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Abstract—Solving dense systems of linear equations is essential
in applications encountered in physics, mathematics, and engi-
neering. This paper describes our current efforts toward the
development of ADELUS (A Dense LU Solver) package for cur-
rent and next generation distributed hardware-accelerated high-
performance computing platforms. The package performs solves
of dense linear systems through partial pivoting LU factorization
on distributed-memory systems with CPUs/GPUs. The matrix
is block-mapped onto distributed memory on CPUs/GPUs and
is solved as if it was torus-wrapped for an optimal balance of
computation and communication. A permutation operation is
performed to restore the results so the torus-wrap distribution
is transparent to the user. The package targets performance
portability by leveraging the abstractions provided in the Kokkos
and Kokkos Kernels libraries. Comparison of the performance
gains versus the state-of-the-art SLATE and DPLASMA GESV
functionalities are provided. Preliminary performance results
from large-scale electromagnetic simulations using the dense LU
solver are also presented.

Index Terms—dense linear systems of equations, distributed
computing, GPU acceleration, LU factorization, performance
portability

I. INTRODUCTION

Solving a dense linear equations system is one of the
most fundamental problems in numerous applications in the
mathematical sciences and engineering, such as biology [1],
economics [2], electrical network analysis, aircraft design,
radar technology [3], etc. We can find dense linear systems
of equations in many applications involving the solutions of
linear partial differential equations formulated as boundary
integral equations including acoustics, electrochemistry, fluid
mechanics [4], elastodynamics, fracture mechanics [5], elec-
tromagnetics (method of moments) [6], etc. In these applica-
tions, the boundaries of the objects of interest are discretized
and the integral equations are formulated into the form of
A*x=b where A is a dense, square matrix, b is (are) the
corresponding right-hand-side (RHS) vector(s), and x is (are)
the unknown solution vector(s).

In order to solve A*x=b, one typically uses direct solvers
with lower-upper (LU) factorization, which decomposes the
matrix A into a lower triangular matrix L and an upper
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triangular matrix U such that A=L*U, due to its high accuracy.
However, LU factorization has a high computational complex-
ity of O(N3), and a memory requirement of O(N2) which might
prevent itself from simulations of extremely large problems.
To reduce the heavily computational burden of direct solvers,
one can seek for iterative solvers with their computational
complexities of 0(N2Vic) where 1£ is the condition number
of matrix A [7]. Many efforts have also been devoted to
further accelerate the iterative solvers. For instance, in the
area of method of moments, many fast factorization schemes
have been proposed in the literature to reduce the cost of
matrix-vector multiplications in iterative solutions using some
suitable expansions of the underlying integral kernel with some
sacrifices of accuracy. Two well-known techniques are the fast
multiple method (FMM) [8] and the multilevel fast multipole
algorithm (MLFMA) [9] which can reduce the computational
complexity to 0(N1•507) and 0(Nlog(NWT), respectively.
Despite its high computational complexity, a direct solver
often provides more accurate results in cases where many
iterative solvers fail to solve correctly and/or fail to converge
because the system matrices are extremely ill-conditioned.
Such problems, e.g. structures supporting high-quality factor
resonances or extremely large problems compared to the
wavelength, are very common in real-world applications.
Therefore, it is essential to have efficient implementations of
direct solvers using distributed-memory hardware-accelerated
computing platforms to mitigate their aforementioned burden
and allow them to target extremely large-scale problems.
Nowadays, most high-performance computing (HPC) plat-

forms are heterogeneous machines that are equipped with cen-
tral processing units (CPUs) and hardware-based accelerators
like graphical processing units (GPUs). Nearly 40 percent
of the total compute power on the TOP500 list comes from
GPU-accelerated systems [10]. The current fastest machine
on the TOP500 list is the Summit system [11] located at
the Oak Ridge National Laboratory (ORNL). The Summit
system contains six NVIDIA V100 GPUs and two POWER9
CPUs per node. The peak double-precision floating-point
performance of the CPU is 44 (cores) x 24.56 GFLOPS
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= 1.08 TFLOPS. The peak performance of the GPUs is 6
(devices) x 7.8 TFLOPS = 46.8 TFLOPS. Recently, the U.S.
Department of Energy has announced plans for three exascale-
class supercomputers: (1) Aurora system [12], built at the
Argonne National Laboratory, will be delivered in 2021 with
sustained performance of 1 exaFLOPS. Each Aurora node
will contain two Intel Xeon scalable processors and six Xe
arch-based GPUs; (2) Frontier system [13] will be built at
ORNL. It is planned to debut in 2021 and deliver 1.5 ex-
aFLOPS of theoretical peak performance. Each Frontier node
will contain one AMD EPYC CPU and four purpose-built
AMD Radeon Instinct GPUs; (3) El Capitan system [14] is
scheduled to be installed in the Lawrence Livermore National
Laboratory (LLNL) in early 2023 and to deliver 2 exaFLOPS
of theoretical peak performance. Each El Capitan node will
contain one AMD EPYC CPU, code-named "Genoe and
featuring the "Zen 4" processor core, and four next-generation
AMD Radeon Instinct GPUs. Next generation exascale HPC
architectures are continuously evolving to allow for larger,
more computationally intensive problems to be solved. At the
same time, they have introduced new challenges to algorithm
designs and implementations due to the significantly different
architectures and programming models. Therefore, it is impor-
tant to design flexible algorithms and flexible implementations
that can perform well (i.e. performance-portable) on various
platforms.

This paper presents ADELUS, a performance-portable
dense LU solver for current and next generation distributed-
memory hardware-accelerated HPC platforms. ADELUS per-
forms LU factorization with partial pivoting and solves
dense linear equation systems using message passing interface
(MPI). The matrix is block-mapped onto the MPI tasks (either
stored on CPU memory or GPU memory). In this work, the
torus-wrap mapping scheme [15], which is transparent to the
users, was adopted for an optimal balance of computation
and communication. MPI processes perform factorization and
solve their own tasks as if the matrix was torus-wrapped. A
permutation operation is performed to restore the results when
the solve completes. In this work, we provide performance
portability by leveraging the abstractions provided in the
Kokkos programming model [16] and KokkosKernels library
[17].

The main contributions of this paper are the following:

. A parallel, dense, performance-portable, LU factorization
algorithm based on torus-wrap mapping.

. An implementation of the LU factorization
algorithm for traditional and accelerator-based
architectures that can achieved 1397 TFLOPS on
900 GPUs. The ADELUS software is available at
https://github.com/trilinos/Trilinos.

. Comprehensive analysis of the performance, scalability,
and the effect of using different memory spaces on
distributed-memory.

. Integration of the dense LU solver into an electromag-
netic application and a demonstration of application per-
formance on 7600 GPUs with 7720 TFLOPS.

The rest of the paper is organized such that Section II
describes related work. Section III provides an overview of
Kokkos and Kokkos Kernels followed by an overview of the
method of moments in Section IV. Section V describes the
implementation of the solver on distributed-memory clusters.
Experimental results are discussed in Section VI. Finally, our
findings are summarized in Section VII.

II. RELATED WORK

There have been many related research efforts in the litera-
ture which makes it infeasible to survey all of them. In this sec-
tion, we hence list the most popular software packages which
implement LU solvers related to distributed memory and/or
GPU accelerators. Distributed-memory implementations are
available in:

. ScaLAPACK [18]: ScaLAPACK can be considered as the
standard library for high-performance dense linear alge-
bra routines on distributed-memory computers. ScaLA-
PACK leverages BLAS and BLACS (Linear Algebra
Communication Subprograms) for extending LAPACK
routines to distributed-memory computing. The library is
currently written in Fortran;

. Elemental [19]: Elemental is a modern C++ library for
distributed-memory, dense and sparse-direct linear alge-
bra, using C++ templates for multiple precision support.
It interestingly distributes the matrix by elements, which
is similar to the torus-wrap mapping scheme used in
ADELUS. Elemental has not been maintained since 2016.
However, the project was forked by the LLNL under
the name Hydrogen, to make use of GPU accelerators,
required by the Livermore Big Artificial Neural Network
toolkit. The supported functionality is only limited to the
basic utilities and BLAS-1,-3 operations;

. DPLASMA [20]: DPLASMA library relies on the PaR-
SEC [21] runtime to schedule tasks from task dependency
graphs, allowing for overlapping of communication and
computation. DPLASMA, however, does not support
GPU acceleration for LU solver. Moreover, DPLASMA
does not support C++ templates.

On the other hand, node-level hardware-accelerated imple-
mentations of the LU solvers are available in:

. CULA [22]: CULA Dense is a GPU-accelerated imple-
mentation of dense linear algebra routines providing a
wide set of LAPACK and BLAS capability;

. MAGMA [23]: The MAGMA library aims to provide
LAPACK functionalities for heterogeneous/hybrid archi-
tectures;

. cuSOLVER [24]: The cuSolver library is a high-level
package based on the cuBLAS and cuSPARSE libraries.
It provides useful LAPACK-like features, such as dense
matrix factorization and solve routines such as LU, QR,
etc.

The SLATE library [25] is the state-of-the-art library that
targets multi-GPU—accelerated distributed-memory systems.
SLATE provides coverage of existing ScaLAPACK function-
alities, both accelerated CPU-GPU based and CPU based.



SLATE uses a modern C++ framework with communication-
avoiding algorithms, lookahead panels to overlap communica-
tion and computation, and task-based scheduling. To the best
of our knowledge, ADELUS is the first effort that addresses
performance portability for LU solver via Kokkos/Kokkos
Kernels libraries on distributed-memory hardware-accelrated
machines.

III. OVERVIEW OF KOKKOS AND KOKKOS KERNELS

As the systems with several different accelerators become
common, the need for portable programming model and
portable algorithms has become critical. Portability can be ad-
dressed using several different approaches such as a directive-
based approach (using OpenMP [26], OpenACC [27]), a
library-based approach (using Kokkos [16], RAJA [28]) or
by writing portable domain-specific languages (DSLs) if the
target domain is small. Each one of these approaches has
their advantages and disadvantages. In this work, we focus on
the Kokkos performance-portable library to develop the dense
LU solver. The primary reason we choose the library-based
portable approach is due to the ability to be used immediately
with CPUs and GPUs effectively, and the availability of an
ecosystem where options to call BLAS or LAPACK function-
ality is available through the Kokkos Kernels library [17].

Kokkos is a templated C++ library that uses meta-
programming so users of the library will write the code once in
templated C++. At compile time these codes are mapped to an
appropriate backend depending compile time template param-
eters. There are backends available for OpenMP, CUDA for
NVIDIA GPUs, and HIP for AMD GPUs. We use the OpenMP
and CUDA backends in this work. Kokkos uses an execution
space to determine where the computation is mapped and
a memory space to determine where data structures live.
Both aspects are key to performance. A Kokkos View is a
data structure to store multidimensional arrays with reference
counting. We utilize the Kokkos View for storing the matrices
and vectors. The matrices and vectors use different layouts
depending on whether the data structures live on the CPUs or
GPUs. In Kokkos library this is called HostSpace and Cu-
daSpace. Furthermore, we also use CudaHostPinnedSpace
for MPI buffers for better performance. Switching the data
structures from one memory space to another is controlled
completely at the compile time with template parameters. The
solver code remains the same for all the options.

Once the data structures are in place and an execution space
is chosen, the key requirement for a dense linear solver is
the availability of BLAS and LAPACK functionality. Kokkos
Kernels library [17] provides portable sparse/dense linear
algebra and graph kernels. It is implemented using Kokkos
for portability. Kokkos Kernels also has interfaces to vendor-
optimized BLAS/LAPACK when appropriate. There are cus-
tom BLAS/LAPACK kernels implemented for performance
or functionality reasons as well. We depend on the Kokkos
Kernels library for BLAS and LAPACK functionality on CPUs
and GPUs. Kokkos Kernels uses the dense matrices stored in

layouts optimized for CPU/GPU architecture and provides the
BLAS/LAPACK functionality needed by the solver.

IV. APPLICATION: METHOD OF MOMENTS FOR LINEAR
ELECTROMAGNETICS

An important class of problems that can be solved with
the ADELUS solver are those encountered in solution of the
boundary element method applied to electromagnetics in the
frequency domain. This class of problems solves Maxwell's
equations in integral form by using the equivalence principle
and employing divergence conforming basis functions for
the currents on the surfaces of interest [6]. These equations
are then tested using the Galerkin approach to produce a
complex, dense, double-precision matrix. In the electromag-
netic's community this is termed the method of moments. The
matrix produced by this numerical technique is then solved by
using ADELUS. Note that the discretization required to solve
problems of interest forces the usage of capability machines
that are efficient in both message passing (MPI), thread-
ing on advanced architectures (GPU'S), and computational
performance. To this end ADELUS has been successfully
integrated with the method of moments code EIGER [29]. This
production code has been used effectively for a large class of
problems and on a variety of compute platforms — its utility
has been extended by the ADELUS solver. The next generation
version of EIGER, GEMMA [30], is currently being developed
to use the Kokkos library to increase performance in the filling
of the matrix as well.

V. PARALLEL LU SOLVER IMPLEMENTATION

In this section, we describe the details of the parallel imple-
mentation of ADELUS, including the matrix implementation
using Kokkos, the torus-wrap.mapping scheme and the LU
solver (factorization, backward solve).

A. ADELUS Inteiface and Storage

The current ADELUS solver requires the matrix and RHS
vectors are packed together and computed before ADELUS
is called since the forward solve is realized by factoring the
matrix with the RHS appended next to the matrix. This sce-
nario is very common in the computational electromagnetics
where users usually compute the matrix and the RHS vectors
before calling the solvers. In order to comply with other LU
solvers, we are going to provide the GETRF and GETRS
functionalities separately in the upcoming ADELUS versions.
As viewed by a user, the matrix is block-mapped to the

MPI processes. The matrix is distributed to the MPI processes
using the criterion: the maximum difference in the number
of rows (or columns) assigned to MPI processes is one. The
same rule is applied to the RHS vectors. ADELUS provides a
distribution utility function for users to calculate the workload
on each MPI process. The function returns the number of rows,
columns and RHS vectors assigned to the process, the row and
column addresses of the matrix portion in the global matrix,
and the row and column indices of the matrix portion in the
block map. Fig. 1 shows an example of mapping the original



matrix and 2 RHS vectors to 6 MPI processes with 3 processes
per row. This information is used by user code to construct
portions of the matrix and RHS vectors correctly on each MPI
process. ADELUS is then called by MPI processes taking the
portions of matrix packed with RHS vectors as their inputs.

Block column id 0

Block row id

o

•N*

3

1
1

2

Fig. 1. An example of ADELUS workload distribution for 6 MPI processes,
3 processes in a row, and 2 RHS vectors. The MPI process indices are shown
in the boxes.

Similar to traditional dense linear solver packages,
ADELUS stores its data (matrix and RHS vector portions) in
each MPI process contiguously in the column-major order. For
portability, the ADELUS data container is implemented by the
Kokkos View with layout as Kokkos::LayoutLeft. The Kokkos
Views are allocated either in the host memory (HostSpace) or
in the device memory (CudaSpace) depending on the desired
execution backend (i.e. CPU, GPU, etc.). For example, one
can allocate a view in the host memory by:

Kokkos : : View<Kokkos : : complex<double >**,
Kokkos : : LayoutLeft ,
Kokkos : : HostSpace>
A( "A" , my_rows , my_c ols );

or in the CUDA device memory by:

Kokkos : : View<Kokkos : : complex<double >**,

Kokkos : : LayoutLeft ,
Kokkos : : CudaSpace>
A( "A" , my_rows , my_c ols );

In the current version of ADELUS, the implementation is
exclusive, that is, the matrix resides in either host memory
(if running on CPU backend) or device (CUDA) memory
(if running on GPU backend). We plan to target a hybrid
implementation where host memory and device memory are
both utilized in the future versions.

B. Torus-Wrap Mapping

The torus-wrap mapping scheme [15] is adopted for work-
load distribution in ADELUS. The advantages of this mapping
are each process has nearly the same workload and the
process idle time is minimized. Assuming the number of
MPI processes P can be factored as P=13, x Pc, one can
construct a block mapping with the block sizes of Mp x
Np, where Mp=N113,- and Np=NIP,. If N is not divisible by
Pr or Pe, some processes will be assigned one more row
and/or column than others. Internally, ADELUS, which uses
the torus-wrap mapping scheme, assigns columns 1, Pc+1,

2/3,+1, ... to process 0, columns 2, Pc+2, 2/3,+2, ... to process
1, etc. For rows, ADELUS assigns rows 1, Pr+1, 2Pr+1,
to process Pc, rows 2, Pr+2, 2Pr+2, ... to process 2/3,, etc. In
other words, the column indices assigned to a MPI process
constitute a linear sequence with step size Pc, and the row
indices are in a sequence separated by Pr. As stated in [15],
it is not necessary to redistribute the block-mapped matrix
among processes for torus-wrapped solver. More specifically,
a block-mapped system can be solved by a solver assuming
a torus-wrapped system. In ADELUS, the solution vectors
are corrected afterwards by straightforward permutations. The
details are transparent to the users. Fig. 2 shows an example
of torus-mapping matrix elements to 6 MPI processes with 3
processes per row.

0120120...
r•

0120120...

1 2 0 ...0 1 2 0

o 1 mid 0 1 min 0 ...

... ... ... ... ... ... ... ...

Fig. 2. An example of ADELUS torus-wrap mapping for 6 MPI processes,
3 processes in a row. The MPI process indices are displayed at each matrix
element.

C. LU Solver

In ADELUS, the LU solver comprises three main steps: LU
factorization+forward solve, backward solve, and permutation.
1) LU Factorization and Forward Solve: Since the forward

solve is performed in a similar way to the LU factorization,
we merge the forward solve with the factorization for coding
simplicity. We implement the conventional right-looking vari-
ant of the LU factorization with partial pivoting of a dense N
x N matrix. The algorithm is summarized in Algorithm 1.
Each MPI process handles its own workload through

Kokkos Kernels BLAS interfaces which are implemented in a
simple, generic way so that the resulting code is able to run
on a wide range of architectures. The BLAS interfaces enable
convenient calls to third-party library routines optimized for
multi-threaded CPU and massively parallel GPU architectures.
Depending on where the data resides in, Kokkos Kernels
calls the right BLAS routines for the targeted backend. The
BLAS operations needed in ADELUS include: (i) Kokkos-
Blas::iamax for finding the local pivot entry in a column
(Line 5 of Algorithm 1), (ii) KokkosBlas::scal for scaling
the column with the inverse of pivot value (Line 10), (iii)
KokkosBlas::copy for copying back and forth between the
matrix and temporary containers (Lines 15, 20, 24, 26, 28,
32, and 34), (iv) KokkosBlas::gemm for updating the matrix
(Lines 23, 37, and 39). Our algorithm requires only simple



communication patterns consisting of point-to-point commu-
nication: MPI_Send, MPI_Recv, MPI_Irecv (Lines 16, 18,
30, and 32 of Algorithm 1) and collective communication:
MPI_Bcast, MPI_Allreduce (Lines 7 and 25). Furthermore,
CUDA-aware MPI is exploited on GPU architectures which
allows direct communication among GPUs without the need
of buffering GPU data through host memory. ADELUS also
has the option of using host pinned memory to buffer GPU
data before communication which can be used for computer
systems not having CUDA-aware MPI.
We employ the delay-updating technique (Line 38 of Algo-

rithm 1) to take advantage of the better efficiency of level-
3 BLAS gemm as compared to level-1 and level-2 BLAS
operations. An appropriate block size parameter BLKSZ can
help enhance the solver performance. A typical value of
BLKSZ for CPU backend are 96 while a typical value of
BLKSZ for GPU backend are 128. These numbers are used
in our performance evaluation in Section VI. The algorithm
utilizes overlapping technique which performs column updates
within a block one column at a time. To minimize the waiting
time, the algorithm attempts to do row work while waiting for
column to arrive.
2) Backward Solve: In the backward solve phase, the

elimination of the RHS is performed by the process owning
the current column using the Kokkos paralleljor (Line 4
through Line 6 of Algorithm 2). The results from the elimina-
tion step are broadcasted to all the processes within the MPI
column sub-communicator (Line 7). The KokkosBlas::gemm
is then called to update the RHS (Line 8). To prepare for the
next iteration, the newly-computed RHS vectors are sent to
the processes to the left.
3) Permutation: Since the torus-wrapping scheme is as-

sumed by the solver while the input matrix is not torus-
wrapped, permutation of the solution vectors must be car-
ried out to "unwrap the results". Each process that owns
local solution vectors creates a temporary buffer for global
solution vectors. The permutation simply involves a Kokkos
paralleljor to fill the local vectors to the right locations in
the global vectors and an MPI_Allreduce to collectively update
the change from other processes.

VI. RESULTS

A. Experimental Setup

We perform our experimental work using two computing
systems: (1) the Summit system at the Oak Ridge Leadership
Computing Facility (OLCF), and (2) the Sierra system at the
Lawrence Livermore National Laboratory.
(1) The Summit system contains 256 racks, each with

eighteen IBM POWER9 AC922 nodes, for a total of 4,608
nodes. Each node contains two POWER9 CPUs, twenty two
cores each, and six V100 GPUs. Each node has 512GB of
DDR4 memory. Each GPU has 16GB of HBM2 memory. The
processors within a node are connected by NVIDIA's NVLink
2.0 interconnect. Each link has a peak bandwidth of 25 GB/s
(in each direction). The nodes are connected with a Mellanox
dual-rail enhanced data rate (EDR) InfiniBand.

Algorithm 1: LU factorization and forward solve on
MPI process p

Require: Matrix portion Z (Mpx(Np+Nhs))
MPI process p owns row set rp and column set cp

// number of columns saved for update
2 colcnt = 0
3 for j = 1 to N do

/ / Find pivot
4 if j E cp then

// Find maximum of entries in
column j

s KokkosBlas iamax(Zierpo)
6 71) <— Zsp , j
7 Exchange to compute 7 <— maxp7P
8 s <— row index containing the entry 7

// Generate column update vector v
from column j of Z

9 if j E cp then
lo KokkosBlas scal(Zierp,3,117)
11 if j E rp then
12 Zj j= Zj j* / Restore diagonal
13 if s E rp then
14 Zso = Zs,3 *-y// Restore diagonal
15 Copy ZrP,j to Vrp,colcnt

16 Send column V„,colcnt and s to processes
sharing row set rp

17 else
18 Receive vrp,colcra and s

// Exchange pivot row and diagonal
row, and broadcast pivot row

19 if j E rp then
20 Copy [Z3,c,,, V3,1:colcnt] to w2
21

22

23

if s E rp then
if colcnt > 0 then

KokkosBlas

gerian(vs,1:colcntlttl:colcnt,cplZ8,cp)

24 Copy [Zs,cp, vs,i:coicnt] to w3
25 Broadcast w3 to processes sharing column set

cP

26 Copy w3 to
27 else
28 Receive w3 and copy to us,cp
29 if j E rp then
30 Send w2 to pivot owner
31 if s E rp then
32 Receive w2 and copy to [Z,,c, , Vs,1:colcnt]
33 if j E rp then
34 Copy w3 to [Zi,c,„ V j,1:colcnt]
35 Remove j from rp and from cp
36 colcnt
37 KokkosBlas

gemm(v,,,j, Us,1:colcnt, Zrml:colcnt)

38 if colcnt = BLKSZ then

// saved enough columns
39 KokkosBlas

ge771,771(vrp,1:colcntltil:colcnt,cplZrp,cp)



Algorithm 2: Backward Solve on MPI process p

Require: Matrix portion Z (Mpx(Np+Nprhs))
i MPI process p owns row set rp
2 for j = N downto 1 do
3 if j E rp then

// Do an elimination step on the
column and the rhs owned by
process p

4 for k = 1 to Nr,h8 do
5 ul(k) ZiNp±k/Zij

6

7

Z j,Np+k ul(k)
Broadcast ul in the column communicator

/ / Update rhs
8 KokkosBlas gemm(Z„,,,,j,u1(:

Ar)r,hs 14,N'hs)
9 Send rhs to the processes on the left
io Receive rhs from the processes on the right

The software environment used for the experiments on
Summit includes GNU Compiler Collection (GCC) 7.4.0,
CUDA 10.1.243, Engineering Scientific Subroutine Library
(ESSL) 6.2.0, Spectrum MPI 10.3.1.

(2) The Sierra system contains 240 racks, each with eighteen
IBM POWER9 AC922 nodes, for a total of 4,320 nodes.
Each node contains two POWER9 CPUs, twenty two cores
each, and four V100 GPUs. Each node has 256GB of DDR4
memory. Each GPU has 16GB of HBM2 memory. The pro-
cessors within a node are connected by NVIDIA's NVLink
2.0 interconnect. The nodes are connected with a Mellanox
dual-rail enhanced data rate (EDR) InfiniBand.
The software environment used for the experiments on

Sierra includes GNU Compiler Collection (GCC) 7.2.1,
CUDA 10.1.243, Engineering Scientific Subroutine Library
(ESSL) 6.2.0, Spectrum MPI 10.3.0.

In the next two sections, we investigate the performance of
ADELUS solving random matrices on the Summit system and
the application performance when ADELUS is integrated into
the electromagnetic application on the Sierra system.

B. Performance Results with Randomly-Generated Matrices

In our performance analysis, we run experiments to solve
for a linear equation system with a single RHS vector and
the matrix size is increased as we increase the hardware
resource. For GPU backend, ADELUS runs with one GPU
per MPI process while it runs with one 42-core CPU node per
MPI process to provide the most threading parallelism for the
best performance on CPU backend. Since the CPU memory
capacity is much larger than the GPU memory capacity, it
is difficult to determine a fair comparison scheme between
the two backends. In this study, we opt to use the memory
occupied by a matrix (NxN) represented in double complex
precision in a single GPU as the baseline. As the number of
MPI processes increases, the problem (i.e. matrix) sizes are
increased so that each MPI process holds the same amount of

matrix portion (NxN). The baseline NxN matrix is chosen with
N = 27,882 which takes 77.7% of 16GB GPU memory. The
matrix sizes will be NxN, 2Nx2N, 3Nx3N, 4Nx4N, 5Nx5N,
6Nx6N, ... assigned to 1, 4, 9, 16, 25, 36, ... processes,
respectively. It is noted that, for GPU backend, both MPI
using CUDA memory (CUDA-aware MPI) and MPI using host
pinned memory are tested.
1) Load Balancing Verification: We first look at the exe-

cution time on all MPI processes by picking the matrix size
of 6Nx6N running on 36 GPUs. Fig. 3 and Fig. 4 show the
timing breakdowns for each of the 36 processes (36 GPUs) for
the factorization step in solving the 167,292x167,292 problem
in double complex precision using CUDA-aware MPI and host
pinned memory, respectively. The timing breakdown includes
the time to find the local maximum entries (called Local
pivot), the time for MPI communication (called Msg passing),
the time for internal copying (called Copying), and the time
for updating matrix (called Update). In case of using host
pinned memory for MPI, the time for copying back and forth
between the device memory and the host pinned memory is
included (called Host pinned mem copying). It is observed
that the workload (computation and communication) is almost
perfectly balanced across all the MPI processes while the
process idle time is kept minimized due to the torus-wrap
mapping scheme. When host pinned memory is used for
MPI communication, extra memory copying is explicitly made
which yields the increase in the total time. We observe that
the communication and the update contribute the most to the
total time and the communication time is even higher than
the update time (1.47x-1.6x) with this certain problem size on
36 MPI processes. This ratio is expected growing higher as
more nodes are added. More analysis of the communication
and computation is provided in the next section.
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Fig. 3. Load distribution of the factorization for 167292x167292 problem
(Cuda-aware MPI).

2) Performance Evaluation—CPU vs. GPU: The CPU and
GPU (using host pinned memory for MPI) computation time
and communication time for solving up to 10Nx1ON matrix
using 100 MPI processes are shown in Fig. 5 and Fig. 6,
respectively. The computation time is defined by subtracting
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the overhead associated with MPI communication from the
total execution time. We can see that the GPU total execution
for the 10Nx1ON problem on 100 processes outperforms
the CPU total execution with a speedup factor of 3.8. The
ratios between communication and computation are up to 0.43
(CPU) and 2 (GPU) for the 10Nx1ON problem. As processing
more workloads (by more MPI processes), communication
overhead increases. In spite of that, CPU computation is still
the dominant component. However, in GPU computation, since
GPU can help accelerate the computation significantly, the
communication overhead now becomes the bottleneck.
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Fig. 5. ADELUS: CPU execution times (double complex precision). The total
CPU time at 10Nx1ON is 1368s.

3) Performance Comparison with DPLASMA and SLATE:
ADELUS is compared against the two state-of-the-art solver
packages DPLASMA [20] (CPU runs) and SLATE [25] (CPU
and GPU runs) on the Summit system using the GESV testing
programs accompanied with the packages . It should be high-
lighted that IBM XL C/C++ Compiler 16.1.1 is used to build
DPLASMA, instead of GCC 7.4.0. For building SLATE, we
use GCC 6.4.0 and Netlib LAPACK 3.8.0. DPLASMNs and
SLATE's testing programs have multiple tuning parameters.

We identify the values of these parameters that could give
the best performance on CPUs and GPUs. More specifically,
for DPLASMA with GESV functionality on CPUs, a square
tile with size of 352 is exploited. For SLATE on CPUs, we
can achieve the best performance with nb = 320, ib = 32,
panel_threads = 4. For SLATE's GESV runs on GPUs, the
best performance can be obtained with nb = 640, ib = 32,
panel_threads = 1. Fig. 7 gives GFLOPS performance of the
three packages solving up to 10Nx1ON matrix with 100 MPI
processes on CPUs. The CPU performance of ADELUS is
higher than the CPU performance of SLATE (43 TFLOPS vs.
38 TFLOPS). DPLASMA outperforms ADELUS on CPUs (57
TFLOPS vs. 43 TFLOPS). However, it is noted that DLASMA
does not provide the GESV testing with partial pivoting. We
use the incremental pivoting for DPLASMA runs instead. The
GPU performance comparison is given in Fig. 8. Due to the
job time limit on Summit, we could not run SLATE further
than 144 GPUs solving for 12NxN matrix. As we can see,
ADELUS delivers superior performance compared to SLATE.
Using 144 GPUs, ADELUS can be 4.57x faster than SLATE.
ADELUS can achieve 1,316 TFLOPS (1.3 PFLOPS) when
running on 900 GPUs. To the best of our knowledge, this
is the first time that a dense LU sovler can reach PFLOPS
performance.

4) Scalability Analysis: In order to investigate the scalabil-
ity of ADELUS, we compare how the GFLOPS performance
improves with more GPUs (nodes) while we increase the
matrix size, as shown in Fig. 9. Scalability is defined as the
normalized GFLOPS performance of multiple MPI processes
in reference to GFLOPS performance of a single MPI pro-
cess. The increase of communication overhead results in the
relatively poor scalability in both CPU and GPU runs. It can
be seen that ADELUS running on CPUs scales more closely
to the theoretical linear expectation than ADELUS running on
GPUs. This can be explained by the dominant computation
time on CPUs and dominant communication time on GPUs.
This also demonstrates the fact that ADELUS clearly benefits
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from GPU acceleration.

5) Performance Evaluation with MPI Buffers on Different
Memory Spaces: ADELUS has an option which allows one
to choose whether using host pinned memory as MPI buffers

during the communication. Fig. 10 shows the GFLOPS per-

formance of the GPU execution with respect to the increase

of problem size. Both memory spaces, namely CudaSpace

and CudaHostPinnedSpace, can attain the performance above

1000 TFLOPs. Using CUDA-aware MPI can improve the

performance to 6% since we do not need to explicitly buffer

data on host memory before or after calling the MPI function.

C. Performance Results from Large-Scale EM Simulation

Several numerical simulations were performed on the

SIERRA platform available at Lawrence Livermore National

Laboratory using EIGER coupled with the ADELUS solver.

The performance results are displayed in Table 1. The NVIDIA

GPU's were used in the solve and since there are 4 GPUs per

node the number of MPI processes is four times the number

of nodes.

Table 1. ADELUS Solver Performance on Large Scale EM

Order(N) Nodes Solve Time(s) TFLOPS Procs/Row

226,647 25 240.5 1291. 10

1,065,761 310 1905.1 1694.5 31

1,322,920 500 6443.9 958.1 20

1,322,920 500 2300.2 2684.1 50

1,322,920 500 2063.6 2991.9 100

2,002,566 1200 3544.1 6042.6 100

2,564,487 1900 5825.2 7720.7 80

A number of observations can be made from Table 1. First,

the performance of the solver increases with the number of

nodes. In addition, the performance is affected by the distri-

bution of the matrix on the MPI processes. This is revealed

by the 1 3 million unknown problem where assigning more

processors per row yields higher performance. Not shown

in the Table is the per process performance and for the

problems and distributions used has a maximum value of 1.5

Tflops/rank.



VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a parallel, dense, performance-
portable, LU solver based on torus-wrap mapping and LU
factorization algorithm. Using the portability provided by
Kokkos, the solver can be portable to CPUs and GPUs. The
performance evaluation of ADELUS is demonstrated on the
Summit system, in which it achieves 1397 TFLOPS on 900
GPUs. It is shown that, the GPU execution outperforms the
CPU execution (with 42 cores) in terms of speedup by a
factor of 3.8. We also demonstrate the integration of the
ADELUS solver into an electromagnetic application achieving
a performance of 7720 TFLOPS on 7600 GPUs when solving
a problem of 2.5M unknowns on the Sierra system. ADELUS
currently suffers from the scalability issue, especially on
GPU backend, which can be resolved by exploiting more
computation-communication overlapping techniques. Another
issue that remains to be resolved is the limitation of the GPU
memory. Since ADELUS execution is exclusive, when the
problem size exceeds the GPU memory limit, more GPUs
need to be accommodated. One possible solution to overcome
this limitation is a hybrid implementation where both CPU
and GPU resources are fully utilized. Our future investigation
would address these issues.
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