) due
194 to the necessity to impose multiple symmetry elements simultaneously. Indeed, an examination of
195 naturally occurring protein cages (*e.g.*, virus capsids, ferritin) reveals that they are invariably
196 composed of asymmetric protomers that present multiple associative interfaces to satisfy the
197 symmetry requirements necessary to build polyhedral structures. For example, a tetrahedral
198 complex must at least possess C_2 and C_3 symmetric interfaces, whereas octahedral or icosahedral

199 architectures additionally feature C_4 or C_5 symmetries^{1,4}. Furthermore, natural protein cages often
200 display dynamic behavior or reversible assembly/disassembly as necessitated by their biological
201 functions, meaning that their protein-protein interfaces must also be responsive to external
202 stimuli^{50,51}.

203 To further broaden the structural and functional scope of such metal-directed protein
204 assemblies, we and others have endeavoured to employ non-natural, metal-chelating
205 functionalities to mediate protein-protein interactions¹⁵⁻¹⁷. In order to satisfy the stringent design
206 criteria for cage-like protein assemblies and 3D crystals (*i.e.*, simultaneous generation of multiple,
207 reversible protein-protein interfaces that impose different symmetries for self-assembly), we
208 developed an alternative MDPSA strategy, which takes advantage of a fundamental concept in
209 inorganic chemistry, namely the Hard-Soft Acid-Base (HSAB) theory⁵². Natural metal
210 coordinating amino acids, such as His, Asp, Glu, or Cys residues, can be considered as soft or
211 intermediate-soft bases according to the HSAB classification and have considerable overlap in
212 terms of their coordination preferences for soft, low-valent transition metal ions such as Ni^{2+} , Cu^{2+} ,
213 and Zn^{2+} . Due to this overlap, it is essentially impossible to design a protein building block for
214 MDPSA such that it can selectively coordinate two different soft metal ions on its surface based
215 solely on natural amino acids.

216

217 ***Hydroxamic acid enables selective metal coordination***

218 Therefore, we surmised that if a hard, metal chelating motif could be introduced onto the
219 protein surface, it could work in concert with a soft metal-binding motif composed of natural amino
220 acids to assemble into a complex architecture through the coordination of two different metal ions.
221 Hydroxamic acid (HA), a bidentate chelating motif capable of binding many metal ions with high

222 affinity, is present naturally in bacterial siderophores where it is exploited for selective Fe^{3+}
223 capture^{18,19} (Fig. 1a). HA is a hard ligand that forms highly stable octahedral $\text{Fe}^{3+}:(\text{HA})_3$
224 complexes with high specificity and affords C_3 symmetry. To implement our strategy, we
225 synthesized a Cys-reactive HA reagent (2-iodo-*N*-hydroxyacetamide or IHA) and incorporated it
226 onto the monomeric cytochrome *cb*₅₆₂ scaffold, which was also tailored with native metal binding
227 residues to enable C_2 -symmetric metal coordination. The resulting cytochrome *cb*₅₆₂ variants were
228 observed to self-assemble into tetrahedral (dodecameric) or trigonal bipyramidal (hexameric)
229 protein cages through concurrent Fe^{3+} and Zn^{2+} coordination¹⁰. Importantly, these tightly packed
230 cages were capable of reversible assembly/disassembly due to their metal-dependent construction.
231 For protein derivatization, we chose iodo-functionalization in lieu of commonly used maleimide
232 or thiopyridine functional groups. This allowed us to minimize the number of bonds between the
233 Cys reactive group and the HA motif, generating a pseudo-amino acid with a side chain isosteric
234 with that of arginine. Additionally, maleimides have been shown to undergo undesired hydrolysis⁵³
235 and thiopyridine modification of Cys is a reversible, redox-sensitive process (which may
236 potentially interfere with reversible redox-mediated assembly and disassembly of protein cages).
237

238 ***Ditopic HA linkers form bridges between proteins***

239 In parallel, we used the HA motif to develop synthetic, ditopic linkers, which served as C_2 -
240 symmetric bridges to promote the formation of 3D protein lattices. In that case, rather than
241 constructing a cage-like protein assembly, we took advantage of an already-existing 24meric
242 protein cage (human heavy-chain ferritin or HuHF)⁵⁴ as a symmetric building block. HuHF was
243 first engineered on surface locations with tris-His metal coordinating groups to create octahedral,
244 metal-coordinating nodes. Upon addition of HA-based linkers, the HuHF nodes self-assembled

245 into the desired body-centered protein lattices with synthetically programmable unit cell
246 parameters^{11,20,21}. Continued pursuit of fundamental studies to further understand the effects of
247 protein node symmetry, linker symmetry and metal ion identity will enable the generation of
248 designer 3D protein materials towards molecular capture and information storage applications.

249

250 **Overview of the procedure**

251 In this Protocol, we discuss the incorporation of the HA group as a tool to direct protein
252 self-assembly in two different modalities: (1) through direct conjugation of IHA onto proteins to
253 site-specifically direct metal coordination for the formation of protein polyhedra, and (2) through
254 the use of ditopic, HA-based ligands that act as metal-chelating bridges between proteins to
255 construct 3D protein lattices.

256

257 *HA-mediated protein cages*

258 An overview of the procedure and timeline from the synthesis of IHA to the formation of
259 protein cages is shown in **Fig. 3**. The major steps involved are: (1) chemical synthesis of an IHA
260 molecule for labeling surface exposed Cys residues, (2) IHA-protein conjugation and subsequent
261 purification, (3) incubation with metal ions under anaerobic conditions to promote self-assembly,
262 and (4) assessment of self-assembly products.

263 A crucial component for successful self-assembly lies in choosing the correct protein
264 partner to the HA motif and careful consideration of a surface-exposed site for HA conjugation.
265 For the generation of discrete protein polyhedra, different surface positions of the Cys residue can
266 be tested to assess their effects on protein self-assembly upon conjugation to HA and incubation
267 with metal ions. It is also important to consider a protein scaffold that can accommodate multiple

268 metal-binding sites, should they be required to form a solution-stable oligomer. For instance, the
269 cytochrome *cb*₅₆₂ proteins used in our initial study were capable of housing native metal binding
270 residues (His, Asp, and Glu) as well as Cys-HA motifs. Concurrent binding at both metal
271 coordinating sites was necessary to form solution-stable protein cages¹⁰. Furthermore, the presence
272 of multiple HA motifs can affect the assembly outcomes; the formation of dodecameric (required
273 two HA motifs) vs. hexameric (required one HA motif) cages was, in part, determined by the
274 number of surface HA sites on our protein scaffolds.

275

276 *HA-mediated protein-MOFs*

277 The generation of protein-MOFs is accomplished by combining ditopic HA-bearing linkers
278 with metal-binding protein nodes, as shown in the overview in **Fig. 4**. The procedure involves (1)
279 the synthesis of ditopic HA bridging linkers and (2) preparation of a protein node to effectively
280 coordinate transition metal ions, which can be combined to form μ m-scale crystalline lattices, and
281 (3) using X-ray diffraction and scattering techniques for the characterization of protein-MOFs.

282 To facilitate the formation of 3D networks, the proteins contain tripodal metal coordination
283 motifs that can tightly bind transition metal ions in solution while simultaneously offering a surface
284 exposed open coordination site for binding to HAs. The construction of ferritin-MOFs was enabled
285 using a metal-coordinating HuHF variant, generating an octahedral metal-protein node, that
286 coordinated with bridging HA linkers to form ligand-mediated crystalline 3D networks. Despite a
287 marked (nearly 10-fold in the longest dimension) size difference between the organic HA linkers
288 and the ferritin node, the protein-MOF lattices are robustly interconnected solely by metal-HA
289 interactions.

290

291 **Applications of the method**

292 *Applications of protein-HA conjugation to generate protein cages*

293 The straightforward synthesis and simple protein labeling methods used to covalently
294 conjugate HA onto a protein scaffold present a powerful strategy for generating a selective metal
295 coordination motif to induce protein trimerization. This approach can be further extended using
296 symmetric building blocks (natively occurring or a product of *de novo* design) to generate different
297 types of polyhedra (e.g., octahedral and icosahedral cages) or extended 1D and 2D structures
298 depending on the oligomerization state of the building block and the positioning of the HA motif.
299 A single Cys residue, placed appropriately on the protein surface, can complement computational
300 design, secondary metal coordination motifs, genetic fusion, or any other design strategies to
301 provide structural and functional diversity in the construction of sophisticated protein assemblies
302 for potential uses in the selective capture and release of cargo for drug delivery or therapeutic
303 needs and providing confined cavities for improved catalytic activity⁵⁵⁻⁵⁸.

304 The HA motif can be replaced with other metal chelators to diversify the metal
305 coordination motifs used to drive protein self-assembly. Non-native metal-binding motifs^{15,16} (e.g.,
306 bipyridine, terpyridine, 1,10-phenanthroline, and 8-hydroxyquinoline), in addition to minimally
307 explored siderophore-inspired metal-coordinating functional groups⁵⁹ (catechols or phenolates),
308 can be used for protein derivatization and cage formation in a similar manner to the HA motif
309 described in this Protocol. One advantage of exploring different metal binding groups is the ability
310 to probe the effect of bidentate vs. tridentate ligands (e.g., bipyridine vs. terpyridine) on self-
311 assembly products. Depending on the positioning of these ligands and the choice of protein
312 scaffold, it may be possible to achieve different cage symmetries by altering the ligand
313 coordination or varying the order of metal ion addition when using a bimetallic scaffold.

314 Additionally, such chelates often give rise to metal complexes with strong electronic
315 absorption^{60,61} or luminescence properties⁶², meaning that the formation of protein assemblies can
316 be readily monitored. Diversification of the metal coordination motifs can also be achieved
317 through the incorporation of unnatural amino acids (UAA) to enable *in vivo* formation of metal-
318 driven protein cages. Existing UAAs (*e.g.*, BpyAla⁶³ and HQ-Ala⁶⁴) can be incorporated onto self-
319 assembling cytochrome *cb*₅₆₂ protein scaffolds while parallel studies to generate a HA-bearing
320 UAA can be performed to readily assemble protein cages *in vivo*.

321

322 *Applications of linker-mediated 3D protein-MOFs*

323 The use of ditopic HA bridging linkers to bridge protein nodes into ordered lattices can be
324 implemented as a strategy for the ligand-mediated crystallization of symmetric building blocks by
325 leveraging the strong metal coordination interactions that drive protein-MOF assembly. The
326 versatility of protein-MOF construction can be expanded by increasing the scope of the protein
327 building blocks and ditopic bridging ligands. Systematic modulation of protein-MOF components
328 has already been shown to alter crystal behavior (*e.g.*, improved thermal stability in Ni²⁺- vs. Zn²⁺-
329 ferritin-MOFs)²⁰ and further exploration into new proteins and ligands may yield unique bulk
330 materials properties resulting from the underlying molecular arrangements. Investigating other
331 proteins bearing alternative symmetries (*e.g.*, *T* or *I* symmetry) would alter the lattice patterning
332 of the resultant protein-MOFs. In addition, using HA bridging ligands bearing functional
333 molecules can impact the dynamic behavior of the resultant crystalline scaffolds. Incorporating
334 new moieties (*e.g.*, fluorescent dyes⁶⁵, light-responsive azobenzenes⁶⁶, and large coiled-coil
335 peptide or DNA biomolecules) onto the HA ligand scaffold will enable the formation of dynamic

336 frameworks with chemical tunability and functional versatility and serve to advance the design
337 and construction of a new class of crystalline 3D frameworks.

338

339 **Comparison with other methods**

340 *Construction of protein cages*

341 Genetic fusion of symmetric proteins, or peptides, has proven to be an effective strategy
342 for generating uniform protein cages²⁴⁻²⁶. In this strategy, a pair of oligomeric proteins or peptides
343 with appropriate symmetries and topologies are selected and their monomeric components are
344 subsequently fused with peptide linkers to create chimeric building blocks that self-assemble into
345 cage-like architectures. However, genetic tethering of two proteins necessitates C-terminus to N-
346 terminus linkages and may even require protein restructuring using circular permutation to link the
347 proteins at an orientation optimal for self-assembly, which will require judicious selection of both
348 linker placement and the target protein(s). Computational techniques for interface redesign
349 between symmetric building blocks have enabled the generation of a diverse array of protein
350 cages^{28,29,67,68}. Protein design affords the creation of thousands of candidates towards a particular
351 assembly motif which, in conjunction with high throughput screening, permits experimental
352 validation of hundreds of potential targets. Thus far, a focus of interface design has required that
353 interprotein interfaces often consist of extensive hydrophobic patches and electrostatic interactions
354 that effectively “glue” the proteins together to create exceptionally stable complexes at the expense
355 of modularity and flexibility. Some recent studies have incorporated responsive elements as part
356 of a designed protein system⁶⁹ and continued improvements to computational design methods will
357 perhaps enable the formation of more sophisticated stimuli-responsive assemblies similar to those
358 present in nature. In addition to computational and genetic strategies, two recent reports describe

359 the use of reversible metal coordination motifs to generate protein cages, either by introducing Au-
360 thiol interactions between 11meric proteins³³ or fusing metal-binding coiled-coil peptides onto a
361 trimeric scaffold³⁴.

362 In contrast to the approaches described above, the metal coordination approach described
363 in this Protocol requires a much smaller design footprint to generate stimuli-responsive bimetallic
364 protein cages from asymmetric monomers. Our approach requires additional manipulation of a
365 protein after expression (bioconjugation to a HA ligand, additional purification, and incubation
366 with metal ions to enable self-assembly) and thus, HA-mediated assemblies cannot be generated
367 *in vivo*. Whereas HA-mediated cages cannot sustain the extreme temperatures and chemical
368 conditions in which computationally designed cages are stable^{10,29}, fewer protein-protein contacts
369 using reversible chemical bonding interactions enable structural flexibility and modularity.
370 Flexibility, in particular, is a necessary component of self-assembly processes to minimize kinetic
371 traps and permit structural rearrangements as well as exhibiting more biologically representative
372 characteristics (e.g., O₂ binding cooperativity of hemoglobin⁷⁰).

373

374 *Construction of 3D protein lattices*

375 Whereas there have been many reports on the construction of *de novo* designed 0-, 1-, and
376 2D protein assemblies, there has been minimal progress in the predictable construction of 3D
377 lattices. Traditionally, protein crystals are formed in supersaturating solutions by vapor diffusion,
378 promoted by the introduction of precipitating agents (e.g., salts and short polymers). However, it
379 remains a challenge to determine the solubility and crystallizability of a given protein based on its
380 sequence and folds, requiring extensive screening and optimization using decades-old strategies
381 to obtain diffraction-quality 3D protein crystals⁷¹. One rational method to improve crystallization

382 has relied on a concept termed surface entropy reduction (SER) wherein flexible residues or loops
383 on the protein surface are replaced with residues and motifs with lower conformational entropy⁷².
384 Alternative approaches have involved the use of designed protein-protein interactions, such as the
385 introduction of disulfide bonds onto monomeric proteins to improve crystallization via
386 symmetrization⁷³ or installation of electrostatic patches onto symmetric proteins to promote the
387 formation of binary protein lattices⁷⁴. Given that no general strategy has been devised for the
388 predictive crystallization of proteins, the aforementioned methods all provide different approaches
389 that one can adopt towards making 3D protein lattices. However, these strategies require
390 considerable manipulation of a protein building block to promote 3D lattice formation and
391 moreover, they provide little control over the molecular arrangements of the proteins within the
392 3D crystal. One advantage provided by HA-mediated crystallization of protein-MOFs is that lattice
393 arrangements can be systematically varied by altering metal ion identity or organic HA linkers to
394 afford synthetic modularity, permitting a limited predictive control over crystal packing behavior.

395

396 **Limitations**

397 *HA-mediated protein cages*

398 The formation of HA-mediated protein cages requires site-specific modification of purified
399 protein and additional purification steps prior to performing self-assembly experiments. These
400 steps necessitate that the protein building block is amenable to multiple rounds of purification and
401 buffer exchange (often via centrifugal filtration). The protein must be devoid of non-engineered
402 Cys residues to eliminate unwanted HA reactivity. Should a protein with internal disulfides be the
403 desired building block, exploring incorporation of the HA motif as a UAA is the best course
404 forward. It is important to note that the use of covalently tethered metal binding motifs to control

405 protein self-assembly is a relatively underexplored concept and the continued advances in protein
406 design over the past few years lend themselves to the marriage of multiple protein engineering
407 strategies, including the ones presented in this Protocol, in the design of novel protein assemblies.
408 Additionally, our HA-mediated protein cages also contain Zn-binding sites introduced for
409 induction of C_2 symmetry, achieved by positioning metal coordinating residues at i and $i+4$
410 positions along an α -helical structural motif on the protein. This may limit the choice of building
411 block to proteins that contain α -helical folds to accommodate metal binding chelates as well as the
412 ability for two proteins to associate at the metal binding interface without steric clashes. In
413 principle, β -sheet containing proteins can also accommodate chelating sites if metal-binding
414 residues are placed at i and $i+2$ positions. Similarly, proteins with well-defined folds can
415 accommodate metal binding by carefully positioning His, Asp or Glu residues such that the side
416 chains are properly oriented to bind transition metal ions in the desired geometry to enable metal-
417 mediated protein-protein association. Such studies would require design of protein scaffolds using
418 computational tools (e.g., PyRosetta⁷⁵) or judicious manual modeling using protein visualization
419 tools, and inevitably, some trial-and-error. These alternative structural solutions present additional
420 options to discover new potential scaffolds for metal-mediated self-assembly.

421

422 *HA-mediated protein-MOFs*

423 The formation of protein-MOFs is inherently favored through the use of a robust building
424 block with internal 3D symmetry (e.g., tetrahedral, octahedral, and icosahedral), which imposes a
425 somewhat strong restriction on the number of potential building blocks that can be used to create
426 similar 3D protein crystals. These proteins must be stable at pH values near 9 to deprotonate the
427 HA motif and increase metal binding affinity. However, our prior work also indicates that a

428 singular protein building block can be used to create diverse protein-MOF structures by
429 interchanging the identity of the HA ligand, resulting in unique emergent materials properties^{11,20,21}.
430 Therefore, the relatively small space of highly symmetric, thermostable and soluble proteins could
431 still yield an array of protein-MOF structures with different structural and functional attributes (see
432 **Applications of the Method** section).

433

434 **Experimental design**

435 *Selection of the protein building block*

436 In this Protocol, we focus on the assembly of HA-mediated protein cages from cytochrome
437 *cb*₅₆₂ and protein-MOFs from HuHF. When considering the application of our procedures to other
438 protein building blocks, there are several criteria to consider.

439 The protein must be soluble and stable in aqueous buffers, ideally over a broad range of
440 pH values (5.0 – 10.0), to accommodate purification, chemical reduction and bioconjugation,
441 multiple centrifugal filtration steps, and incubation with metal ions at ambient temperatures for
442 many days. Biochemical and biophysical characterization of the protein (e.g. size-exclusion
443 chromatography, gel electrophoresis, circular dichroism, and analytical ultracentrifugation) to
444 assess protein purity, chemical and thermal stability, and oligomeric state is useful in determining
445 whether a given building block is amenable to our protocols.

446 Proteins are overexpressed in bacterial *E. coli* cultures, lysed to release soluble proteins,
447 and purified using column chromatography techniques. One of the most common strategies for
448 rapid and facile protein purification involves the use of polyhistidine tags, which are strong metal
449 chelators themselves and must therefore be removed when developing metal-binding protein
450 constructs. This is normally achieved by appending a cleavage site (e.g. TEV- or thrombin-

451 selective cut sites) followed by incubation with the appropriate enzyme after initial purification
452 steps. Cleavage should be followed by additional purification steps to ensure that no extraneous
453 metal-binding residues remain on the protein that may lead to off-pathway oligomerization.

454 Structurally, the protein must also be tolerant to the installation of metal coordinating
455 residues (Cys for HA labeling, His, Asp, or Glu residues for metal coordination) on its surface
456 without decreasing its solubility or stability. More details for each type of HA-mediated assembly
457 are described in the following sections, commenting on both the specifics for the protein building
458 blocks we have explored and considerations for alternative building blocks.

459

460 **HA-mediated protein cages**

461 We chose the monomeric four-helix bundle protein, cytochrome *cb*₅₆₂ for our initial studies
462 based on the aforementioned criteria and familiarity with using this protein in our lab. Since the
463 protein consists almost entirely of α -helices, the precise placement of metal binding residues can
464 be achieved with high specificity without concern for flexible domains altering the position of
465 metal coordination.

466 Generally speaking, α -helices are a convenient structural motif for the installation of any
467 metal coordinating residues, which is especially important for the coordination of transition metal
468 ions to predictably form *C*₂ symmetric interfaces. Proteins with α -helical structural motifs are ideal
469 candidates, when considering a bimetallic scaffold which requires both *C*₂ symmetric Zn²⁺ binding
470 in addition to *C*₃ symmetric HA-mediated Fe³⁺ coordination.

471 In our experience, it is best to place metal-binding residues at rigid, surface exposed sites
472 on a protein.⁷ We previously installed native metal coordinating residues along Helix 1 of
473 cytochrome *cb*₅₆₂ to generate bimetallic protein cage (BMC) variants that were able to selectively

474 coordinate Zn^{2+} ions using native His, Asp, and Glu residues and coordinate Fe^{3+} ions at surface
475 Cys residues modified with HA (**Fig. 5a**)¹⁰. In principle, one can circumvent a bimetallic approach
476 via the selective installation of one or two Cys residues onto a natively oligomeric protein to
477 promote HA-mediated oligomerization. Crucially, the protein must be devoid of any native Cys
478 residues that are not engineered for HA conjugation in order to avoid unwanted modification of
479 multiple residues.

480 In our studies, we observed the formation of both hexameric and dodecameric cages with
481 our BMC variants due to flexibility at the HA site and structural adaptability in secondary
482 coordination to Zn^{2+} ions. Such adaptability is potentially lost when considering a symmetric
483 scaffold. When the building block is arranged into a predetermined geometry (*i.e.* a symmetric
484 building block), the forced symmetry element mitigates the possibility of unforeseen protein
485 arrangements arising from flexible components and unexpected metal coordination. Fortunately,
486 we observed the formation of two different types of cages by using monomeric protein scaffolds
487 bearing metal binding residues. This resulted in unexpected Zn-binding modes due to the
488 flexibility afforded at the HA site and accommodated by a monomeric protein that did not enforce
489 a particular symmetry on the assembly product. Further studies must be performed to more
490 carefully probe the factors that determine assembly geometry to predictively incorporate flexible
491 components that can alter assembly products in the future.

492 Some factors to consider for new protein scaffolds when searching for the ideal location to
493 place a Cys-HA motif include:

494 1. the surface accessibility of the amino acid and its nearby residues (which could be
495 assessed using SASA calculations)

496 2. proximity to bulky neighboring amino acids (e.g., potential negative effects on
497 metal coordination efficacy by placing a Cys residue next to a bulky Trp or charged
498 Arg residue)

499 3. the geometric positioning of additional metal binding sites on the protein (either
500 additional Cys residues for multiple HA binding sites or native metal coordinating
501 residues) to favor the formation of multiple metal nodes in a cooperative fashion
502 to facilitate self-assembly.

503 When determining the placement of HA motifs for our BMC designs (**Fig. 5a**), surface exposed
504 sites were chosen based on a *in crystallo* cage-like assembly observed for a cytochrome protein.⁷⁶
505 Based on our successes, we surmised that the placement of the HA motif must complement the
506 location of a secondary metal coordination motif; in our case, the HA motifs shown in **Fig. 5a** are
507 located on α -helices at the opposite face of Helix 1, the Zn^{2+} coordination interface. Furthermore,
508 building a structural model of the desired assembly can help elucidate appropriate locations along
509 a 3-fold symmetry axis for the placement of an HA motif (see Extended Data Figure 2 in Golub
510 *et. al.*)¹⁰. Finally, while some predictive power is available in designing such structures, it will
511 likely be necessary to test the placement of Cys residues at different surface positions to find the
512 optimal assembly construct.

513

514 *HA-mediated protein-MOFs*

515 We have relied on a symmetric building block to form 3D protein lattices bridged by
516 dihydroxamate linkers. The 24meric, octahedral HuHF is engineered with a His residue at its C_3 -
517 symmetric pores to form a tripodal coordination motif for binding a transition metal ion (**Fig. 5d**)¹¹.
518 The tetrahedral metal coordination site affords stable binding of transition metal ions while

519 presenting a surface-exposed open site for HA binding. Furthermore, there are no discernable
520 protein-protein contacts near the site of HA binding, enabling free access for the HA ligand to
521 form bridging contacts. The addition of the HA bridging linkers connect ferritin molecules via the
522 C_3 sites to form μ m-sized 3D ferritin-MOFs. An octahedral protein building block is not a
523 prerequisite to generate protein-MOF lattices, but the protein must be able to accommodate stable
524 metal coordination nodes at symmetrically positioned surface sites to connect with other proteins
525 and form 2- or 3D lattices.

526 The C_3 symmetric pore of HuHF was particularly useful in this context due to the facile installation
527 of a tripodal metal coordination motif through a single mutation (T122H). A three-coordinate
528 metal binding site is ideal in this instance due to tight coordination to a transition metal ion (a
529 feature most likely absent in monodentate or bidentate metal binding) while leaving an open
530 coordination site for HA binding (which is much more challenging to achieve in a four coordinate
531 site). When searching for alternative scaffolds, the presence of a C_3 symmetric axis would greatly
532 enhance the likelihood of identifying surface locations to easily generate a tripodal metal
533 coordination site and enable the self-assembly of protein-MOFs. Proteins containing internal 3D
534 symmetry (e.g., octahedral or tetrahedral symmetry), like HuHF, are most likely to yield protein
535 MOFs in the current iteration. Such protein building blocks can be readily identified through a
536 survey of the Protein Data Bank (PDB). For instance, selecting for T symmetric proteins in the
537 PDB, one can search for proteins with inherent C_3 symmetries that could potentially be useful for
538 protein-MOF construction. One such protein we have discovered in our search is the *H. halophila*
539 dodecin (PDB ID: 2VXA), which could potentially accommodate a tripodal metal coordination site
540 via a Leu9His mutation.

541

542 ***Synthesis of HA ligands***

543 **HA-mediated protein cages**

544 The synthesis of IHA is performed in a straightforward procedure using commercially
545 available reagents (Fig. 6a).^{10,77} Since IHA is both temperature and light sensitive, we recommend
546 performing a large-scale synthesis of the 2-chloro-N-hydroxamate and only converting a portion
547 of it to IHA as necessary. IHA can be stored protected from light at –20 °C. A similar synthetic
548 approach can be adopted for alternative chelating motifs, provided that there is an amino
549 nucleophile available to conjugate to chloroacetyl chloride. For some motifs such as 8-
550 hydroxyquinoline and 1,10-phenanthroline, there are published procedures for conversion into
551 Cys-reactive iodo ligands¹⁶.

552

553 ***HA-mediated protein-MOFs***

554 The synthetic scheme for *p*-H₂bdh and *m*-H₂bdh is shown in **Fig. 6b, c**^{11,20}. The procedure
555 for both ligands is nearly identical, differing only in the use of dimethyl terephthalate for *p*-H₂bdh
556 and dimethyl isophthalate for *m*-H₂bdh. In both instances, hydroxylamine is first deprotonated by
557 the addition of NaOH followed by the addition of the appropriate “phthalate” molecule to yield
558 the desired product. We initially chose the phthalate-based linkers to maintain molecular rigidity
559 and only introduce flexibility at the site of HA. Different ditopic linkers, varying in the
560 hydroxamate-hydroxamate spacing and/or geometry (e.g., a bent vs. collinear orientation), have
561 been used to demonstrate that the ferritin lattice arrangements can be dictated based on the
562 coordination preference of the transition metal ion and the bridging ligand. In addition to varying
563 HA geometry and altering linkers lengths of phthalate-based HA ligands, we have also explored
564 other aromatic linkers containing different heteroatoms (O, N, or S) that may affect the planarity

565 of the aromatic ring, as well as more flexible linkers containing PEG or carbon spacers in-between
566 the HA motifs. The other bridging linkers can be synthesized as previously described^{20,21}.

567

568 ***Protein conjugation and purification***

569 **HA-mediated protein cages**

570 Before conjugation, Cys-bearing proteins are reduced using a large (50-100-fold) excess
571 of dithiothreitol (DTT) and transferred into an anaerobic chamber (Coy Laboratory Products). The
572 protein solution is buffer exchanged into a freshly degassed reductant-free buffered solution using
573 a 10 D/G column and incubated with a molar excess (15-fold) of IHA to generate the protein-HA
574 conjugate. As an alternative to IHA conjugation in an anaerobic chamber, protein labeling can be
575 performed in the presence of a low concentration of a reductant (e.g. 1 mM TCEP) in an O₂
576 atmosphere. We opted to perform the reaction anaerobically to minimize disulfide formation
577 between protein Cys residues instead of the desired Cys - IHA conjugation.

578 ESI-MS analysis of the crude protein solution is recommended to ensure that the
579 conjugation proceeded successfully prior to additional purification steps. An Ellman's assay can
580 be performed to assess whether there are Cys residues that remain unmodified; in our experiments
581 with cytochrome *cb*₅₆₂, we had to use ESI-MS instead of the Ellman's assay due to overlapping
582 absorbance features⁷⁸ with the covalently tethered heme. While there is some batch-to-batch
583 variability, we routinely observe very little unmodified protein after IHA labeling. If a large
584 amount of unreacted protein persists, the conjugation procedure (reduction of Cys-bearing protein,
585 buffer exchange into a reductant-free buffer, and addition of IHA) can be repeated 1-2 more times
586 to improve conjugation yields.

587 Following conjugation, proteins are purified at pH ≥ 9.5 to deprotonate the amino group of
588 HA and allow for separation from unconjugated protein using ion-exchange chromatography.
589 Purification is performed under reducing conditions to eliminate a monomer:dimer equilibrium
590 among unmodified proteins. As an additional precautionary measure, proteins are also treated with
591 metal chelating agents (EDTA/DPA) prior to applying them onto an ion-exchange column to
592 remove any metal-bound species from the solution.

593 Since cytochrome *cb*₅₆₂ proteins are red, we apply a linear NaCl gradient until we see the
594 protein start to move on the column and elute the protein by holding at that [NaCl]. This allows
595 for better separation between functionalized and native proteins, especially when we use proteins
596 bearing two Cys residues. After the protein band has traveled halfway down the column, the NaCl
597 gradient is continued. When using an uncolored protein, a slowly ramping NaCl gradient is useful
598 in separating unmodified proteins from the protein-HA conjugate. Following these procedures, we
599 can successfully modify and purify single and double Cys-HA BMC variants (**Fig. 5b, c**). BMC3,
600 which forms dodecameric cages, contains Cys63-HA and Cys82-HA; BMC4, which forms *D*₃
601 hexameric cages, contains Cys82-HA.

602

603 ***Metal-mediated protein oligomerization***

604 **HA-mediated protein cages** Metal coordination of HA-bearing BMC proteins with Zn²⁺ and Fe³⁺
605 ions resulted in the self-assembly of discrete dodecameric and hexameric cages. The addition of
606 iron salts must be performed anaerobically to minimize oxidation of iron species to form insoluble
607 iron hydroxides. We have found that, with our cytochrome *cb*₅₆₂ variants, protein cages will form
608 even if Fe²⁺ ions are added. We attribute this behavior to Fe²⁺ oxidation to Fe³⁺ by the covalently

609 tethered heme of cytochrome *cb*₅₆₂, which can be observed in a shift in the Soret maximum (415
610 nm to 421 nm)⁷⁸.

611 Given that most proteins are not likely to oxidize Fe²⁺ species in solution, one must screen
612 multiple Fe³⁺ salts (e.g., FeCl₃, Fe(acac)₃, or Fe(NO₃)₃) to determine which will produce the
613 highest yield of assembly products. For the formation of bimetallic cytochrome *cb*₅₆₂ cages
614 described in this protocol, Fe²⁺/Fe³⁺ ions are first added to the protein solution followed
615 immediately by the addition of Zn²⁺ ions. We did not, however, observe any differences in cage
616 formation when the order of addition of Zn²⁺ and Fe²⁺/Fe³⁺ ions was changed. To further improve
617 cage yields, the protein solution is concentrated 5-6-fold using an Amicon spin filter after an initial
618 3-4 h incubation of protein and metal. We found that we obtained better self-assembly yields when
619 we concentrated the protein after metal incubation than if we performed the reaction at a higher
620 starting protein concentration and omitted the spin filtering step.

621

622 **HA-mediated protein-MOFs**

623 Three components (protein, metal, and linker) must be combined to form protein-MOFs.
624 Incubation of ^H¹²²HuHF with divalent transition metal ions generates protein nodes that can be
625 connected using ditopic HA linkers. We usually form protein-MOF crystals in sitting-drop
626 crystallization trays to more easily manipulate the crystals that form. The components are mixed
627 in the top well with a larger reservoir solution present underneath to promote vapor diffusion.
628 However, unlike traditional protein crystallization, the use of a crystallization tray is not necessary
629 and protein-MOFs can also be formed in solution in a glass or plastic vial. While the exact solution
630 conditions vary slightly, we provide a general set of conditions and recommendations for the
631 formation of high-quality ferritin-MOF crystals in this Protocol. Ferritin-MOFs formed in a range

632 of pH values (8.0 – 10.0). The bridging ligands used to form protein-MOFs suffer from low
633 solubility in aqueous buffers, so lattice formation is generally performed in basic conditions to
634 deprotonate the HA motif and promote metal coordination. We observe the formation of ferritin-
635 MOFs using divalent transition metal ions (*e.g.*, Co^{2+} , Ni^{2+} , Zn^{2+}) wherein the coordination
636 preferences of the metal ion could dictate the resulting 3D lattice symmetry. We recommend a
637 broad screen of transition metal ions to probe the effect of coordination geometry, and possibly
638 redox state of the metal ion, on the formation of protein-MOF lattices. Crystals generally appear
639 in 12-24 h.

640

641 ***Characterization of self-assembly products***

642 **HA-mediated protein cages**

643 For our experiments, we primarily used analytical ultracentrifugation (AUC) and
644 transmission electron microscopy (TEM) techniques to observe the formation of protein cages.
645 Sedimentation velocity analytical ultracentrifugation (SV-AUC) experiments allowed us to
646 characterize protein oligomers in solution and determine the optimal conditions (*e.g.*,
647 [protein]:[metal] ratio, pH, metal ion identity, protein concentration) necessary to form cages.
648 Size-exclusion chromatography (SEC) might be useful as a complementary technique to AUC to
649 reproducibly differentiate cages from protein monomers; based on preliminary experiments, our
650 bimetallic protein cages were not stable in the column matrix so we did not pursue this further.
651 AUC experiments are time-consuming (16-20 h per sample), so we also used negative-stain TEM
652 experiments to search for ca. 10 nm protein cages. If HA-mediated protein oligomers form >5-10
653 nm assemblies, protein solutions can be rapidly screened by TEM to identify promising samples
654 for further analysis using AUC or SEC. Cytochrome *cb562* protein cages form μm -scale 3D crystals

655 in sitting-drop vapor diffusion crystallization trays, allowing us to probe the structure of solution-
656 formed protein cages at atomic resolution using single-crystal X-ray diffraction (sc-XRD)
657 techniques. If crystallization is not feasible, sufficiently large structures can be analyzed using
658 single-particle cryo-electron microscopy.

659 Ferric hydroxamate-bearing siderophores have absorption features at 425-435 nm, which
660 can be measured using a UV-vis spectrometer. It should, therefore, be possible to check for the
661 formation of $\text{Fe}^{3+}:(\text{HA})_3$ complexes using circular dichroism techniques due to ligand chirality
662 around the metal center⁷⁹. We did not, however, observe any strong features by UV-vis or CD
663 experiments with protein cages containing $\text{Fe}^{3+}:(\text{HA})_3$ complexes, which we attributed to strong
664 interfering absorption of the cytochrome cb_{562} heme in the same spectral region. The appearance
665 of these features may be observable when using uncolored proteins and this would be a convenient
666 technique to observe the formation of $\text{Fe}^{3+}:(\text{HA})_3$ complexes in solution.

667

668 **HA-mediated protein-MOFs**

669 After obtaining ferritin-MOF crystals, their molecular details can be probed with sc-XRD
670 experiments. Obtaining high-resolution crystal data can be challenging with ferritin-MOFs due to
671 sparse protein-protein interactions and flexibility at the linker-mediated contact regions. We
672 recommend screening several cryoprotectant solutions to identify optimal freezing conditions⁸⁰ or
673 collecting data at room temperature, as the ferritin-MOFs are sensitive to solution perturbations.
674 We have had success with perfluoropolyether, xylitol, and pentaerythritol propoxylate 5/4 PO/OH
675 (PEP) as cryoprotectants. In addition to sc-XRD experiments, protein-MOFs can be analyzed using
676 small-angle X-ray scattering (SAXS) experiments to identify crystallographic parameters (e.g.,
677 unit cell parameters and lattice symmetry) of a bulk sample containing hundreds of protein crystals

678 (in contrast with probing individual crystals for sc-XRD experiments). SAXS experiments can also
679 be performed in a 96-well tray format which allows for screening protein-MOF growth conditions
680 and crystal stability (*e.g.*, varying pH, temperature, and introduction of organic solvents) rapidly.

681

682 Materials

683 Reagents

684 **CAUTION** Many reagents used in this protocol are potentially harmful and toxic. Please follow
685 the appropriate safety procedures, such as wearing goggles, gloves, and using a fume hood, as
686 described in the protocol.

- 687 • 2,6-Pyridinedicarboxylic acid (DPA; Sigma Aldrich, cat. no. P63808)
- 688 • 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; Biopioneer Inc., C0113)
- 689 • Acetone (\geq 99.5%; Fisher Scientific, cat. no. A18-4)
- 690 • Chloroacetyl chloride (99.0% (GC); Sigma Aldrich, cat. no. 22880)
- 691 • Chloroform (\geq 99.8%; Fisher Scientific, cat. no. C298-4)
- 692 • Deuterated dimethylsulfoxide (DMSO-d₆, Cambridge Isotope Laboratories, Inc., DLM-10)
- 693 • Dichloromethane (\geq 99.5%; Fisher Scientific, cat. no. D37-4)
- 694 • Dimethyl isophthalate (Sigma Aldrich, cat. no. 194239)
- 695 • Dimethyl terephthalate (Sigma Aldrich, cat. no. 185124)
- 696 • Distilled water
- 697 • Dithiothreitol (DTT; Fisher BioReagents, cat. no. BP172)
- 698 • Ethyl acetate (\geq 99.5%; Fisher Scientific, cat. no. E145-4)
- 699 • Ethylenediaminetetraacetic acid (EDTA; Fisher BioReagents, BP118)
- 700 • Ferric (III) chloride hexahydrate (FeCl₃ • 6 H₂O; Fisher Scientific, cat. no. 50146613)

701 • Formvar/carbon-coated Cu TEM grids (Ted Pella, Inc., cat. no. 01754-F)

702 • Hydrazine hydrate (80%, Hydrazine, 51%; Acros Organics, cat. no. 209592500)

703 • Hydrochloric acid (HCl, Fisher Scientific, cat. no. A144S)

704 • Hydroxylamine hydrochloride (Fisher Scientific, cat. no. MK-5258-125)

705 • Iron (II) sulfate (FeSO₄; Fisher Scientific, I146)

706 • Iron (III) acetylacetone (Fe(acac)₃; Sigma Aldrich, cat. no. 517003)

707 • Methanol (\geq 99.8%, Fisher Scientific, cat. no. A412-4)

708 • N,N--diisopropylethylamine (99.5%; Acros Organics, cat. no. AC367841000)

709 • N,N-Dimethylformamide (DMF, Millipore Sigma, cat. no. DX1726)

710 • N-Cyclohexyl-2-aminoethanesulfonic acid (CHES; Grainger, manufacturer model C40020)

711 • n-Hexanes (\geq 98.5%; Fisher Scientific, cat. no. H292-4)

712 • N-Hydroxyphthalimide (98%; Acros Organics, cat. no. 329875000)

713 • Pentaerythritol propoxylate 5/4 PO/OH (PEP; Hampton Research, cat. no. HR2-739)

714 • Silica gel (Fisher Scientific, cat. no. S161-500)

715 • Sodium chloride (NaCl, Fisher BioReagents, cat. no. BP358-10))

716 • Sodium hydroxide (NaOH, Fisher Scientific, cat. no. S318-10)

717 • Sodium iodide (NaI; EMD, cat. no. SX0625-1)

718 • Sodium sulfate anhydrous (Na₂SO₄, \geq 99.0%; Fisher Scientific, cat. no. S421-1)

719 • Trifluoroacetic acid (Oakwood Chemicals, cat. no. 001271)

720 • Tris(hydroxymethyl)aminomethane (Tris; Sigma Aldrich, cat. no. T5941)

721 • Trityl chloride (Triphenylmethyl chloride, 99.43%; Chem Impex Intl Inc., cat. no. 00974)

722 • Uranyl acetate (Electron Microscopy Sciences, cat. no. 22400)

723 • Xylitol (\geq 99.0%; cat. no. X3375)

724 • Zinc chloride (ZnCl₂, Alfa Aesar, A16281)

725

726 *Equipment*

727 • 0.22-μm filter (Acrodisc 25 mm; Pall Corporation, supplier no. 4612)

728 • -20 °C freezer

729 • 5 mL PEEK Sample Loop (BioRad, cat. no. 7500497)

730 • Aluminum foil

731 • Amicon membrane (Millipore Sigma, 3 kDa, cat. no. PLBC07610, 10 kDa, cat. no. PLGC07610)

733 • Amicon Stirred Cell (Millipore Sigma, cat. no. UFSC40001)

734 • Amicon Ultra spin filters (Millipore Sigma, 3 kDa, cat. no. UFC500324, 10 kDa, cat. no. UFC501024)

736 • Balance

737 • Beakers

738 • BioLogic DuoFlow 10 system (BioRad)

739 • Biological pipettes (2 μL, 10 μL, 200 μL, 1000 μL)

740 • Buchner funnel

741 • Cary 60 UV-Vis spectrometer (Agilent)

742 • Cell culture plate (ThermoFisher, cat. no. 150628)

743 • Clear heavy duty Scotch packaging tape

744 • Cryschem crystallization tray (Hampton Research, cat. no. HR3-160)

745 • CrystalWand Magnetic (Hampton Research, cat. no. HR4-729)

746 • Disposable graduated syringes (1 mL, 10 mL)

747 • DynaLoop 90 (BioRad, part no. 750-0450)

748 • Econo-Pac 10DG pre-packed desalting column (Biorad, cat. no. 7322010)

749 • Eppendorf tube rack

750 • Eppendorf tubes (0.65 mL, 1.5 mL)

751 • Erlenmeyer flask (250 mL, 500 mL)

752 • Falcon tube 4-way rack

753 • Falcon tubes (15 mL, 50 mL)

754 • FEI Tecnai G2 Sphera

755 • Graduated cylinders (25, 100 mL)

756 • Light microscope

757 • Macroprep High Q-cartridge column (BioRad, cat. no. 7324124)

758 • Magnetic stir plate with heating capabilities

759 • Magnetic CryoVial (MiTeGen, cat. no. CV-1-50)

760 • Micromass Quattro Ultima Triple Quadrupole mass spectrometer

761 • Mounted CryoLoop (20 micron; Hampton Research, cat. no. HR4-970)

762 • Needles (BD Precision Glide, cat. no. 305176)

763 • NMR spectrometers (1H and 13C, 400 MHz or 500 MHz)

764 • Pasteur pipettes

765 • pH indicator strips

766 • Pipette bulbs

767 • Pyrex crystallizing dish

768 • Quattro Ultima Triple Quadrupole ESI-MS

769 • Reflux condenser

770 • Rotary evaporator (Buchi)

771 • Round-bottom (RB) flasks (50, 100, 250, 500, 1000 mL)

772 • Separatory funnel (100 mL, 1 L)

773 • Side-arm Erlenmeyer flask (250, 500 mL)

774 • Silica gel column (57 × 508 mm, 1000 mL capacity)

775 • Silicone oil (Sigma Aldrich, cat. no. 85409)

776 • Spatula

777 • Teflon-coated magnetic stir bar

778 • Thermometer

779 • TLC Silica gel 60 F254 plate (Merck, cat. no. 105554)

780 • Tweezer (PELCO Biology by Dumont, cat. no. 510)

781 • Vacuum pump

782 • Vinyl anaerobic chamber (Coy Laboratory Products)

783 • Vivaspin 6 centrifugal concentrator (Viva Products, 10 kDa, cat. no. VS0601)

784 • Whatman filter paper (1001-185)

785 • XL-1 analytical centrifuge (Beckman Coulter)

786

787 *Reagent setup*

788

789 **0.5 M DPA/EDTA stock solution**

790 Dissolve 8.356 g DPA and 14.612 g EDTA in 90 mL ddH₂O. Adjust the pH to 8.0 and stir until
791 the salts have completely dissolved. Fill to 100 mL and syringe filter through a 0.22-μm membrane.
792 The solution can be stored for 6 months at room temperature.

793

794 **50 mM CHES (pH 8.5), 150 mM NaCl stock solution**

795 Dissolve 1.04 g CHES and 0.88 g NaCl in 90 mL ddH₂O. Adjust the pH to 8.5 and stir until the
796 salts have completely dissolved. Fill to 100 mL and syringe filter through a 0.22- μ m membrane.
797 The solution can be stored for 6 months at room temperature.

798

799 **50 mM CHES (pH 9.5), 150 mM NaCl stock solution**

800 Dissolve 1.04 g CHES and 0.88 g NaCl in 90 mL ddH₂O. Adjust the pH to 9.5 and stir until the
801 salts have completely dissolved. Fill to 100 mL and syringe filter through a 0.22- μ m membrane.
802 The solution can be stored for 6 months at room temperature.

803

804 **20 mM HEPES (pH 7.5) stock solution**

805 Dissolve 0.477 g of HEPES into 90 mL ddH₂O. Adjust the pH to 7.5 and stir until the salts have
806 completely dissolved. Fill to 100 mL and syringe filter through a 0.22- μ m membrane. The solution
807 can be stored for 6 months at room temperature.

808

809 **50 mM Fe(acac)₃ stock solution**

810 Dissolve 17.7 mg of Fe(acac)₃ into 1 mL ddH₂O. The solution can be stored for 6 h at room
811 temperature.

812

813 **50 mM FeSO₄ stock solution**

814 Dissolve 7.6 mg of FeSO₄ into 1 mL ddH₂O. The solution can be stored for 6 h at room temperature.

815

816 **20 mM Tris (pH 7.5) stock solution**

817 Dissolve 0.242 g of Tris into 90 mL ddH₂O. Adjust the pH to 7.5 and stir until the salts have
818 completely dissolved. Fill to 100 mL and syringe filter through a 0.22- μ m membrane. The solution
819 can be stored for 6 months at room temperature.

820

821 **50 mM Tris (pH 8.5) stock solution**

822 Dissolve 0.606 g of Tris into 90 mL ddH₂O. Adjust the pH to 8.5 and stir until the salts have
823 completely dissolved. Fill to 100 mL and syringe filter through a 0.22- μ m membrane. The solution
824 can be stored for 6 months at room temperature.

825

826 **2% (w/v) Uranyl acetate solution**

827 Dissolve 200 mg of uranyl acetate into 10 mL ddH₂O. Stir in the absence of light for 12 h. Filter
828 the solution through a 0.22- μ m membrane. The solution can be stored for 6 months at 4 °C in the
829 absence of light. Periodically filter the solution through a 0.22- μ m membrane to remove
830 precipitated uranyl salts.

831

832 **50 mM ZnCl₂ stock solution**

833 Dissolve 6.8 mg of ZnCl₂ into 1 mL ddH₂O. The solution can be stored for 6 months at room
834 temperature.

835

836 **FeCl₃ stain** (1% (w/v) solution of 1% ferric (III) chloride hexahydrate in 50% aqueous methanol)

837 Add 1.0 g FeCl₃ into a solution containing 50 mL methanol and 50 mL distilled water.

838

839 **FPLC Buffer A**

840 Dissolve 4.15 g of CHES and 0.309 g of DTT into 950 mL ddH₂O. Adjust the pH to 9.5 and stir
841 until the salts have completely dissolved. Fill to 1000 mL and filter through a 0.22-μm membrane.
842 The solution can be stored for 2-3 d at room temperature.

843

844 **FPLC Buffer B**

845 Dissolve 4.15 g of CHES, 0.309 g of DTT, and 58.44 g of NaCl into 900 mL ddH₂O. Adjust the
846 pH to 9.5 and stir until the salts have completely dissolved. Fill to 1000 mL and filter through a
847 0.22-μm membrane. The solution can be stored for 2-3 d at room temperature.

848

849 **Coy chamber for anaerobic protein self-assembly setup**

850 The anaerobic chamber should be maintained in an oxygen-free (or very low oxygen) atmosphere
851 (e.g., a mix of 10% H₂/90% Ar). Self-assembly buffers are prepared in an anaerobic environment
852 and degassed prior to storage in an anaerobic Coy chamber. Transition metal salts used for self-
853 assembly are taken into the Coy chamber as solid salts in Eppendorf tubes and dissolved into
854 degassed ddH₂O. To set up self-assembly conditions, a stock solution of protein (10-20 μL) was
855 taken into the anaerobic chamber and diluted with degassed buffers.

856

857 **ESI-MS analysis**

858 Small molecule samples are dissolved in methanol and diluted to a concentration of 0.1-1.0 mg/mL
859 using a solution of 50% methanol in water. Protein samples are buffer exchanged into water using
860 Amicon spin filters and diluted to a concentration of 0.1-1.0 mg/mL using a solution of 0.1% TFA
861 and 50% methanol in water.

862

863 **FPLC for protein purification**

864 Equilibrate a Q-cartridge at 3 mL/min in FPLC Buffer A for ca. 10 column volumes prior to
865 loading any protein onto the column. Proteins are loaded using either a 5 mL sample loop or a 90
866 mL DynaLoop and eluted using a linear gradient of NaCl at 3 mL/min. Clean the Q column with
867 ca. 10 column volumes of FPLC Buffer B and equilibrate in FPLC Buffer A prior to the application
868 of additional protein solutions.

869

870 **NMR analysis**

871 ^1H and ^{13}C spectra are collected at ~ 25 °C in DMSO-d₆. NMR chemical shifts (relative to
872 tetramethylsilane) are 2.49 (^1H) and 39.5 (^{13}C) for DMSO-d₆. MestReNova software (Mestrelab
873 Research) is used for spectral analysis.

874

875 **[ALERT: The protocol has two Procedures.]**

876

877 **Procedure 1: HA-mediated protein cages**

878

879 **Preparation of *O*-tritylhydroxylamine (TIMING: 10-12 h)**

880

881 1. Prepare a 250 mL RB flask with a magnetic stir bar and 50 mL of DMF as the solvent.

882 **CAUTION** DMF is a skin irritant, carcinogenic and toxic. Wear goggles and gloves, and work
883 inside a fume hood to avoid breathing in vapors.

884

885 2. Add 10.0 g (61.3 mmol, 1.0 equiv.) of *N*-hydroxyphthalimide and 11.78 mL (67.4 mmol, 1.1
886 equiv.) of *N,N*-diisopropylethylamine to the flask, and stir the solution on a magnetic stir plate.

887 **CRITICAL STEP** The solution should turn bright red (**Fig. 7a**).

888

889 3. Add 17.01 g (61.3 mmol, 1.0 equiv.) of trityl chloride to the stirring solution (300 rpm), and
890 allow the mixture to stir for 2 h at room temperature (25 °C).

891

892 4. Pour the reaction mixture into a 500-mL beaker with 200 mL of distilled water. Vacuum-filter
893 the precipitate with a Buchner funnel lined with filter paper placed on a side-arm Erlenmeyer
894 flask.

895

896 5. Wash the precipitate with an additional 100 mL of distilled water. Allow the precipitate to dry
897 under vacuum for at least 1 h. The resulting crude product, (*N*-(trityloxy)phthalimide), should
898 be a white powder (**Fig. 7b**).

899 **CRITICAL STEP** The white powder should be dried sufficiently to eliminate excess water
900 as the crude product is used directly in the next step without purification. The powder does not
901 have to be completely dry, and minimal water should not affect the next step.

902 **PAUSE POINT** The crude *N*-(trityloxy)phthalimide can be stored at room temperature for at
903 least 3 d.

904

905 6. Dissolve the crude product in 600 mL of chloroform in a 1-L RB flask. Add a magnetic stir
906 bar to the flask.

907 **CAUTION** Chloroform is a skin irritant and toxic substance with high volatility. Wear goggles
908 and gloves, and work under a fume hood to avoid breathing in vapors.

909
910 7. Add 15.0 mL (244 mmol, 3.98 equiv.) of hydrazine hydrate (ca. 51% hydrazine) to 100 mL of
911 methanol. Add the diluted hydrazine solution slowly over 20 min into the stirring solution (300
912 rpm) and allow the mixture to stir for 6 h at room temperature (25 °C).

913 **CAUTION** Hydrazine hydrate is a skin irritant, carcinogenic, and toxic. Wear goggles and
914 gloves, and work inside a fume hood to avoid breathing in vapors.

915
916 8. Pour the reaction mixture into a separatory funnel and mix with 300 mL of distilled water.
917 Separate the organic layer and wash with distilled water (2 × 300 mL).

918
919 9. Collect the organic layer and dry with the addition of anhydrous Na₂SO₄ until you see white
920 clumps. Decant the solution, and remove the solvent via rotary evaporation at 40 °C.

921 **CRITICAL STEP** The crude product should be an off-white oil.

922
923 10. Purify the crude product (*O*-tritylhydroxylamine) via silica gel column chromatography (ca.
924 100 g Silica gel) using a gradient of 0-10% ethyl acetate in hexanes as the eluent. Remove the
925 solvent via rotary evaporation at 40 °C and dry *in vacuo* to give a white solid (**Fig. 7c**). Yield:
926 10.9 g (39.6 mmol, 65% yield) Theoretical Yield: 16.9 g (61.3 mmol)

927 **CRITICAL STEP** The crude product from step 9 can be dissolved in ethyl acetate. The non-
928 dissolvable white precipitate might be on the top of the column and it is not product. Expect to
929 use ~1 L of eluent.

930 **CAUTION** Silica gel may cause an allergic skin reaction and asthma symptoms. Work under
931 a fume hood to avoid breathing the dust.

932 **CAUTION** Hexanes and ethyl acetate are skin irritants with high volatility. Wear goggles and
933 gloves, and work inside a fume hood to avoid breathing in vapors.

934 **TROUBLESHOOTING**

935 **PAUSE POINT** *O*-tritylhydroxylamine can be stored at room temperature for at least 12
936 months.

937

938 **Preparation of 2-iodo-*N*-hydroxyacetamide (IHA) (TIMING: 6-7 h)**

940 11. Prepare a water-ice slurry in a Pyrex crystallizing dish. The temperature should be <4 °C.

941

942 12. Add 2.0 g (7.3 mmol, 1.0 equiv.) of *O*-tritylhydroxylamine and 2.5 mL (14.5 mmol, 2 equiv.)
943 of *N,N*-Diisopropylethylamine to 15 mL of dichloromethane in a 50 mL RB flask with a
944 magnetic stir bar. Place the RB flask into the ice bath such that the entire solution is submerged
945 (**Fig. 7d**).

946 **CAUTION** *N,N*-Diisopropylethylamine is highly flammable and toxic. Wear goggles and
947 gloves and avoid any contact with skin or eyes. Keep away from heat and flames.

948

949 13. Add 0.58 mL (7.3 mmol, 1.0 equiv.) of chloroacetyl chloride to 2.0 mL of dichloromethane.
950 Add the diluted chloroacetyl chloride solution dropwise into the stirring suspension (300 rpm)
951 over 5 min. **CRITICAL STEP** The reaction mixture will turn cloudy.

952 **CAUTION** Chloroacetyl chloride is toxic. Wear goggles and gloves. Avoid any contact with
953 skin or eyes.

954

955 14. Remove the ice bath and allow the mixture to slowly warm to room temperature (25 °C). Stir
956 for 1 h.

957

958 15. Add 15 mL of dichloromethane and pour the mixture into a separatory funnel. Wash with
959 distilled water (3 × 30 mL).

960

961 16. Collect the organic layer and dry it with the addition of anhydrous Na₂SO₄ until you see white
962 clumps. Decant the solution, and remove the solvent via rotary evaporation at 40 °C.

963

964 17. Prepare a solution of 10% (v/v) trifluoroacetic acid in 15 mL of dichloromethane. Add to the
965 residue and stir for 30 min at room temperature (25 °C).

966 **CAUTION** Trifluoroacetic acid is toxic and corrosive. Wear goggles and gloves. Avoid any
967 contact with skin or eyes.

968

969 18. Add 5 mL of methanol to the reaction mixture to get rid of the excess trifluoroacetic acid.
970 Remove the solvent via rotary evaporation at 40 °C.

971

972 19. Add 10 mL ethyl acetate to dissolve the crude product. A white precipitate should form. Filter
973 the white precipitate and retain the filtrate. Remove the solvent from the filtrate via rotary
974 evaporation at 40 °C and dry in vacuo.

975

976 20. Purify the crude product (2-chloro-N-hydroxyacetamide) via silica gel column
977 chromatography using a gradient of 0-100% ethyl acetate in hexanes as the eluent.

978 • Load a 1000 mL capacity silica column (57 × 508 mm) with 25% ethyl acetate in
979 hexanes.

980 • Dissolve the crude reaction mixture in a small volume of ethyl acetate.

981 • Load the sample and run 200 mL of 25% ethyl acetate in hexanes.

982 • Run 400 mL of 50% ethyl acetate in hexanes. A yellow solution will elute (by-product).

983 • Run 400 mL of 75% ethyl acetate in hexanes followed by 400 mL of 100% ethyl acetate.

984 The desired product should elute around 80-100% ethyl acetate in hexanes. The product
985 should be yellow-orange in color.

986 • Follow the elution of the product via thin-layer chromatography (TLC) using a FeCl_3
987 stain.

988 • Remove solvent by rotary evaporation at 40 °C and dry *in vacuo*. Yield: 450 mg (4.1
989 mmol, 57% yield) Theoretical Yield: 800 mg (7.3 mmol)

990 **CRITICAL STEP** Depending on the reaction yield and the size of the column, the product
991 may continue to elute at 100% ethyl acetate. If the column is packed shorter (*e.g.*, a 1-2 inch
992 tall silica bed), the product will elute in fewer fractions.

993 **TROUBLESHOOTING**

994 **PAUSE POINT** The pure product can be stored at room temperature for at least 6 months.

995

996 21. Analyze the structure and purity of the product by NMR spectral analysis. The product can be
997 dissolved in DMSO-d_6 .

998

999 22. Heat an oil bath in a Pyrex crystallizing dish to at least 65 °C.

1000

1001 23. Add 400 mg (3.7 mmol, 1.0 equiv.) of 2-chloro-*N*-hydroxyacetamide and 2.7 g (18.3 mmol,
1002 5.0 equiv.) of NaI to 30 mL of acetone in a 50 mL RB flask fitted with a magnetic stir bar.

1003 Wrap the flask with aluminum foil to perform the reaction in the dark. Attach a reflux
1004 condenser to the flask, and reflux for 1 h.

1005 **CRITICAL STEP** The product formed in the reaction (2-iodo-*N*-hydroxyacetamide) is light
1006 sensitive. Conduct this step in the dark.

1007

1008 24. Allow the mixture to cool and remove the solvent via rotary evaporation.

1009

1010 25. Purify the crude product (2-iodo-*N*-hydroxyacetamide) using a small silica plug with 100%
1011 ethyl acetate as the eluent. Lightly wrap the column in aluminum foil and perform the
1012 purification with minimal ambient light.

- 1013 • Add a small volume (10-15 mL) of ethyl acetate to the crude product.
- 1014 • Run a silica plug with 100% ethyl acetate to remove precipitated salts. The eluent
1015 should be yellow-orange in color
- 1016 • Remove the solvent to yield a solid. Repeat the silica plug 1-2 more times to remove
1017 any residual salts.
- 1018 • Remove the solvent for the final time and dry *in vacuo* overnight. The pure product
1019 should be an orange solid.

1020 Yield: ca. 700 mg (ca. 3.5 mmol, >90% yield) Theoretical Yield: 730 mg (3.7 mmol)

1021 **CRITICAL STEP** A small volume of ethyl acetate is necessary to dissolve the crude product
1022 because NaI is partially soluble in ethyl acetate. If some residual salt remains in the sample
1023 after purification, it should not hinder eventual protein conjugation.

1024 **TROUBLESHOOTING**

1025 **PAUSE POINT** 2-iodo-*N*-hydroxyacetamide can be stored at -20 °C in the dark for at least 6
1026 months.

1027

1028 26. Analyze the structure and purity of the product by NMR spectral analysis. The product can be
1029 dissolved in DMSO-d₆.

1030

1031 **IHA labeling onto Cys-bearing proteins and post-labeling purification (TIMING: 18-24 h)**

1032 **CRITICAL** The self-assembly of cages using protein-HA conjugates has been reported using
1033 engineered variants of cytochrome *cb*₅₆₂¹⁰. The expression and purification of cytochrome *cb*₅₆₂
1034 has been previously described⁸¹. While protein conjugation and cage formation can be performed
1035 as described for other proteins, notes will be placed throughout the protocol specific to the
1036 hemoprotein.

1037 **CRITICAL** IHA labeling and protein self-assembly involves multiple centrifugation steps for
1038 protein concentration, which may not be tolerated by some proteins. If your protein is more
1039 sensitive, buffer exchanging via dialysis to avoid repeated centrifugation is a potential alternative,
1040 but the steps described below presume the use of a protein building block that is amenable to
1041 repeated centrifugation procedures while maintaining stability in solution.

1043 27. Prepare a stock solution of a Cys-bearing protein in a 15-mL Falcon tube. The following
1044 protocol will be using 2.7 mL of 100 μ M protein. For a medium-scale preparation, 2-3 mL of
1045 100 μ M protein is advised.

1046 **CRITICAL STEP** Using a buffered solution of 20 mM Tris (pH 7.5) works well when tested
1047 with cytochrome *cb*₅₆₂ variants. In our hands, a buffered solution at pH 7-8 is appropriate at
1048 this step.

1049

1050 28. Dissolve 4.16 mg (100 equiv.) of DTT in 300 μ L of the same buffer used in Step 27.

1051

1052 29. Add the DTT solution to the protein solution and gently mix to homogeneity to give a final
1053 volume of 3 mL. Place in an anaerobic chamber uncovered (uncap the Falcon tube and place
1054 on a 4-way tube rack) so that there is a chance for any dissolved O₂ to be removed.

1055 **CRITICAL STEP** If using *cb*₅₆₂ proteins, there will be a noticeable colorimetric change from
1056 red to pink due to a spectroscopic shift in the Soret maximum from 415 nm to 421 nm. This
1057 can be confirmed by measuring a small sample of protein on a UV-Vis spectrometer.

1058

1059 30. Equilibrate a 10DG desalting column with a degassed, buffered solution containing 20 mM
1060 HEPES (pH 7.5). A 10DG column with a 10 mL bed volume should be equilibrated with at
1061 least 20 mL of buffer prior to use.

1062 31. Apply up to 3 mL of the protein solution to the column and elute with 4 mL of the degassed
1063 solution containing 20 mM HEPES (pH 7.5).

1064 32. Dissolve 0.9 mg (15 equiv.) of IHA in degassed 100 μ L DMF in a 1.5-mL Eppendorf tube.
1065 Add the IHA solution to the protein, gently mix to homogeneity, and allow to react overnight.

1066 **CRITICAL STEP** Protect the IHA and protein solutions from light to prevent degradation of
1067 IHA prior to protein conjugation. We opt to cover the tubes in aluminum foil for this step.

1068

1069 33. Remove the protein solution from the anaerobic chamber. Analyze the crude conjugated
1070 product by ESI-MS to confirm the formation of the protein-HA adduct.

1071 **CRITICAL STEP** It is important to verify that the IHA conjugation step was successful
1072 before proceeding to the purification procedure. Otherwise, the protein will needlessly be
1073 subject to column chromatography without yielding any HA-conjugated samples.

1074 **TROUBLESHOOTING**

1075 **PAUSE POINT** Crude protein-IHA conjugate can be stored at 4 °C for 1 week or flash frozen
1076 and stored at -80 °C for 6 months.

1077

1078 34. Concentrate the protein solution to 3 mL using a Vivaspin 6 concentrator at 8,000 x g for 5
1079 min. If the volume after concentration is < 3 mL, add a buffered solution containing 20 mM
1080 CHES (pH 9.5) and 2 mM DTT (FPLC Buffer A).

1081

1082 35. Equilibrate a 10DG desalting column with at least 20 mL of a buffered solution containing 20
1083 mM CHES (pH 9.5).

1084

1085 36. Apply 3 mL of the protein solution to the column and elute with 4 mL of FPLC Buffer A.

1086

1087 37. Load the solution using a 5-mL injection loop onto a Duoflow workstation equipped with a
1088 Macroprep High Q-cartridge at 1 ml/min. The column should be equilibrated in FPLC Buffer
1089 A (see Equipment setup).

1090

1091 38. Purify the crude protein-IHA conjugate using a linear gradient over 0 – 0.5 M NaCl using

1092 FPLC Buffers A and B.

1093 • Apply a linear gradient of 0 – 0.3 M NaCl over a 200 mL volume.

1094 • At approximately 0.15 M NaCl, stop the linear gradient and hold at that [NaCl] until protein

1095 begins to elute.

1096 • Once protein begins to elute, proceed with the linear gradient up to 0.3 M NaCl.

1097 • Ramp from 0.3 – 0.5 M NaCl over a 60 mL volume. Any remaining unconjugated protein

1098 should elute during this step.

1099 **CRITICAL STEP** For our cytochrome proteins, we monitor the protein on the Q-cartridge and

1100 stop the linear gradient after observing protein movement. We then maintain this salt concentration

1101 (ca. 0.1 – 0.15 M NaCl) until the band is approximately 50% down the column.

1102

1103 **TROUBLESHOOTING**

1104

1105 39. Assess sample purity of the FPLC fractions by ESI-MS and pool to combine. Fractions near

1106 elution peaks and troughs can be tested first to reduce the total number of samples that need to

1107 be assessed by mass spectrometry.

1108

1109 40. Combine pure fractions and concentrate to < 3 mL using an Amicon equipped with a 3 kDa

1110 membrane.

1111

1112 41. From a 100 mM stock solution, add a DPA/EDTA mixture to the protein solution to a final
1113 concentration of 5 mM DPA/EDTA and incubate for 1-2 h.

1114

1115 42. Equilibrate a 10DG desalting column with at least 20 mL of a buffered solution containing 20
1116 mM Tris (pH 7.5). Apply 3 mL of the protein solution to the column and elute with 4 mL of
1117 the buffered solution containing 20 mM Tris (pH 7.5).

1118

1119 43. Assess protein concentration on a UV-vis spectrometer.

1120
1121 44. (optional) Concentrate the protein using a 10 kDa Amicon spin filter (12,000 \times g, 10 min) to a
1122 final concentration of at least 1 mM. This step is not necessary for self-assembly and was
1123 performed in our lab to make sample preparation easier. If the protein is unstable at high
1124 concentrations, the dilute protein solution must be degassed in the assembly buffer outside the
1125 anaerobic chamber prior to the preparation of protein cages in the following section.

1126 **PAUSE POINT** The pure protein-HA conjugate can be stored at 4 °C for 1 month or flash
1127 frozen and stored at -80 °C for 6 months.

1128

1129 **Preparation of protein cages (TIMING: 1-7 d)**

1130 **CRITICAL** The protocol outlined below details the formation of bimetallic hexameric or
1131 dodecameric cytochrome *cb*₅₆₂ cages with Zn²⁺ and Fe³⁺ coordination. HA motifs will selectively
1132 bind Fe³⁺, so the addition of Zn²⁺ is not necessary for any designed systems solely dependent on
1133 Fe³⁺:(HA)₃ complex formation for self-assembly.

1134

1135 45. Bring a stock solution ($> 500 \mu\text{M}$) of HA-conjugated protein in a 0.65-mL Eppendorf tube into
1136 an anaerobic chamber. A 15- μL aliquot of 500 μM protein (per Cys-HA) will be required for
1137 one cage sample. If a more dilute protein solution is preferred, samples must be degassed
1138 outside the anaerobic chamber prior to the next steps.

1139 **CRITICAL STEP** Cage preparation must be performed anaerobically. Please refer to
1140 Equipment Setup to ensure the anaerobic chamber contains the necessary reagents and
1141 equipment.

1142

1143 46. Buffer exchange the protein using a 10 kDa Amicon spin filter (12,000 $\times g$, 10 min) into a
1144 degassed, buffered solution containing 20 mM Tris (pH 8.5). Perform the step five times to
1145 ensure that the protein is thoroughly exchanged into the degassed buffer.

1146

1147 47. Remove a small aliquot of protein from the anaerobic chamber and measure its concentration
1148 on a UV-vis spectrometer.

1149 **CRITICAL STEP** A small amount of protein will inevitably be lost during the buffer
1150 exchange process so a volumetric conversion based on the initial protein concentration will
1151 likely be inaccurate.

1152

1153 48. In a 1.5-mL Eppendorf tube, prepare a 50 mM stock solution of FeSO_4 or $\text{Fe}(\text{acac})_3$ in degassed
1154 water. Perform a serial dilution into a second 1.5-mL Eppendorf tube to a final concentration
1155 of 5 mM of the metal salt.

1156 **CRITICAL STEP** Prepare these solutions immediately prior to setup of the self-assembly
1157 solutions. The iron salts form yellow precipitates within a few hours.⁸²

1158

1159 49. Prepare the cage self-assembly solution in a 1.5-mL Eppendorf tube, as detailed in the table
1160 below. Add the components in the order listed. The setup should result in [Protein (per Cys-
1161 HA)] = 20 μ M at a Protein:Fe:Zn ratio of 1:1:3.

1162 **TROUBLESHOOTING**

Component	Ratio	Stock concentration	Final concentration	Volume
Protein	1	500 μ M	20 μ M	15 μ L
Buffer (50 mM Tris pH 8.5)	N/A	50 mM	20 mM	150 μ L
Water	N/A	N/A	N/A	204 μ L
FeSO ₄ or Fe(acac) ₃	1	5 mM	20 μ M	1.5 μ L
ZnCl ₂	3	5 mM	60 μ M	4.5 μ L

1163

1164 50. After 3-4 h, concentrate the self-assembly solution using a 10 kDa Amicon spin filter (12,000
1165 \times g, 10 min) to a final volume of 50 μ L. If the solution volume is too low after concentration,
1166 dilute to 50 μ L using the eluent. Cage formation can be monitored over several days.

1167 **CRITICAL STEP** While the sample preparation as listed above is sufficient to form protein
1168 cages, we have found that the additional concentration step after a few hours of incubation
1169 improves cage yield.

1170

1171 **Characterization of self-assembled cages (TIMING: 2-24 h)**

1172 51. There are various methods to assess protein cage formation and estimate cage yield. Analytical
1173 ultracentrifugation (AUC) enables the quantification of oligomeric species and determine the
1174 overall yield of the cages relative to monomers or smaller oligomers in solution.

1175 In our lab, sedimentation velocity measurements are performed on a XL-1 analytical centrifuge
1176 (Beckman Coulter) and scans are analyzed using SEDFIT. Additional details on AUC
1177 procedures can be found here.^{83,84}

1178 Transmission electron microscopy (TEM) can be used to screen multiple conditions rapidly to
1179 identify conditions that give rise to self-assembled cages. Self-assembled protein cages can be
1180 observed via negative-stain TEM.

1181 In our lab, we perform negative-stain TEM experiments using a FEI Tecnai G2 Sphera operating
1182 at 200 keV and collected micrographs are analyzed using Fiji (<http://fiji.sc/Fiji>).

1183 Protocols for AUC or TEM characterization are described in options A and B respectively .

1184

1185 **(A) AUC characterization of protein cages (TIMING: 16-24 h)**

1186

1187

1188 i. **Experimental setup** Load 350 μ L of the protein sample using a gel-loading tip into a
1189 two-sector cell with a 30-50 μ L excess of an appropriate buffer blank (*i.e.*, the buffer used for
1190 sample preparation from Step 45).

1191

1192 ii. Place the sample cell into the rotor and a weighted blank cell (or secondary sample cell) as a
1193 counterbalance at the opposite location in the rotor. Secure the rotor into the centrifuge, being
1194 sure that the laser attachment is fastened correctly.

1195

1196 iii. Perform a test scan at the wavelength of choice (e.g., 415 nm at the Soret maximum for
1197 cytochrome *cb*₅₆₂ proteins) at 3,000 rpm and 25 °C. This initial measurement is used to ensure
1198 that the sample cell is not leaking and that the absorbance values fall within a reasonable range
1199 (0.5 – 1).

1200

1201 iv. Sediment the sample at 135,000 × g (41,000 rpm) at 25 °C. Monitor continuously at the
1202 wavelength of choice for at least 500 scans for 16-20 h. Once absorbance readings are nearly
1203 0, the sample has fully sedimented.

1204

1205

1206 v. **Sample analysis** Load the sedimentation velocity scans (400-450 scans) into SEDFIT.

1207

1208 vi. Manually set cell and data-fitting limits on the scans. These positions will remain fixed during
1209 the fitting procedure.

1210

1211 vii. Estimate the partial specific volume (mL/g) by taking the quotient of protein volume and the
1212 molecular weight. For *cb*₅₆₂ samples, we use 0.7313 mL/g.

1213

1214 viii. Estimate the buffer viscosity and buffer density of the sample using SEDNTERP.

1215

1216 ix. Enter the estimated partial specific volume, buffer viscosity, and buffer density and fit the data
1217 to a continuous molecular weight (c(M)) or sedimentation coefficient (c(S))distribution. Use
1218 an initial confidence of 0.95.

1219

1220 x. Use the “Run” command in SEDFIT to set the baseline and time-invariant noise of the scans.

1221

1222 xi. After an initial run, fit the weight-averaged frictional coefficient (f/f_0) of the protein using the
1223 “Fit” command. The value should be between 1.1 – 1.4 for symmetric structures. At this stage,
1224 use an initial confidence of 0.0.

1225

1226 xii. After fitting, use the “Run” command at a confidence of 0.95 to yield the final distribution
1227 profile.

1228

1229 The final distribution profile can be copied into a spreadsheet and plotted to afford molecular
1230 weight distributions (c(M)) or sedimentation distributions (c(S)) and determine the percentage of
1231 each oligomeric species present in the sample.

1232

1233 **(B) TEM characterization of protein cages (TIMING: 1-2 h)**

1234

1235

1236

1237 i. **Sample preparation** Using an Emitech K100X Glow Discharge machine, negatively
1238 glow-discharge formvar/carbon-coated Cu grids (Ted Pella, Inc.) at ~25 mA for 45 s.

1239

1240 ii. Using a reverse tweezer, pick up the grid. Pipette 3.5-4 μ L of the protein solution from Step
1241 46 onto the glow-discharged side of the grid and allow to bind for 5 min.

1242

1243 iii. Prepare 3 \times 20 μ L water droplets on parafilm. Gently wash the grids with MilliQ water by
1244 dipping the grid into a water droplet and blotting using Whatman filter paper. Repeat this
1245 process for all three water droplets.

1246 **CRITICAL STEP** Be sure not to completely dry the grid during the blotting steps. There
1247 should be a small amount of moisture remaining on the grid prior to the addition of uranyl
1248 acetate.

1249

1250 iv. Pipette 3.5 μ L of a 2% uranyl acetate solution onto the grid and allow to bind for 1 min.

1251

1252 v. Blot dry using a Whatman filter paper and return the grid into its storage container.

1253

1254

1255 vi. **TEM imaging** Insert the grid into the sample holder. For imaging, use objective-lens
1256 underfocus settings ranging from 500 nm to 1.5 μ m.

1257

1258 vii. After data collection, micrographs are loaded into Fiji for further analysis.

1259 **TROUBLESHOOTING**

1260

1261 **PROCEDURE 2: HA-mediated protein-MOFs**

1262

1263 **Preparation of bidentate linkers.**

1264

1265 1. In this protocol, we describe the detailed synthesis of *p*-H₂bdh and *m*-H₂bdh (options A
1266 and B). The synthesis of *m*-H₂bdh is nearly identical to that of *p*-H₂bdh, differing primarily in the
1267 addition of dimethyl isophthalate instead of dimethyl terephthalate.

1268 Other bidentate linkers can be used for the formation of protein-MOFs and can be synthesized as
1269 previously reported^{20,21}.

1270 **A Preparation of *N*¹,*N*⁴-dihydroxyterephthalamide (*p*-H₂bdh) (TIMING: 18-24 h)**

1271 i. Pour 20 mL of methanol as the solvent into a 50 mL Falcon tube.

1272

1273 ii. Add 1.06 g (15.45 mmol, 1 equiv.) of hydroxylamine hydrochloride and 1.24 g (30.9 mmol,
1274 2 equiv.) of NaOH to the Falcon tube. Shake vigorously to mix the solution thoroughly and
1275 pour it into a 100-mL RB flask containing a magnetic stir bar.

1276 **CAUTION** Sodium hydroxide is corrosive. Wear gloves and goggles. Avoid
1277 inhalation and any contact with skin or eyes.

1278

1279 iii. Place the RB flask in an ice bath such that the entire solution is submerged for at least 10
1280 min. A solid precipitate (NaCl) should form in the solution.

1281

1282 iv. Vacuum-filter the precipitate with a Buchner funnel lined with filter paper placed on a side-
1283 arm Erlenmeyer flask.

1284

1285 v. Add 1 g (5.15 mmol, 0.33 equiv.) of dimethyl terephthalate to 30 mL of methanol and
1286 combine with the filtrate. Stir the solution overnight at room temperature.

1287

1288 vi. Remove the solvent via rotary evaporation at 40 °C.

1289

1290 vii. Dissolve the remaining solid material in 20 mL H₂O. Add 5% HCl to acidify the solution
1291 to a pH of 5.5. Check the pH periodically while adding HCl using pH strips.

1292 **CRITICAL STEP** A white precipitate should form.

1293 **CAUTION** Hydrochloric acid is corrosive. Wear gloves and goggles. Avoid
1294 inhalation and any contact with skin or eyes.

1295

1296 viii. Vacuum-filter the precipitate with a Buchner funnel lined with filter paper placed on a side-
1297 arm Erlenmeyer flask. Remove the solvent via rotary evaporation at 40 °C and dry *in vacuo*.
1298 Yield: 0.66 g (3.35 mmol, 65% yield), Theoretical yield: 1.01 g (5.15 mmol).

1299 **PAUSE POINT** The pure product can be stored at room temperature for at least
1300 one year.

1301

1302 **B Preparation of N²,N³-dihydroxyisophthalamide (m-H₂bdh) (TIMING: 18-24 h)**

1303

1304 i. Pour 20 mL of methanol as the solvent into a 50 mL Falcon tube.

1305

1306 ii. Add 1.06 g (15.45 mmol, 1 equiv.) of hydroxylamine hydrochloride and 1.24 g (30.9 mmol, 2
1307 equiv.) of NaOH to the Falcon tube. Shake vigorously to mix the solution thoroughly and pour
1308 it into a 100-mL RB flask containing a magnetic stir bar.

1309 **CAUTION** Sodium hydroxide is corrosive. Wear gloves and goggles. Avoid inhalation and
1310 any contact with skin or eyes

1311

1312 iii. Place the RB flask in an ice bath such that the entire solution is submerged for at least 10 min.
1313 A solid precipitate (NaCl) should form in the solution.

1314

1315 iv. Vacuum-filter the precipitate with a Buchner funnel lined with filter paper placed on a side-
1316 arm Erlenmeyer flask.

1317

1318 v. Add 1 g (5.15 mmol, 0.33 equiv.) of dimethyl isophthalate to 30 mL of methanol and combine
1319 with the filtrate. Stir the solution overnight at room temperature.

1320

1321 vi. Remove the solvent via rotary evaporation at 40 °C.

1322

1323 vii. Dissolve the remaining solid material in 20 mL H₂O. Add 5% HCl to acidify the solution to a
1324 pH of 5.5. Check the pH periodically while adding HCl using pH strips.

1325 **CRITICAL STEP** A white precipitate should form.

1326 **CAUTION** Hydrochloric acid is corrosive. Wear gloves and goggles. Avoid inhalation and
1327 any contact with skin or eyes.

1328

1329viii. Vacuum-filter the precipitate with a Buchner funnel lined with filter paper placed on a side-
1330 arm Erlenmeyer flask. Remove the solvent via rotary evaporation at 40 °C and dry *in vacuo*.
1331 Yield: 0.7 g (3.55 mmol, 69% yield), Theoretical yield: 1.01 g (5.15 mmol).

1332 **PAUSE POINT** The pure product can be stored at room temperature for at least one year.

1333

1334 **Preparation of ferritin-MOFs (TIMING: 24-72 h)**

1335 <CRITICAL> In this protocol, we use a variant of human heavy-chain ferritin, ^{H122}HuHF, for the
1336 formation of ferritin-MOFs. The protein can be expressed and purified, as described previously¹¹.
1337 After purification, the protein concentrated to 25 μM (24meric cage), filtered through a 0.22-μm
1338 filter, and stored at 4 °C for long term storage in a buffered solution containing 50 mM CHES (pH
1339 8.5), 150 mM NaCl. Avoid using any buffers that would strongly chelate metal ions and inhibit
1340 protein-HA interactions. When considering alternative protein scaffolds, ensure that the protein is
1341 stable at pH 8-10 at 200 μM for protein-MOF self-assembly conditions (described below).

1342

1343 2. Warm a stock solution of ^{H122}HuHF (25 μM protein in a buffered solution containing 50 mM
1344 CHES (pH 8.5), 150 mM NaCl) to room temperature prior to self-assembly experiments.

1345 Prepare a 10 mM solution of the bidentate bridging linker (*p*-H₂bdh or *m*-H₂bdh) in 50 mM
1346 CHES (pH 9.5), 150 mM NaCl.

1347

1348 3. To determine the optimal conditions for growing high-quality crystals, the concentration of
1349 each component can be varied. As an example, here are variations presented for the
1350 components used to generate ferritin-MOFs: 1-12.5 μM of ferritin cage in a buffered solution

1351 containing 50 mM CHES (pH 8.5), 150 mM NaCl, 0.5-2 mM of the bidentate bridging linker,
1352 and 50-150 equiv. of a transition metal salt (CoCl₂, NiCl₂, or ZnCl₂) per ferritin cage.

1353
1354 Prepare the sitting drop and a reservoir solutions separately and pipette into a 24-well
1355 Cryschem crystallization tray. See the table below for an example set of crystallization
1356 conditions to use for the formation of ferritin-MOFs.

1357 **CRITICAL STEP** A thorough screen of commonly used precipitating and crowding agents
1358 is recommended to identify optimal conditions for the formation of diffraction-quality crystals;
1359 in our experience, low molecular weight PEGs (PEG 300, PEG 350 MME, and PEG 400) or
1360 pentaerythritol propoxylate (5/4 PO/OH) were the most successful. For initial screens, the
1361 reservoir solution can be supplemented with 0-20% of a crystallization precipitant.

1362

1363

Component	Stock concentration	Final concentration	Volume
Reservoir (500 μL)			
NaCl	5 M	150 mM	15 μ L
CHES (pH 8.5)	500 mM	50 mM	50 μ L
ZnCl ₂	10 mM	0.47 mM	23.7 μ L
H ₂ O	N/A	N/A	411.3 μ L
Sitting drop (12 μL)			
Protein	25 μ M	4 μ M	2 μ L

Linker	10 mM	2 mM	2.4 μ L
Reservoir	N/A	N/A	7.6 μ L

1364

1365 4. After preparing 24 screening solutions on a Cryschem Plate, cover the tray with clear
1366 packaging tape. Be sure to press down and flatten the tape across the plate such that the
1367 solutions cannot evaporate or mix with neighboring wells.

1368

1369 5. Inspect the crystal trays under a light microscope. After 24 h, crystals should appear in the
1370 wells. Crystals are suitable for harvesting for structural analysis after 1-2 d.

1371

1372 **Characterization of ferritin-MOFs (TIMING: 2-14 d)**

1373 6. Analyze protein-MOF crystals using sc-XRD and/or SAXS measurements following the steps
1374 in options A and B respectively. For our work, sc-XRD data are collected at a synchrotron
1375 source (e.g., Stanford Synchrotron Radiation Laboratory or the Advanced Light Source at
1376 Lawrence Berkeley National Laboratory) and analyzed using a suite of X-ray crystallography
1377 programs⁸⁵⁻⁸⁸.

1378 SAXS data are collected at a synchrotron source (e.g., Argonne National Laboratory-Advanced
1379 Photon Source) and analyzed using the powder diffraction processing software JADE (MDI).
1380 Minor adjustments for processing ferritin-MOFs can be found in Bailey *et. al.*²⁰

1381

1382 **(A) Structural analysis of ferritin-MOFs using sc-XRD (TIMING: 1-7 d)**

1383

1384

1385 i. Briefly soak a single crystal in a cryoprotectant solution for 5-10 s using a mounted CryoLoop.
1386 For ferritin-MOFs, we have found success using a 50% (w/v) solution of xylitol or PEP in 50
1387 mM CHES (pH 8.5 – 9.5), 150 mM NaCl.

1388

1389 ii. Rapidly plunge the crystals into liquid N₂. Transfer the CryoLoop into a magnetic CryoVial
1390 using a magnetic CrystalWand.

1391 **CRITICAL STEP** Once the crystals are frozen, they should be handled at liquid N₂
1392 temperatures. Do not allow the crystals to warm up to maintain suitable conditions for sc-XRD
1393 data collection.

1394

1395 iii. Collect data at a synchrotron facility. For ferritin-MOFs, data were collected at 100 K using
1396 0.98 Å radiation.

1397

1398 iv. After data collection, process the collected images using a standard protein structural
1399 determination workflow. Briefly, integrate the collected images using iMosflm and scale and
1400 merge the data using Aimless. Perform molecular replacement with Phaser using a previously
1401 solved structure as a search model. Perform rigid-body and further refinements in Phenix.

1402

1403 **(B) Structural analysis of ferritin-MOFs using SAXS (TIMING: 1-7 d)**

1404

1405 i. Prepare crystals for SAXS in 12-well cell culture plates. To gather enough crystals for SAXS
1406 measurements, each plate contains a single metal/linker combination. An example set of

1407 crystallization conditions to generate ferritin-MOFs for SAXS analysis is shown in the table
1408 below.

Component	Stock concentration	Final concentration	Volume
Metal stock solution (5000 μL)			
NaCl	5 M	150 mM	150 μ L
CHES (pH 9.5)	500 mM	50 mM	500 μ L
ZnCl ₂	10 mM	0.789 mM	394.7 μ L
H ₂ O	N/A	N/A	3955.3 μ L
Culture plate well (200 μL)			
Protein	25 μ M	4 μ M	33.3 μ L
Linker	10 mM	2 mM	40 μ L
Metal stock solution	N/A	N/A	126.7 μ L

1409

1410 ii. Crystals should form in 12-24 h. Harvest crystals after 3 days, combining the crystals from all
1411 24 wells into a 1.5-mL Eppendorf tube.

1412

1413 iii. After the crystals are settled into the bottom of the tube, carefully pipette them into a 1.5-mm
1414 quartz capillary tube with 50 μ L of the reservoir solution from the tube. Seal the end of the
1415 capillary with modeling clay. Samples can be shipped to synchrotron facilities and stored under
1416 ambient temperature.

1418 iv. Collect data at a synchrotron facility. For ferritin-MOFs, data were collected with collimated
1419 X-rays (0.7293 Å, 17 keV) with dimensions of 250 x 250 µm and exposure times between 0.5
1420 – 2 s. Scattered radiation was collected with a CDD area detector, and 1D scattering data were
1421 obtained through an azimuthal averaging of 2D data to obtain plots of scattering intensity as a
1422 function of the scattering vector q : $q = 4\pi \sin(\theta) / \lambda$, where θ is $\frac{1}{2}$ of the scattering angle,
1423 and λ is X-ray wavelength.

1424

1425 v. Analyze data using the JADE processing software. Simulated powder diffraction modeling of
1426 the SAXS profiles can be generated in Mercury⁸⁹.

1427

1428 **Timing**

1429 To successfully complete the steps outlined in the protocol, researchers must have expertise in the
1430 following areas: basic organic synthesis, recombinant protein expression and protein purification,
1431 protein bioconjugation, biochemical analysis of proteins (e.g., UV-Vis, circular dichroism, PAGE),
1432 and macromolecular structural biology (e.g., single-crystal XRD, TEM, cryo-EM, SAXS).

1433

1434 Steps 1-10, preparation of O-tritylhydroxylamine: 10-12 h

1435 Steps 11-26, preparation of 2-iodo-N-hydroxyacetamide (IHA): 6-7 h

1436 Steps 27-40, IHA labeling onto Cys-bearing proteins and post-labeling purification: 18-24 h

1437 Steps 41-46, preparation of protein cages: 1-7 d

1438 Steps 47-58, AUC characterization of protein cages: 16-24 h

1439 Steps 59-65, TEM characterization of protein cages: 1-2 h

1440 Steps 66-73, preparation of N^1,N^4 -dihydroxyterephthalamide: 18-24 h

1441 Steps 74-81, preparation of N^2,N^3 -dihydroxyterephthalamide: 18-24 h

1442 Steps 82-85, preparation of ferritin-MOFs: 24-72 h

1443 Steps 86-89, structural analysis of ferritin-MOFs using sc-XRD: 1-7 d

1444 Steps 90-94, structural analysis of ferritin-MOFs using SAXS: 1-7 d

1445

1446

1447

1448 TROUBLESHOOTING

1449 Troubleshooting guidelines can be found in Table 1.

1450

1451 **Table 1: Troubleshooting**

1452

Step	Problem	Possible Reason	Solution
10	The purified product is an oil and challenging to work with.	There is residual solvent trapped in the oil.	(i) Add minimal isopropanol to the oil, sonicate, and dry <i>in vacuo</i> . This should turn the oil into a white powder (ii) After collecting the product fractions, allow the solvent to slowly evaporate in a fume

		hood uncovered. This should result in large crystals along the sides of the glass tubes, which can be washed briefly with hexanes to get rid of impurities.
	The product elutes with the by-products of the reaction.	The by-product has a similar polarity to the product.
		Adjust the gradient from 0-20% ethyl acetate in hexanes to get better separation on the column.
20	The purification of 2-chloro- <i>N</i> -hydroxyacetamide cannot be followed by UV light.	The product is not UV active.
		Apply a FeCl ₃ stain to visualize the product.
25	Synthesis of IHA produces a very low yield	The reaction was not carried out in the dark.
		Cover the reaction flask with aluminum foil and turn the fume hood lights off
31	I do not see any protein-IHA conjugate by ESI-MS	The reaction did not proceed in high yield.
		Repeat steps 27-30. Any Cys residues that were not modified initially

		<p>can be re-reduced and conjugated to IHA.</p>
	<p>The protein is not easily ionized in the mass spectrometer.</p>	<p>Use MALDI instead of ESI-MS to measure the protein mass and determine whether the protein-IHA conjugate was successfully formed.</p>
35	<p>There is only one protein peak observed in the FPLC chromatogram.</p>	<p>IHA conjugation to protein proceeded in high yields.</p> <p>If the conjugation efficiency was nearly quantitative, only one protein species would be observed in the purification procedure.</p>
	<p>Both protein-HA conjugate and unmodified protein eluted at similar times.</p>	<p>(i) Combine fractions and repeat the purification using a slower linear gradient.</p> <p>(ii) Hold [NaCl] once you see movement of the protein bands on the column (for colored</p>

proteins) or hold at a concentration previously identified to be sufficient for protein elution. Hold until the protein elutes or a clear separation of colored bands is visible on the column.

45 There is precipitation in my protein solution after combining all of the components. The [metal]:[protein] ratio is too high, leading to nonspecific metal-mediated aggregation. Screen lower [metal]:[protein] ratios and check whether that results in less aggregation. A lower starting protein concentration may also be necessary if aggregation persists.

Precipitation of Fe salts Make sure to use a freshly prepared Fe stock solution in the anaerobic chamber (Coy Laboratory Products) to

minimize precipitation
of Fe salts.

1453

1454

1455 **Anticipated results**

1456 *HA-mediated protein cages*

1457 Following the procedures detailed in this Protocol, IHA can be synthesized and yield pure
1458 product at an overall yield of 30-35% (**Supplementary Figures 1-5**). Most major impurities
1459 should be removed after the purification of 2-chloro-*N*-hydroxyacetamide. The final conversion of
1460 2-chloro-*N*-hydroxyacetamide to 2-iodo-*N*-hydroxyacetamide can be performed in high yield with
1461 nearly quantitative conversion so additional purification steps are unnecessary and should be
1462 avoided as they will risk degradation of the 2-iodo-*N*-hydroxyacetamide product.

1463 Site-selective conjugation of IHA to Cys-bearing proteins and subsequent purification by FPLC
1464 will yield pure protein conjugate, separated from any unmodified proteins during the FPLC NaCl
1465 gradient (**Fig. 5b, c**). Based on the quantities used in this Protocol, we routinely obtain 30-40%
1466 yield for protein conjugates bearing two Cys residues and 50-60% yield for protein conjugates
1467 bearing a single Cys residue. The conjugation procedure described in this Protocol can be repeated
1468 on a previously modified batch of proteins if overall yields are poor.

1469 Incubation of both Fe²⁺ and Zn²⁺ ions with our cytochrome *cb*₅₆₂ yields discrete dodecameric and
1470 hexameric protein cages (**Fig. 8a-c**). AUC experiments are useful for solution characterization of
1471 the self-assembled particles and additionally serve to help identify conditions under which self-
1472 assembly occurs poorly (*e.g.*, absence of both metal ions and using an impure HA-conjugated

1473 protein solution). Detailed procedures and characterization of HA-mediated protein cages can be
1474 found in Golub *et. al*¹⁰.

1475

1476 *HA-mediated protein-MOFs*

1477 The synthesis of *p*-H₂bdh and *m*-H₂bdh should yield pure product at 60-70% yields. The
1478 procedure should result in minimal impurities, obviating a need for column chromatography to

1479 isolate the pure ditopic HA linkers (**Supplementary Figures 6-9**). **Fig. 8d** represents a
1480 prototypical image of ferritin-MOF crystals formed after incubation of ^{H122}HuHF with Zn²⁺ and *p*-
1481 H₂bdh. If large (> 100 μ m) crystals do not form after 12-24 h, screen precipitants at varying
1482 concentrations. Ferritin-MOF crystals can be readily observed in SAXS experiments, with distinct
1483 SAXS profiles for the HA linker-mediated assembly of body-centered lattices (**Fig. 8e**). The peaks
1484 in the SAXS profile are unique to the molecular arrangement of the lattice and small shifts in these
1485 peaks can reflect changes in lattice symmetry or dimension. Crystals can be grown in a bulk
1486 solution to generate the large volume of sample required for SAXS analysis, whereas diffraction
1487 quality crystals for sc-XRD analysis should be performed in Cryschem crystallization trays.
1488 Detailed procedures and characterization of ferritin-MOFs are described in previous
1489 publications^{11,20,21}.

1490

1491 **Analytical data for synthesized molecules**

1492 ***O*-tritylhydroxylamine**

1493 ^1H NMR: (400 MHz, DMSO-d6) 7.47 – 7.43 (m, 6H, aromatic H), 7.37 – 7.26 (m, 9H, aromatic H), δ 4.95 (br s, 2H). ^{13}C NMR: (100 MHz, DMSO-d6) δ 143.2, δ 128.8, δ 127.8, δ 127.2, δ 90.8. Measured molecular weight (m/z): 242.99 [M – H $^+$ – ONH₂]; calculated: 275.35 [M – H $^+$].

1496

1497 **2-chloro-N-hydroxyacetamide**

1498 ^1H NMR: (300 MHz, DMSO-d6) δ 10.88 (s, 1H), δ 9.15 (s, 1H), δ 3.93 (s, 2H). ^{13}C NMR: (500 MHz, DMSO-d6) δ 162.88, δ 40.45. Measured molecular weight (m/z): 108.37 [M – H $^+$]; calculated: 107.99 [M – H $^+$].

1501

1502 **2-iodo-N-hydroxyacetamide**

1503 ^1H NMR: (300 MHz, DMSO-d6) δ 10.81 (s, 1H), δ 9.09 (s, 1H), δ 3.51 (s, 2H). ^{13}C NMR: (500 MHz, DMSO-d6) δ 164.83, δ –2.01. Measured molecular weight (m/z): 223.85 [M + Na $^+$]; calculated: 223.95 [M + Na $^+$].

1506

1507 ***N^{1,N⁴}*-dihydroxyterephthalamide**

1508 ^1H NMR: (400 MHz, DMSO-d6) δ 11.35 (br s, 2H), δ 9.17 (br s, 2H), δ 7.80 (s, 4H). ^{13}C NMR: (500 Hz, DMSO-d6): δ 163.42, δ 135.04, δ 126.92. Measured molecular weight (m/z) = 196.97 [M + H $^+$]; calculated: 197.05) [M + H $^+$].

1511

1512 ***N^{1,N³}*-dihydroxyisophthalamide**

1513 ^1H NMR: (400 MHz, DMSO-d6) δ 11.30 (br s, 2H), δ 9.14 (br s, 2H), δ 8.14 (s, 1H), δ 7.85 (dd, 2H), δ 7.53 (t, 1H). ^{13}C NMR (500 MHz, DMSO-d6): δ 163.65, δ 133.07, δ 129.29, δ 128.54, δ 125.85. Measured molecular weight (m/z) = 197.05 [M + H $^+$]; calculated: 197.05) [M + H $^+$].

1516

1517 **Acknowledgments**

1518 We thank N. Avakyan and R. Alberstein for helpful discussions. This work was supported by the
1519 US Department of Energy (Division of Materials Sciences, Office of Basic Energy Sciences; DE-
1520 SC0003844; for protein-MOF data collection and analysis) and by the National Science
1521 Foundation (Division of Materials Research; DMR-1602537 and DMR-2004558; for protein cage
1522 data collection and analysis). R.H.S. was supported by the National Institute of Health Chemical
1523 Biology Interfaces Training Grant UC San Diego (T32GM112584).

1524

1525 **Author contributions**

1526 E.G. and F.A.T. conceived the protein cage project. J.Z., J.A.C. and Y.L. synthesized HA ligands
1527 for the protein cage project. E.G. and R.H.S. performed protein cage experiments and data
1528 analysis. J.B.B. and F.A.T. conceived the protein-MOF project. J.B.B. synthesized ditopic HA
1529 ligands and performed protein-MOF experiments and data analysis. R.H.S. and F.A.T. wrote the
1530 manuscript with contributions from all authors.

1531

1532 **Competing interests**

1533 The authors declare no competing financial interests.

1534

1535 **Data availability**

1536 The principal data supporting the findings of this work are available within the figures and
1537 the Supplementary Information. Additional data that support the findings of this study are
1538 available from the corresponding author on request.

1539 **References**

1540

1541 1 Marsh, J. A. & Teichmann, S. A. Structure, Dynamics, Assembly, and Evolution of Protein
1542 Complexes. *Annu. Rev. Biochem.* **84**, 551-575 (2015).

1543 2 Barber, J. Photosystem II: the engine of life. *Q. Rev. Biophys.* **36**, 71-89 (2003).

1544 3 Eitoku, M., Sato, L., Senda, T. & Horikoshi, M. Histone chaperones: 30 years from isolation to
1545 elucidation of the mechanisms of nucleosome assembly and disassembly. *Cell. Mol. Life. Sci.* **65**,
1546 414-444 (2008).

1547 4 Yeates, T. O. Geometric Principles for Designing Highly Symmetric Self-Assembling Protein
1548 Nanomaterials. *Annu. Rev. Biophys.* **46**, 23-42 (2017).

1549 5 Bai, Y., Luo, Q. & Liu, J. Protein self-assembly via supramolecular strategies. *Chem. Soc. Rev.*
1550 **45**, 2756-2767 (2016).

1551 6 Hamley, I. W. Protein Assemblies: Nature-Inspired and Designed Nanostructures.
1552 *Biomacromolecules* **20**, 1829-1848 (2019).

1553 7 Churchfield, L. A. & Tezcan, F. A. Design and Construction of Functional Supramolecular
1554 Metalloprotein Assemblies. *Acc. Chem. Res.* **52**, 345-355 (2019).

1555 8 Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. *Nat. Rev. Mater.* **3**, 17068 (2017).

1556 9 Cannon, K. A., Ochoa, J. M. & Yeates, T. O. High-symmetry protein assemblies: patterns and
1557 emerging applications. *Curr. Opin. Struc. Biol.* **55**, 77-84 (2019).

1558 10 Golub, E. *et al.* Constructing protein polyhedra via orthogonal chemical interactions. *Nature* **578**,
1559 172-176 (2020).

1560 11 Sontz, P. A., Bailey, J. B., Ahn, S. & Tezcan, F. A. A Metal Organic Framework with Spherical
1561 Protein Nodes: Rational Chemical Design of 3D Protein Crystals. *J. Am. Chem. Soc.* **137**, 11598-
1562 11601 (2015).

1563 12 Brodin, J. D. *et al.* Metal-directed, chemically tunable assembly of one-, two- and three-
1564 dimensional crystalline protein arrays. *Nat. Chem.* **4**, 375-382 (2012).

1565 13 Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic
1566 activity. *Science* **346**, 1525-1528 (2014).

1567 14 Churchfield, L. A., Medina-Morales, A., Brodin, J. D., Perez, A. & Tezcan, F. A. De Novo
1568 Design of an Allosteric Metalloprotein Assembly with Strained Disulfide Bonds. *J. Am. Chem.
1569 Soc.* **138**, 13163-13166 (2016).

1570 15 Radford, R. J., Nguyen, P. C., Ditri, T. B., Figueroa, J. S. & Tezcan, F. A. Controlled Protein
1571 Dimerization through Hybrid Coordination Motifs. *Inorg. Chem.* **49**, 4362-4369 (2010).

1572 16 Radford, R. J., Nguyen, P. C. & Tezcan, F. A. Modular and Versatile Hybrid Coordination Motifs
1573 on Alpha-Helical Protein Surfaces. *Inorg. Chem.* **2010**, 7106-7115 (2010).

1574 17 Yang, M. & Song, W. J. Diverse protein assembly driven by metal and chelating amino acids
1575 with selectivity and tunability. *Nat. Commun.* **10**, 5545 (2019).

1576 18 Wong, G. B., Kappel, M. J., Raymond, K. N., Matzanke, B. & Winkelmann, G. Coordination
1577 chemistry of microbial iron transport compounds. 24. Characterization of coprogen and
1578 ferricrocin, two ferric hydroxamate siderophores. *J. Am. Chem. Soc.* **105**, 810-815 (1983).

1579 19 Crumbliss, A. L. Iron bioavailability and the coordination chemistry of hydroxamic acids. *Coord.
1580 Chem. Rev.* **105**, 155-179 (1990).

1581 20 Bailey, J. B., Zhang, L., Chiong, J. A., Ahn, S. & Tezcan, F. A. Synthetic Modularity of Protein-
1582 Metal-Organic Frameworks. *J. Am. Chem. Soc.* **139**, 8160-8166 (2017).

1583 21 Bailey, J. B. & Tezcan, F. A. Tunable and Cooperative Thermomechanical Properties of Protein-
1584 Metal-Organic Frameworks. *J. Am. Chem. Soc.* (2020).

1585 22 Padilla, J. E., Colovos, C. & Yeates, T. O. Nanohedra: Using symmetry to design self assembling
1586 protein cages, layers, crystals, and filaments. *Proc. Natl. Acad. Sci. USA* **98**, 2217-2221 (2001).

1587 23 Lai, Y.-T., Cascio, D. & Yeates, T. O. Structure of a 16-nm Cage Designed by Using Protein
1588 Oligomers. *Science* **336**, 1129 (2012).

1589 24 Lai, Y.-T. *et al.* Structure of a designed protein cage that self-assembles into a highly porous
1590 cube. *Nat. Chem.* **6**, 1065-1071 (2014).

1591 25 Cannon, K. A., Nguyen, V. N., Morgan, C. & Yeates, T. O. Design and Characterization of an
1592 Icosahedral Protein Cage Formed by a Double-Fusion Protein Containing Three Distinct
1593 Symmetry Elements. *ACS Synth. Biol.* **9**, 517-524 (2020).

1594 26 Cristie-David, A. S. *et al.* Coiled-Coil-Mediated Assembly of an Icosahedral Protein Cage with
1595 Extremely High Thermal and Chemical Stability. *J. Am. Chem. Soc.* **141**, 9207-9216 (2019).

1596 27 Sinclair, J. C., Davies, K. M., Venien-Bryan, C. & Noble, M. E. M. Generation of protein lattices
1597 by fusing proteins with matching rotational symmetry. *Nat. Nanotechnol.* **6**, 558-562 (2011).

1598 28 Hsia, Y. *et al.* Design of a hyperstable 60-subunit protein dodecahedron. *Nature* **535**, 136-139
1599 (2016).

1600 29 Bale, J. B. *et al.* Accurate design of megadalton-scale two-component icosahedral protein
1601 complexes. *Science* **353**, 389-394 (2016).

1602 30 Gonen, S., DiMaio, F., Gonen, T. & Baker, D. Design of ordered two-dimensional arrays
1603 mediated by noncovalent protein-protein interfaces. *Science* **348**, 1365-1368 (2015).

1604 31 Suzuki, Y. *et al.* Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals.
1605 *Nature* **533**, 369-373 (2016).

1606 32 Alberstein, R., Suzuki, Y., Paesani, F. & Tezcan, F. A. Engineering the entropy-driven free-
1607 energy landscape of a dynamic nanoporous protein assembly. *Nat. Chem.* **10**, 732-739 (2018).

1608 33 Malay, A. D. *et al.* An ultra-stable gold-coordinated protein cage displaying reversible assembly.
1609 *Nature* **569**, 438-442 (2019).

1610 34 Cristie-David, A. S. & Marsh, E. N. G. Metal-dependent assembly of a protein nano-cage.
1611 *Protein Sci.* **28**, 1620-1629 (2019).

1612 35 Song, W. J., Sontz, P. A., Ambroggio, X. I. & Tezcan, F. A. Metals in Protein-Protein Interfaces.
1613 *Ann. Rev. Biophys.* **43**, 409-431 (2014).

1614 36 Salgado, E. N. *et al.* Metal-Templated Design of Protein Interfaces. *Proc. Natl. Acad. Sci. USA*
1615 **107**, 1827-1832 (2010).

1616 37 Salgado, E. N., Radford, R. J. & Tezcan, F. A. Metal-Directed Protein Self-Assembly. *Acc.
1617 Chem. Res.* **43**, 661-672 (2010).

1618 38 Salgado, E. N., Faraone-Mennella, J. & Tezcan, F. A. Controlling Protein-Protein Interactions
1619 through Metal Coordination: Assembly of a 16-Helix Bundle Protein. *J. Am. Chem. Soc.* **129**,
1620 13374-13375 (2007).

1621 39 Salgado, E. N., Lewis, R. A., Mossin, S., Rheingold, A. L. & Tezcan, F. A. Control of Protein
1622 Oligomerization Symmetry by Metal Coordination: C₂ and C₃ Symmetrical Assemblies through
1623 Cu^{II} and Ni^{II} Coordination. *Inorg. Chem.* **48**, 2726-2728 (2009).

1624 40 Brodin, J. D. *et al.* Evolution of Metal Selectivity in Templated Protein Interfaces. *J. Am. Chem.
1625 Soc.* **132**, 8610-8617 (2010).

1626 41 Medina-Morales, A., Perez, A., Brodin, J. D. & Tezcan, F. A. In Vitro and Cellular Self-
1627 Assembly of a Zn-Binding Protein Cryptand via Templated Disulfide Bonds. *J. Am. Chem. Soc.*
1628 **135**, 12013-12022 (2013).

1629 42 Brodin, J. D., Smith, S. J., Carr, J. R. & Tezcan, F. A. Designed, Helical Protein Nanotubes with
1630 Variable Diameters from a Single Building Block. *J. Am. Chem. Soc.* **137**, 10468-10471 (2015).

1631 43 Song, W. J., Yu, J. & Tezcan, F. A. Importance of Scaffold Flexibility/Rigidity in the Design and
1632 Directed Evolution of Artificial Metallo- β -lactamases. *J. Am. Chem. Soc.* **139**, 16772-16779
1633 (2017).

1634 44 Churchfield, L. A., Alberstein, R. G., Williamson, L. M. & Tezcan, F. A. Determining the
1635 Structural and Energetic Basis of Allostery in a De Novo Designed Metalloprotein Assembly. *J.
1636 Am. Chem. Soc.* **140**, 10043-10053 (2018).

1637 45 Edwardson, T. G. W. & Hilvert, D. Virus-Inspired Function in Engineered Protein Cages. *J. Am. Chem. Soc.* **141**, 9432-9443 (2019).

1638 46 Heddle, J. G., Chakraborti, S. & Iwasaki, K. Natural and artificial protein cages: design, structure and therapeutic applications. *Curr. Opin. Struct. Biol.* **43**, 148-155 (2017).

1639 47 Margolin, A. L. & Navia, M. A. Protein crystals as novel catalytic materials. *Angew. Chem. Int. Ed.* **40**, 2205-2222 (2001).

1640 48 Abe, S. *et al.* Design of Enzyme-Encapsulated Protein Containers by In Vivo Crystal Engineering. *Adv. Mater.* **27**, 7951-7956 (2015).

1641 49 McPherson, A. & Gavira, J. A. Introduction to protein crystallization. *Acta Crystallogr. F Struct. Biol. Commun.* **70**, 2-20 (2014).

1642 50 Johnson, J. E. & Speir, J. A. Quasi-equivalent viruses: A paradigm for protein assemblies. *J. Mol. Biol.* **269**, 665-675 (1997).

1643 51 Mateu, M. G. Assembly, stability and dynamics of virus capsids. *Arch. Biochem. Biophys.* **531**, 65-79 (2013).

1644 52 Pearson, R. G. Hard and Soft Acids and Bases. *J. Am. Chem. Soc.* **85**, 3533-3539 (1963).

1645 53 Baldwin, A. D. & Kiick, K. L. Tunable Degradation of Maleimide-Thiol Adducts in Reducing Environments. *Bioconjug. Chem.* **22**, 1946-1953 (2011).

1646 54 Toussaint, L., Bertrand, L., Hue, L., Crichton, R. R. & Declercq, J.-P. High-resolution X-ray Structures of Human Apoferritin H-chain Mutants Correlated with Their Activity and Metal-binding Sites. *J. Mol. Biol.* **365**, 440-452 (2007).

1647 55 Kanekiyo, M., Ellis, D. & King, N. P. New Vaccine Design and Delivery Technologies. *J. Infect. Dis.* **219**, S88-S96 (2019).

1648 56 Butterfield, G. L. *et al.* Evolution of a designed protein assembly encapsulating its own RNA genome. *Nature* **552**, 415-420 (2017).

1649 57 Uchida, M. *et al.* Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis. *ACS Nano* **12**, 942-953 (2018).

1650 58 MaHam, A., Tang, Z. W., Wu, H., Wang, J. & Lin, Y. H. Protein-Based Nanomedicine Platforms for Drug Delivery. *Small* **5**, 1706-1721 (2009).

1651 59 Dreschel, H. & Winkelmann, G. in *Transition metals in microbial metabolism* (eds. G Winkelmann & CJ Carrano) Ch. Iron chelation and siderophores, 1-51 (Amsterdam, The Netherlands, Hardwood Acad., 1997).

1652 60 Kaes, C., Katz, A. & Hosseini, M. W. Bipyridine: The Most Widely Used Ligand. A Review of Molecules Comprising at Least Two 2,2'-Bipyridine Units. *Chem. Rev.* **100**, 3553-3590 (2000).

1653 61 Hofmeier, H. & Schubert, U. S. Recent developments in the supramolecular chemistry of terpyridine-metal complexes. *Chem. Soc. Rev.* **33**, 373-399 (2004).

1654 62 Jiang, P. & Guo, Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. *Coord. Chem. Rev.* **248**, 205-229 (2004).

1655 63 Xie, J., Liu, W. & Schultz, P. G. A Genetically Encoded Bidentate, Metal-Binding Amino Acid. *Angew. Chem. Int. Ed. Engl.* **46**, 9239-9242 (2007).

1656 64 Lee, H. S., Spraggon, G., Schultz, P. G. & Wang, F. Genetic Incorporation of a Metal-Ion Chelating Amino Acid into Proteins as a Biophysical Probe. *J. Am. Chem. Soc.* **131**, 2481-2483 (2009).

1657 65 Li, M. *et al.* Spectroscopic and Crystallographic Investigations of Novel BODIPY-Derived Metal-Organic Frameworks. *Inorg. Chem.* **54**, 1346-1353 (2015).

1658 66 Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. *Chem. Soc. Rev.* **41**, 1809-1825 (2012).

1659 67 King, N. P. *et al.* Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy. *Science* **336**, 1171-1174 (2012).

1660 68 King, N. P. *et al.* Accurate design of co-assembling multi-component protein nanomaterials. *Nature* **510**, 103-108 (2014).

1661 69 Langan, R. A. *et al.* De novo design of bioactive protein switches. *Nature* **572**, 205-210 (2019).

1688 70 Yuan, Y., Tam, M. F., Simplaceanu, V. & Ho, C. New Look at Hemoglobin Allostery. *Chem. Rev.* **115**, 1702-1724 (2015).

1689 71 McPherson, A. & Cudney, B. Optimization of crystallization conditions for biological macromolecules. *Acta Cryst. F. Struct. Biol. Commun.* **70**, 1445-1467 (2014).

1690 72 Goldschmidt, L., Cooper, D. R., Derewenda, Z. S. & Eisenberg, D. Toward rational protein crystallization: A Web server for the design of crystallizable protein variants. *Protein Sci.* **16**, 1569-1576 (2007).

1691 73 Banatao, D. R. *et al.* An approach to crystallizing proteins by synthetic symmetrization. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 16230-16235 (2006).

1692 74 Künzle, M., Eckert, T. & Beck, T. Binary Protein Crystals for the Assembly of Inorganic Nanoparticle Superlattices. *J. Am. Chem. Soc.* **138**, 12731-12734 (2016).

1693 75 Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. *Bioinformatics* **26**, 689-691 (2010).

1694 76 Ni, T. W. & Tezcan, F. A. Structural Characterization of a Microperoxidase Inside a Metal-Directed Protein Cage. *Angew. Chem. Int. Ed.* **49**, 7014-7018 (2010).

1695 77 Michalak, K., Wicha, J. & Wójcik, J. Studies towards dynamic kinetic resolution of 4-hydroxy-2-methylcyclopent-2-en-1-one and its E-O-trityloxime. *Tetrahedron* **72**, 4813-4820 (2016).

1696 78 Faraone-Mennella, J., Tezcan, F. A., Gray, H. B. & Winkler, J. R. Stability and folding kinetics of structurally characterized cytochrome *cb*₅₆₂. *Biochemistry* **45**, 10504-10511 (2006).

1697 79 Carrano, C. J. & Raymond, K. N. Coordination chemistry of microbial iron transport compounds. 10. Characterization of the complexes of rhodotorulic acid, a dihydroxamate siderophore. *J. Am. Chem. Soc.* **100**, 5371-5374 (1978).

1698 80 Pflugrath, J. W. Practical macromolecular cryocrystallography. *Acta Crystallogr. F Struct. Biol. Commun.* **71**, 622-642 (2015).

1699 81 Bailey, J. B., Subramanian, R. H., Churchfield, L. A. & Tezcan, F. A. in *Methods in Enzymology* Vol. 580 (ed Vincent L. Pecoraro) 223-250 (Academic Press, 2016).

1700 82 Hem, J. D. & Skougstad, M. W. Coprecipitation effects in solutions containing ferrous, ferric, and cupric ions. Report No. 1459E, (1960).

1701 83 Lebowitz, J., Lewis, M. S. & Schuck, P. Modern analytical ultracentrifugation in protein science: A tutorial review. *Protein Sci.* **11**, 2067-2079 (2002).

1702 84 Cole, J. L., Lary, J. W., P. Moody, T. & Laue, T. M. Analytical Ultracentrifugation: Sedimentation Velocity and Sedimentation Equilibrium. *Methods Cell Biol.* **84**, 143-179 (2008).

1703 85 Karplus, P. A. & Diederichs, K. Linking Crystallographic Model and Data Quality. *Science* **336**, 1030-1033 (2012).

1704 86 Kabsch, W. Integration, scaling, space-group assignment and post-refinement. *Acta Crystallogr. D* **66**, 133-144 (2010).

1705 87 Kabsch, W. XDS. *Acta Crystallogr. D* **66**, 125-132 (2010).

1706 88 Terwilliger, T. C. *et al.* Phenix - a comprehensive python-based system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.*, Medium: ED (2009).

1707 89 Macrae, C. F. *et al.* Mercury 4.0: from visualization to analysis, design and prediction. *J. Appl. Crystallogr.* **53**, 226-235 (2020).

1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736

1737 **Figure 1 | Hydroxamic acid-mediated protein self-assembly.** **a**, Metal-binding modes for hydroxamic
1738 acids to form a discrete C_3 symmetric node or act as a bridging linker between two metal binding nodes. **b**,
1739 HA-mediated assembly of discrete protein cages via chemical conjugation of a HA motif onto a Cys residue.
1740 **c**, HA-mediated assembly of 3D protein-MOF lattices via ligand-mediated crystallization of symmetric
1741 HuHF.

1742
1743 **Figure 2 | Design strategies for *de novo* protein self-assembly.** **a**, Genetic fusion of natively symmetric
1744 protein oligomers can yield multidimensional assemblies upon protein expression. **b**, Computational
1745 redesign of protein-protein interfaces can be used to generate associative patches between symmetric
1746 building blocks to create larger assemblies. **c**, Installation of Cys residues on a symmetric protein oligomer
1747 can be used to trigger self-assembly via oxidation of Cys thiols. **d**, Installation of metal chelating motifs
1748 onto a protein building block can result in the formation of multidimensional protein assemblies.

1749
1750 **Figure 3 | Experimental overview for the generation of HA-mediated protein cages.** The protocol for
1751 HA-mediated formation of protein cages consists of four major parts: synthesis of a Cys-reactive HA
1752 molecule, protein conjugation and purification, preparation of protein cages, and characterization of the
1753 self-assembled structures.

1754
1755 **Figure 4 | Experimental overview for the generation of HA-mediated protein-MOFs.** The protocol for
1756 HA-mediated formation of protein-MOFs consists of three major parts: synthesis of ditopic HA bridging
1757 linkers, preparation of protein-MOFs with HuHF, and characterization of protein-MOFs.

1758
1759 **Figure 5 | Selection of the protein building blocks for HA-mediated self-assembly.** **a**, Overview of the
1760 cytochrome cb_{562} scaffold with potential binding sites for Zn^{2+} and Fe^{3+} shown as sticks. Mass spectra for
1761 **b**, BMC3 and **c**, BMC4 proteins conjugated to HA. BMC3 contains two Cys-HA motifs, BMC4 contains
1762 one Cys-HA motif. **d**, Structural overview of $^{112}HuHF$ with insets showing tripodal metal coordination at
1763 the three-fold HuHF interface.

1764
1765 **Figure 6 | Synthetic schemes for the generation of HA ligands.** **a**, Chemical synthesis of IHA, broken
1766 down into three major steps. **b**, Chemical synthesis of *p*-H₂bdh. **c**, Chemical synthesis of *m*-H₂bdh. Yields
1767 are reported at each major step of the synthesis.

1768
1769 **Figure 7 | Experimental setup and representative images of products in the synthesis of IHA.** **a**, Setup
1770 for Step 2 in the synthesis of *O*-tritylhydroxylamine. The solution should turn red following the addition of
1771 DIPEA to *N*-hydroxyphthalimide. **b**, Image of crude *N*-(trityloxy)phthalimide (Step 5). **c**, Image of pure *O*-
1772 tritylhydroxylamine (Step 10). **d**, Ice-bath setup for Step 12 in the synthesis of 2-chloro-*N*-
1773 hydroxyacetamide.

1774
1775 **Figure 8 | Anticipated results for HA-mediated protein self-assembly.** **a**, AUC and **b**, TEM
1776 characterization of self-assembled dodecameric BMC3 cages upon addition of Fe^{2+} and Zn^{2+} . **c**, AUC
1777 characterization of self-assembled hexameric BMC4 cages upon addition of Fe^{2+} and Zn^{2+} . Both sets of
1778 AUC profiles reveal smaller, non-specific oligomers under improper self-assembly conditions. Adapted
1779 from reference 10. **d**, Representative light micrograph of *p*-bdh - Zn^{2+} - ferritin-MOFs. **e**, Experimental
1780 SAXS profile for body-centered cubic ferritin-MOF lattice. This figure is adapted in part from reference
1781 10.

1782
1783