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Integrated silicon photonics: power of light on a chip

Benchtop optical setup

Light can be routed in sub-
wavelength optical waveguides

■ Goal: integrate multiple optical components
into complex photonic circuits

■ Advantages: cost, scalability, performance,
efficiency

How can we develop new on-chip
technologies to meet these needs?

Photonic integrated circuit (PIC)

■ Challenges: Silicon-based lasers,
amplifiers, and non-reciprocal devices

1. Engineer phase-matched nonlinearities to
create new lasers

2. Manipulate dynamics to achieve a broad
range of functionalities
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Brillouin interactions: nonlinearity mediated by sound

Brillouin processes:
• Strong optical nonlinearity
• Mediated by sound
• Arises from optical forces and

photo-elasticity
• Highly tailorable
• Net result: stimulated optical gain

Energy conservation:
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Problem #1: Brillouin interactions absent from conventional silicon waveguides

Problem:
sound quickly
dissipates into
substrate

Conventional
Silicon waveguide

•

Li ht

Optical
waveguide

Solution: create
structure that
confines both
light and sound

Brillouin-active
waveguide

Optical + acoustic
waveguide

4 P.T. Rakich et al. Phys. Rev. X. (2012)



Problem #2: dynamics prevent amplification and lasing
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Forward Brillouin scattering:
• Pump and Stokes co-propagate
• Nontrivial dynamics prevents lasing

Stokes (phonon creation) and anti-Stokes
(phonon annihilation) balanced
Result: no stimulated gain, no lasing!

Need to inhibit the anti-Stokes process:
Symmetry breaking!

Phase Matching: Stokes Process Phase Matching: Anti-Stokes
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Solution: engineer inter-modal nonlinearities

Strategy: Shape dynamics by
engineering inter-modal

nonlinearities

Now, Stokes and anti-Stokes
processes talk to different phonons!
Symmetry breaking!

%
Multimode waveguide

Phase Matching: Stokes Process
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Can we do this on a silicon chip?
If so, we could make new lasers, amplifiers, and non-reciprocal devices
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Inter-modal system: Brillouin-active waveguide
Integrated mode multiplexers couple light into two distinct modes of a Brillouin-active waveguide
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2. Silicon inter-modal Brillouin laser
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Pump wave

Frequency
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Output

• High-Q multimode
racetrack resonator

• Two distinct sets of
resonances

• Brillouin-active segment
suspended to support 6
GHz elastic wave

• Couple pump into
antisymmetric mode
satisfying the Brillouin
condition

• Stokes can self-oscillate
in a symmetric mode

8 Otterstrom, Behunin, Kittlaus, Wang, Rakich. 'A silicon Brillouin laser." Science (2018).



Observation of laser oscillation

200 pm
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How can we harness these laser dynamics
for practical on-chip technologies?
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Injection locking

Goal: precisely control frequency/phase of a
laser

Option 1: Use active, external feedback such
as an phase-locked loop

i-o
Option 2: Injection lock the laser through
nonlinear synchronization

What is synchronization?

Synchronization requires
• Self-sustained oscillation
• Nonlinearity
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Injection locking
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Semiconductor lasers
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Balakier, Katarzyna, et al. Opt. Express (2014)

Electro-optomechanical devices Opto-electronic oscillators

Bekker, Christiaan, et al. Optica (2017)

Injection locking benefits: 

■ Simple approach that requires no detector,
complex locking electronics

■ Favorable phase noise properties

■ Uses: efficient, low-noise amplification, carrier
recovery, microwave synthesis

Laser

RF output

Optical
Modulator

RF
Coupler

RF
filter

RF
Amplifier

Fiber
splitter

Optical Fiber

Photodetectorl

RF
Combiner

Photodetector2

Zhou, Weimin, and Gregory Blasche. IEEE
Trans. Microw. Theory Tech. (2005)

Can we do this with a Brillouin laser?
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Injection-locked operation of Brillouin lasers?
Conventional backward Brillouin lasers

L
e
e
 et al. Nat. Photonics (2012) 

Attractive for
low-noise
properties

However, it has not been demonstrated in
conventional Brillouin lasers....

Challenges:
• Backward configuration requires

circulators or isolators
• Time dynamics may not be suited to

injection locking

Inter-modal silicon Brillouin laser
♦

• New modal degrees of freedom
• Independent control of pump and

laser emission
• No cascading

• Unique regime of spatio-temporal
dynamics
• Yields high degree of coherence

between pump and laser emission
• Phase-matched forward gain mechanism
• CMOS-foundry compatible

Silicon Brillouin lasers ideally suited to
injection locking
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Injection-locked Brillouin laser (Sandia collaboration)
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Characterizing lock range 

• Inject pump wave into
the antisymmetric
mode that satisfies the
Brillouin condition

• Once above threshold,
inject a low-power seed
into the symmetric
spatial mode

• Sweep seed through
the laser emission
frequency to determine
lock range.

What happens when we
inject light in the opposite
direction?
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Lock range and amplification
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the seed power is
increased

r'74 • Crescendo of phonon-
mediated FWM outside
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• Stochastic simulations
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show good agreement
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LnUp to 23 dB of effectiveet amplification!

What about the noise
properties of the system?



Phase noise reduction properties

Driven silicon Brillouin laser dynamics:

Thermal phonons
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Injection of a coherent seed should dramatically reduce the phase-noise
beyond Schawlow-Townes limit!
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Phase noise reduction properties
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• -70 dB of phase noise reduction @ 10 kHz
• <-100 dBc/Hz @10 kHz

Improve phase noise by nearly 7 orders of
magnitude at low frequencies!
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Single sideband characteristics and pump suppression
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• 49 dB of anti-Stokes suppression
• Nearly 50 dB of pump suppression

Highly single-sideband process
• Thanks to phase-matching and

mode-selective couplers

Opens the door to simple, single-
sideband modulator technologies
in silicon
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Back-scatter immunity and non-reciprocity

Challenge: Susceptibility to feedback disrupts laser performance => need
isolators

Conventional strategy: assumes laser and
isolator are distinct.

Our new approach: Create a laser that is
itself a non-reciprocal element

p-contad

D. Liang Nat. Photonics (2010)

p-InGaAs
p-I nP
Active region
n InP



Unidirection gain mechanism

Optical Dispersion
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Phonon does not phase-match to Brillouin in the backward direction!=> Unidirectional gain
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Back-scatter immunity and non-reciprocity
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• Unwanted backward
propagating
interferer leaves the
laser unaffected

• Nonreciprocal
control and back-
scatter immunity.
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Conclusions

1

1. Engineer phase-matched
nonlinearities to create a
silicon Brillouin laser

2. Manipulate dynamics
through injection locking to
achieve a broad range of
functionalities .1

I

Otterstrom, Gertler, Zhou, Kittlaus, Behunin,
Gehl, Starbuck, Dallo, Pomerene, Trotter,
Lentine, and Rakich. "Back-scatter immune
injection-locked Brillouin laser in silicon."
arXiv preprint arXiv:2001.04871 (2020)

• Record high amplification (23 dB)

• Phase noise reduction (-70 dB)

• Single-sideband amplification

 > • Back-scatter immunity

• New paradigm for non-
reciprocal devices in silicon

• CMOS-foundry compatible

Powerful new devices physics for
silicon-based amplifiers, low-noise
lasers, and non-reciprocal devices
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