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Lower 48 states shle plays ;

i N yettevill Devonian
Santa Maria-y ' j (Ohio)
Ventura-Los

Angeles Basins

*Mixed shale & chalk play
) Current play - Intermediate depth/age stacked play **Mixed shale & limestone play

***Mixed shale & dolostone-
[ Current play - Shallowest/youngest stacked play siltstone-sandstone play

£ ****Mixed shale & limestone-
— Prospective play siltstone-sandstone play
1 Basin

Source: U.S. Energy Information Administration based on data from varioy - = . ; t.» ‘ .
= e — J . - P
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[0 Current play - Oldest stacked play ¥ \}

Updated: April 13, 2015
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Motivation

* How does fracturing fluid alter
hydrocarbon production and CO, storage?

* Can CO, be used as a fracturing agent?

* Can CO, and surfactants extract
hydrocarbons?

* Hydraulic fracturing is implemented to produce
hydrocarbons (over 14,000 permitted wells in
Pennsylvania between 2004 and 2015

* 47 to 91% of the fracturing fluid remains in the
subsurface

* Fracturing fluid can alter petrophysical
characteristics:

* Surface area * Mineralogy
* Porosity * Permeability
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2004-2005 (111 wells) }‘\'}‘ C OR

2006-2007 (875 wells) .«
2008-2009 (1,825 wells)
2010-2011 (4,190 wells)
2012-2013 (3,710 wells)
2014-2015 (3,311 wells)

Marcellus, Utica, and
Upper Devonian Shale Outline

http://marcellus.psu.edu




Shale Formations in Relation to GCS
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Shales as Seals

Shales as Storage
Reservoirs

Hydrocarbon
Production
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* The portion of shale formation being
assessed for storage must be at depths
sufficient for CO, to exist as a dense
supercritical or liquid state (~800 m)

* An appropriate seal system must exist above
the storage formation

* Hydrocarbons must have been produced from
the shale formation via horizontal drlling and
high-volume hydraulic fracturing
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* How does CO, interact
with fracturing fluid Gelg
= = ent cale _—
left behind in shale @ ODK e PHAdSing
0.06% 0.043% gerik

0.011%

Breaker
0.01%

and as a potential
fracturing agent?

Surfactant
0.085%

Crosslinker
0.007%

Other

0.49% Iron Control

1. Fracturing Fluid — Shale 0.004%

Corrosion
Inhibitor
0.002%

2. CO,-Shale

o

Friction
Reducer Acid
0.088% 0.123%

Biocide
0.001%

3. CO,-Water-Shale

4. CO,-Fracturing Fluid-Shale

« Examining petrophysical characteristics including reaction mechanism, precipitation,
dissolution, surface area, porosity, permeability, and mineraloqy of the host formation




— ==INATIONAL
Research Capabilities g i .
| ) TL LABORATORY

Static batch reactors for long-term
experimentation

In-situ Fourier Transform

Infrared Spectroscopy NIST SAXS
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* Utica Shale * Marcellus Shale * Eagle Ford Shale * Barnett Shale
* Stream outcrop (US-1) * Stream outcrop (MS-1) * Kocurek Industries (EF-1) * Kocurek Industries (BS-1)

* Quarry exposure (MS-4)

US-4

M0

ONRION VNI DU VNG 40§ 4

I o A

* Clays * Kerogen
* Kaolinite * [Extracted from the
o Jllite New Albany Shale
* [llite-Smectite
e Chlorte
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Fourier Transform Infrared Spectroscopy  [N=[E
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Conditions Ao
* CO,-Shale Interface * CO,-Fluid-Shale Interface
. , E *  Samples prepared in Millipore Heating
e Dot methanol water to create water film HMOWI_ i
o 400G and seanned at stepwise *  40°C and scanned at stepwise o sl ;»Z,
pressures from 0 to 1200 psig pressures from 0 to 1200 psig

1 .‘E
T ircle
Thin water film / <j} “\ J

Heating Jacket

Pressures Scanned
* OPSI

* 50 PSI

* 100 PSI

* 400 PSI

» 800 PSI

* 1200 PSI
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0.04 1 v,(CO)
Vz(coz)
3 670 655
g : : :
"2 0.02 8 E : : CO, sorption occurs in:
8 g ; Nm@% . .
2 £ P . ; * Micro-porosity of the
2 b e — :E organic fraction
0 & . : : * Surfaces and internal
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IR Results: Wet to Dry

Decreasing
hydration
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Slowly dried sample while collecting IR Scans

* Wet Peak
* Symmetrical centered around 2342

* Dry Peak
 (Centered around 2343 with a shoulder and
second peak centered around 2331
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Feature Relocation SEM

Procedure

Multiple sites selected and 1maged on
pre-exposed shale sample

Sample placed in an autoclave that was
pressurized with dry CO, for 14 days
(40°C and 1500 PSI)

Initial sites were relocated and reimaged

Sample placed in an autoclave with
Millipore water and pressurized with
dry CO, for 14 days (40°C and 1500
P5I)

Initial sites were relocated and reimaged
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Pre-Exposure

Wet CO2 Exposure

5% / w” g

CO2 Exposure

Total Carbon
:l) Sample ID Carbon (%) Std. Dev.
ZI;; Us-1 9.86 0.08
MS-1 6.64 024,
MS-4 14.7 0.2
Total Inorganic Carbon
pamplelD Carbon (%) Std. Dev.
Us-1 941 0.14
MS-1 0:13 0.06
MS-4 55 0.06
Total Organic Carbon
(; sample 1B Carbon (%) Std. Dev.
= us-1 0.45 0.17
< MS-1 6.51 0.22
MS-4 9.2 0.6
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SEM Results: Marcellus Shale N =[R2V

| TL TECHNOLOGY
LABORATORY

Pre-Exposure CO, Exposure
1 IR ’ _-‘.. (

Total Carbon

‘:J Sl Carbon (%) Std. Devw.
ZI:') Us-1 9.86 0.08
MS-1 6.64 024,
MS-4 14.7 0.2

Total Inorganic Carbon

pamplelD Carbon (%) Std. Dev.
Us-1 9.41 0.14
MS-1 0.13 0.06
MS-4 535 0.06

Total Organic Carbon

(; >ample 1B Carbon (%) Std. Dev.
= us-1 0.45 0.17
@ MS-1 6.51 0.22
MS-4 9.2 0.6
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Pre-Exposure CO, Exposure

Total Carbon
Carbon (%) Std. Dev.
Us-1 9.86 0.08
MS-1 6.64 024,
MS-4 1457 0.2

Sample ID

Total Inorganic Carbon
Carbon (%) Std. Dev.
us-1 941 0.14
MS-1 0:13 0.06
MS-4 5.5 0.06

Sample ID

Total Organic Carbon
Carbon (%) Std. Dev.
Us-1 0.45 0.17
MS-1 6.51 0.22
MS-4 9.2 0.6

Sample ID
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SEM Image Analysis

Utica Shale (US-1)

Unexposed

Porosity = 7.6% Porosity = 33%
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Brunauer-Emmett-Teller (BET)
e Autosorb 1-C Analyzer
* (CO2 Adsorption
* 0.3to 0.8 nm pores
* N2 Adsorption
* 1to 35 nm pores

Mercury Intrusion
* Hg Porosimeter
* 3-1,000,000 nm pores

A: Utica Shale (Outcrop)

B: Utica Shale (Prod. Zone)
C: Utica Shale (At Depth)
D: Marcellus Shale

E: Marcellus Shale

F: Eagle Ford Shale

G: Mancos Shale

H: Barnett Shale
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Pore Size Analysis Results
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CO,/Dry Shale:

* Pore size
changes from
micro- to meso-
scale

CO,/Wet Shale:

* Decrease in
micro-pores
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* Additives dissolved in the ? /// / i FraCtul:leatural Fracture
[0S

CO, or frack fluid can v //
adsorb on oil-wet shale ///
surfaces and make the Well - 8 S JJ
surface more oil-phobic, g
thereby promoting the — - > A Reacted with
removal of oil from the _ T —=F L \ SHF e
shale i q

Wateri::e:* I v.d: |Reacted with

* Examine effect of chemical g dry CO,
reactivity coupled with A
. —_— o0
water issue adsorption ‘ ® g @ e
Without Surfactant With Surfactant
Shale is originally oil-wet Shale becomes oil-repellent
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NETL discovered that the chemical composition of shale has a major effect
on CO,-shale interactions

* When carbonate-rich Utica Shale samples were exposed to CO, and water,
significant alterations in pore sizes were observed.

* CO, and water reactions in carbonate rich shales increases porosity at the
meso-scale while decreasing porosity at the micro-scale.

* When sz/icate-rich Marcellus shale samples were exposed to CO, and water, the
pores were unchanged

* Moderate increases in fracture sizes were observed.
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i W ONERT e i
Dry 2331 : v : | :
2343 I 5 S it :
1 1 1
A 1 ! i i
B 1 | Eagle ford M\_
s |Eagleford | : : ,
o[ e i i
R I i i
I 1 ]
B : i .
5 1 | After 1000 100 10 1 0.1 001  0.001
'2 %\’L—‘ Before Exposure After CO, €0, + H,0 Pore Size (um)
E L Barnett
) - =1 Barnett ! '
2400 2380 2360 2340 2320 2300 2390 2360 2330 2300 J\'VAI\,\’_
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i
CO, interaction CO, Dissolution _/\-\—J/\\\.
with clays and in water :
4
kerogen I
I
1000 l(lJO 1l0 I1 Ofl O.E)l 0.001
Major Data Gap: What is the influence of water on oil mobilization via CO, flooding? Pore Size (um)

Large Pores =) Small Pores -1
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Pore Diameter IUPAC Analysis Methods
nm Class.
* Further investigate pore changes and 100000 4 o
quantify if these changes impact flow 3 |
1|/ -
pathways 10,000 E § 3
* Pore changes from reaction with wacropores (81 1of| || | | 18] |2
* CO 1,000 >S0nm | - 2
’ | N
* CO,/fluid (water, brine, and fracturing | dl] n :
chemicals) 100 | CINl S
* Flow experiments in progress i RN IE
. . Mesoporesi é i |8 =
* Can SANS provide more details on R RS = M
matrix scale porosity changes? SO N |
1 llllzc:‘c:;)ores: | | ! — S

Fig. 1. Methods used to estimate porosity and pore size distributions in uncon-
ventional gas reservoirs. Modified from Bustin et al. [1].
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CO,-Shale Interactions Affect on Flow HECHNOLOGY
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* Core Flow Tests 1n Progress to evaluate
whether pore changes impact flow
pathways in the shale matrix

Utica Shale Core Bakken Shale Core

'ENERGY ~ Potential for hydrocarbon extraction and CO, storage -




Future Work

* Predict how different shales
interact with CO, and fluid at
a national scale

* Understand if geochemical
reactions influence storage
mechanisms or hydrocarbon
extraction flow paths

* Quantify the role of shale
formations in CCS activities
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Shale in the Lower 48
[ sShale Plays
I Shale Basins

Data Courtesy U.S. Energy Information
Administration, May 2011
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