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Integrated silicon photonics: power of light on a chip

Light can be routed in sub-

Benchtop optical setup wavelength optical waveguides Photonic integrated circuit (PIC)
= Goal: integrate multiple optical components = Challenges: Silicon-based lasers,
into complex photonic circuits amplifiers, and non-reciprocal devices
= Advantages: cost, scalability, performance,
efficiency 1. Engineer phase-matched nonlinearities to
' create new lasers
How can we develop new on-chip 2. Manipulate dynamics to achieve a broad
technologies to meet these needs? range of functionalities




Brillouin interactions: nonlinearity mediated by sound

Brillouin processes:

Strong optical nonlinearity
Mediated by sound

Arises from optical forces and
photo-elasticity

Highly tailorable

Net result: stimulated optical gain

Energy conservation:
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Phase matching (momentum conservation):
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Phase matching allows us to shape the dynamics




Problem #1: Brillouin interactions absent from conventional silicon waveguides

Conventional Brillouin-active
Silicon waveguide waveguide

Problem: Solution: create

PR structure that
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Sound

Optical Optical + acoustic
waveguide waveguide

P.T. Rakich et al. Phys. Rev. X. (2012)



Problem #2: dynamics prevent amplification and lasing
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Forward Brillouin scattering
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Forward Brillouin scattering;:

= Pump and Stokes co-propagate
= Nontrivial dynamics prevents lasing
Stokes (phonon creation) and anti-Stokes

(phonon annihilation) balanced
Result: no stimulated gain, no lasing!

Cavity spectrum Need to inhibit the anti-Stokes process:
s Symmetry breaking!
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Solution: engineer inter-modal nonlinearities
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nonlinearities
Multimode waveguide T_gg TV S——— >
Phase Matching: Stokes Process Phase Matching: Anti-Stokes
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Can we do this on a silicon chip?
If so, we could make new lasers, amplifiers, and non-reciprocal devices




Inter-modal system: Brillouin-active waveguide

Integrated mode multiplexers couple light into two distinct modes of a Brillouin-active waveguide

—e— e = o =

N S
o —— =t
S 2.85 um 3

Optical Power

signal Ta)s

= 3.5 dB of single-
sideband gain

= 2.3 dB of net
amplification

Kittlaus, Otterstrom, Rakich. Nature Communications (2017).
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2. Silicon inter-modal Brillouin laser
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Otterstrom, Behunin, Kittlaus, Wang, Rakich. “A silicon Brillouin laser.” Science (2018).

High-Q multimode
racetrack resonator
Two distinct sets of
resonances
Brillouin-active segment
suspended to support 6
GHz elastic wave
Couple pump into
antisymmetric mode
satistying the Brillouin
condition

Stokes can self-oscillate
in a symmetric mode




Observation of laser oscillation

Intracavity pump power (mW)
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How can we harness these laser dynamics 5 -10 -5 0 5 10 15
for practical on-chip technologies? Frequency (w-w)/2m (MH2)

~103 compression factor

Otterstrom, Behunin, Kittlaus, Wang, Rakich. “A silicon Brillouin laser.” Science (2018).



Injection locking

Goal: precisely control frequency/phase of a What is synchronization?
laser

Option 1: Use active, external feedback such
as an phase-locked loop

Ref. Laser )
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Option 2: Injection lock the laser through
nonlinear synchronization

Laser (i Synchronization requires
j/ e Self-sustained oscillation
Seed * Nonlinearity




Injection locking
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Balakier, Katarzyna, et al. Opt. Express (2014)

Injection locking benefits:

Electro-optomechanical devices Opto-electronic oscillators

Bekker, Christiaan, et al. Optica (2017)

= Simple approach that requires no detector,
complex locking electronics

= Favorable phase noise properties

= Uses: efficient, low-noise amplification, carrier

recovery, microwave synthesis
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Zhou, Weimin, and Gregory Blasche. IEEE
Trans. Microw. Theory Tech. (2005)
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Can we do this with a Brillouin laser?




Injection-locked operation of Brillouin lasers?

Conventional backward Brillouin lasers

Attractive for
low-noise
properties

(T10T) Somio30y N 'Te 12 9]

However, it has not been demonstrated in
conventional Brillouin lasers....

Challenges:

Backward configuration requires
circulators or isolators

Time dynamics may not be suited to
injection locking

Inter-modal silicon Brillouin laser
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New modal degrees of freedom
* Independent control of pump and
laser emission
* No cascading
Unique regime of spatio-temporal
dynamics
* Yields high degree of coherence
between pump and laser emission
Phase-matched forward gain mechanism
CMOS-foundry compatible

Silicon Brillouin lasers ideally suited to
injection locking




Injection-locked Brillouin laser (Sandia collaboration)
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* Inject pump wave into

the antisymmetric
mode that satisfies the
Brillouin condition

Once above threshold,
inject a low-power seed
into the symmetric
spatial mode

Sweep seed through
the laser emission
frequency to determine
lock range.

What happens when we
inject light in the opposite
direction?
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Lock range and amplification

Characterizing lock range

= Lock range expands as
the seed power is
increased

Experiment

= Crescendo of phonon-
mediated FWM outside
lock range

» Stochastic simulations
show good agreement

Up to 23 dB of effective

--100 net amplification!

Power Spectral Density (dBm/Hz)

What about the noise
properties of the system?
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Phase noise reduction properties

Driven silicon Brillouin laser dynamics:
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Injection of a coherent seed should dramatically reduce the phase-noise
beyond Schawlow-Townes limit!




Phase noise reduction properties
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Single sideband characteristics and pump suppression
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* 49 dB of anti-Stokes suppression
* Nearly 50 dB of pump suppression

Highly single-sideband process
* Thanks to phase-matching and
mode-selective couplers
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Opens the door to simple, single-
sideband modulator technologies
in silicon




Back-scatter immunity and non-reciprocity

Challenge: Susceptibility to feedback disrupts laser performance => need
isolators

Conventional strategy: assumes laser and
isolator are distinct.

Our new approach: Create a laser that is
itself a non-reciprocal element D. Liang Nat. Photonics (2010)




Unidirection gain mechanism

Optical Dispersion
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Back-scatter immunity and non-reciprocity
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Nonreciprocity

= Forward propagating
seed injection locks
the laser

= Unwanted backward
propagating
interferer leaves the
laser unaffected

= Nonreciprocal
control and back-
scatter immunity.




Conclusions

Record high amplification (23 dB)
Phase noise reduction (~70 dB)

1. Engineer phase-matched
nonlinearities to create a
silicon Brillouin laser

2. Manipulate dynamics >

Single-sideband amplification

Back-scatter immunity

through injection locking to * New paradigm for non-
achieve a broad range of reciprocal devices in silicon
functionalities

CMOS-foundry compatible

Otterstrom, Gertler, Zhou, Kittlaus, Behunin,
Gehl, Starbuck, Dallo, Pomerene, Trotter,
Lentine, and Rakich. “Back-scatter immune
injection-locked Brillouin laser in silicon.”
arXiv preprint arXiv:2001.04871 (2020)

Powerful new devices physics for
silicon-based amplifiers, low-noise
lasers, and non-reciprocal devices
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