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Abstract—Many social networks contain sensitive relational in-
formation. One approach to protect the sensitive relational infor-
mation while offering flexibility for social network research and
analysis is to release synthetic social networks at a pre-specified
privacy risk level, given the original observed network. We
propose the DP-ERGM procedure that synthesizes networks that
satisfy the differential privacy (DP) via the exponential random
graph model (EGRM). We apply DP-ERGM to a college student
friendship network and compare its original network information
preservation in the generated private networks with two other ap-
proaches: differentially private DyadWise Randomized Response
(DWRR) and Sanitization of the Conditional probability of Edge
given Attribute classes (SCEA). The results suggest that DP-
EGR1VI preserves the original information significantly better
than DWRR and SCEA in both network statistics and inferences
from ERGMs and latent space models. In addition, DP-ERGM
satisfies the node DP, a stronger notion of privacy than the edge
DP that DWRR and SCEA satisfy.

Index Terms—exponential random graph model (ERGM), good-
ness of fit, node differential privacy (DP), social networks,
Bayesian, posterior distribution.

I. INTRODUCTION

For the last few decades, social network (SN) analysis and
research have grown tremendously, especially with the emer-
gence of social media (e.g., Facebook and Twitter). While the
voluminousness and popularity of social network data have
enabled new discoveries, they have also increased privacy
risk of individuals. For instance, the Cambridge Analytica
leveraged on the "friendship" function in Facebook and landed
the personal data of multi-millions of Facebook users' profiles
for political advertising purposes [1]. Network data of sexual
relationships and sexually transmitted diseases are extremely
sensitive information, disclosure of which can lead to social
reactions and stigma that can negatively affect the individuals
in the study [2, 3].

The state-of-art research work on protecting the privacy of
graph or network data is largely built upon the concept
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of differential privacy (DP) [4], which provides a rigorous
mathematical guarantee on privacy protection. Two notions
of DP for relational data have been proposed: edge DP and
node DR A procedure that satisfies the edge DP ensures
that its output does not reveal more information regarding a
particular relation on top of what the data intruder already
knows, while the output from a procedure of node DP does not
reveal more information regarding the relationships between
a particular node with the rest of the nodes in a network on
top of what the data intruder already knows. Therefore, the
node DP considers provides a stronger guarantee of privacy
protection than edge DP and is more relevant for preserving the
global structure of a network, which is the focus of this paper.
There are exiting approaches on protecting network privacy in
the setting of node DR For example, [5] apply the Johnson-
Linderstrauss transform to release the number of edges crossed
in a graph cut; [6] develop techniques that project the original
graph onto the set of graphs with the maximum degree below
a certain threshold but restrict the utility analysis to linear
functions of the degree distribution or subgraph counting;
[7] introduce mechanisms for private sub-graph counting. [8]
develop Lipschitz extensions and generalize the exponential
mechanism [9] (a DP mechanism for releasing numerical and
non-numerical queries) to approximate the degree distribution.

In summary, existing approaches in the framework of node
DP focus on releasing specific graph summary statistics. For
social network data analysis, merely outputting a limited set of
summary statistics of a network might not be satisfactory from
the practical or research perspective. One solution to accom-
modate the practical and research needs on network data while
ensuring the privacy of the networks in the DP framework is to
release differentially private surrogate or synthetic networks,
so that users can perform their own analysis as if they had the
original network data.

There exist a few approaches for differentially private syn-
thesis of network data and all of them satisfy the weaker
edge DR [10] introduce an algorithm that releases synthetic
relational data based on differentially private 0 models. 0
models are one simplest type of the exponential random graph
model family. Simplicity is also the biggest disadvantage of
this approach in that synthetic networks may greatly deviate
from the observed network. [11] develop a privacy preserving
network generator based on dK-graph models [12]. dK graph
models consider degree correlations among d > 0 nodes.
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There are two limitations for this approach. First, the privacy
budget, which is the pre-set privacy risk tolerance level, needs
to be relatively large to have some utility in generated graphs,
where utility refers to preservation of key original network
information. Second, algorithms for generating graphs when
d > 3 do not exist. [13] develop a differentially private dyad-
wise randomized response (DWRR) approach. the DWRR is
straightforward and easy to implement, but synthetic networks
tend to be very dense unless the privacy budget is large. In
addition, each edge is perturbed locally, which could distort
the global structure of the original network. Finally, DWRR
assigns a separate privacy budget when sanitizing each edge
and does not quantify the total privacy cost from releasing
the whole network. If different edges are not independent,
the total privacy cost from the whole network will exceed
the nominal per-edge privacy budget. In summary, all the
above mentioned private network synthesis approaches have
their respective drawbacks in either utility or DP. In addition,
acceptable utility of synthetic networks is only observed for
relatively high privacy budgets.

Methods for synthesizing networks that guarantee the privacy
of the released whole network while maintaining its utility are
still in great need. We propose a new approach, DP-ERGM,
that generates private networks via exponential random graph
models (ERGMs). We choose to use ERGMs because they
are flexible generative models for networks, incorporating
important topological and nodal information, and can model
complex relationships among nodes. Compared to the existing
approaches for private network synthesis, DP-ERGM has the
following advantages. First, from a privacy protection perspec-
tive, it satisfies the node DP for the whole network and thus
provides stronger guarantee of privacy protection. Second, the
synthetic networks via DP-ERGM are expected to have higher
utility for a large range of network structures. In contrast, DP-
ERGM is based on the general ERGM framework.

II. METHODOLOGY

A. Preliminaries on Differential Privacy (DP)

Definition 1 (DP [4]). A sanitization algorithm R. releases
statistics s with e-DP if for all possible data set pairs (x, xl)
that differ by one record, and all results Q C T,

Pr(R(s(x)) E Q) 
log < e (1)

Pr(R.(s(x9) E Q)

where T denotes the output range of R(s), and E > 0 is the
privacy budget.

DP provides a mathematically rigorous framework for pro-
tecting individuals when releasing statistics from a data set,
regardless of the knowledge and behaviors of data intruders.
The privacy budget € is pre-specified and represent the privacy
risk for releasing a query from the sanitization algorithm. R.
The smaller c is, the smaller the probability of identifying an
individual based on the released sanitized query.

There are several commonly used mechanisms that releases
statistics e-DP. The Laplace mechanism [4] adds noise to

original statistics s = (81, . , sic) to generate sanitized

s* = s e, where e i1211 Laplace(0, Si/E) and (51 =
maxX,X,11s(x)—s(x')Il1 is the 11 global sensitivity of s, across
all paired data sets x and x' that differ by one record. The
exponential mechanism releases query result s* with prob-
ability exp(u(s*)€/(260)/ Eees exp(u(s')€/(260), where
Su is the maximum change in an utility function u with one
element change in data x. Other mechanisms include the
Gaussian mechanism [14, 15] that relies on the relaxed DP
concepts such as approximate DP [16] and probabilistic DP

[17]).

B. Exponential Random Graph Models (ERGMs)

ERGMs are a family of popular statistical models for analyz-
ing social network data [18, 19]. ERGMs help to explain the
structure of a network, and support statistical inference of the
processes that influence the formation of network structures.
They are also effective generative models for network data, ac-
commodating various types of structural dependencies among
the nodes in a network. A ERGM is specified as

p(y1x, 0) = exp {OTS(y,x)}/K(0), (2)

where y is the n x n adjacency matrix among the nodes in a
social network (yij = 1 if an edge exists between node i and
node j, yij = 0 otherwise); x is n x q matrix that contains
q nodal attributes of the n nodes; and S(y, x) is a column
vector that contains summary statistics of the network and
often include metrics on the network structure as well as nodal
statistics that might relate to y; and 0 is of the same dimension
as S(y, x) and contains the model parameters and represents
the effects of S (y, x) on the network structure. K(0) in Eqn
(2) is an analytically intractable normalizing constant summed
over all possible adjacency matrix y'.

C. Differentially Private Social Network Synthesis via ERGM
(DP-ERGM)

Leveraging the properties and functionalities of ERGMs, we
propose the DP-ERGM procedure to synthesize differentially
private networks. DP-ERGM is based on a Bayesian frame-
work. The steps of the DP-ERGM procedure are provided in
Algorithm 1. In brief, we first obtain the posterior distribution
p(01y, x) given the likelihood function in Eqn (2) and a
data user-specified prior on B. We then sanitize p(Oly, x) to
obtain differentially private p* (Oly , x) and draw a sample of
0*, which will be used by the ERGM model in Eqn (2) to
generate a network. The process of sanitization and drawing
can be repeated m > 1 times to generate m synthetic networks
so to capture the sanitization and the synthesis uncertainty to
allow for valid statistical inferences on 0 given the released
networks. The inferences for a statistical model fitted to the
multiple sets can be combined with the formulas given in [20]
and [21]. To preserve DP in releasing m sets of networks, each
synthetic set is allocated a privacy budget of 1/m of the total
privacy budget c per the sequential composition. Our empirical
studies suggests m = 3 to 5 is a good choice in general and
provides enough information across multiple synthetic sets
to capture the sanitization and synthesis uncertainty without
injecting too much DP noise in each individual synthetic set.
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Algorithm 1 DP-ERGM

1: Input: original network (x, y), a prespecified EGRM M
or a set of candidate EGRIVIs, privacy budget e; number
of synthetic networks m.

2: Output: m differentially private synthetic networks
3: Do k = . . . , m
4: If a set of ERGMs are given, select a model Nt(k) via

the exponential mechanism with privacy budget elm,
where e is the allocated budget for model selection.

5: Run model M(k) on (x, y) in the Bayesian framework
to obtain the empirical or an approximate posterior
distribution p(0 , y).

6: Obtain differentially private posterior sample 0*(k) with
budget (e— e)/n.

7: Feed 0*(k) , nodal information x, and M(k) to Algo-
rithm 2 to generate a differentially private network.

8: End Do

Algorithm 2 Generation of networks from ERGM via Monte
Carlo Markov chain sampling

1: Input: ERGM(0, x); MCMC iterations T .
2: Output: a random network sample from ERGM(0, x)
3: Initialize a network y(0). Calculate statistics SO) associ-

ated with ERGM(0, x).
4: Do t = 1, . . . ,T
5: Randomly choose a pair of nodes (i, j) from y(t—i)

and flip the edge between them to propose a candidate
network y'.

6: Calculate summary statistics sc given (x, 3,C).
7: Set y(t) = y' with probability min(1, 7r), where 7r =

exp (0T(SC — S("))).

8: End Do

Following the current practice in generating differentially pri-
vate synthetic networks, Algorithm 1 focuses on synthesizing
relations/edges y, and the nodes in the sanitized networks
are left as the original. If there are nodal attributes in the
original network, which are deemed sensitive in addition to the
relations, one may allocate a portion of the total budget E to
generate differentially private nodes x*(k). Since nodal data are
often presented in tabular forms, there exist various approaches
for sanitizing this type of data, such as the Laplace sanitizer
of the full-dimensional histogram of x. Readers may refer to
[21] for a brief review on differentially private synthesis of
tabular data.

Proposition 1. The synthetic network via the DP-ERGM
procedure in Algorithm 1 satisfies the node-DP for a given
ERGM.

The detailed proof of the proposition will be
provided in an extended paper. Briefly, the predictive
posterior distribution p(x*, y*lx, y) can be written as
f p(y* lx* , 0)p(0lx, y)p(x* lx)dO . p(0* y) satisfies the
node DP per the nature of ERGMs. The differentially
private sanitization of p(x* lx) does involve edges, so strictly
speaking, the differentiation between the node DP vs. edge
DP really does not apply to p(x*1x). Denote by Ex the budget

allocated to sanitize x and G = (x, y) and gi = (xi,yi)
two networks differing by one node and the corresponding
changes in its relations with other nodes, then

p(x*, Y*1x, Y) p(x*Ix) f p(y* 6)p(Olx, y)dO

P(x* Y.* 310 P(x*Ixt) f 13(3r*** , 0)p(01xt , y') d0

<e€x  f p(3r* 0)1,(01x,y)dO 

.f Ay* Ix* , 0)p(01x1, yld0

f 1)(3r* Ix* , 0)ef— p(013e, y')d0
<e" =

13(y* lx*, 6)p(01xt , yt)do

III. APPLICATION

To evaluate the statistical and inferential utility of
the synthetic network data generated by DP-ERGM,
we apply DP-ERGM to the Chi-
nese college student friendship network
and benchmark its performance against
some existing private edge synthesis
approaches. The Chinese college stu-
dent friendship network contains 162
students from a four-year college in
China collected by the Lab for Big
Data Methodology in the Department of
Psychology at the University of Notre
Dame in 2017 [22]. There are 848 edges
among the 162 students, representing
friendship (Fig 1). The nodal attributes include the students'
gender, grade point average (GPA), class, and the number of
cigarettes smoked per day in the past 30 days.

Fig. 1: Chinese col-
lege student friend-
ship network

A. Synthesis Procedures

We examine three privacy budget settings E E (e-1, e, e2),
presenting small, moderate, and relatively privacy risk. We
generate m = 4 differentially private networks at each E. To
examine the stability of the synthesis methods, 100 repetitions
were run for the college friendship example at each E.

For DP-ERGM, we applied Algorithm 1 to generate 4 net-
works with synthetic edges from the ERGM in Eqn (2)
with S(y, x) = {GWD(y), GWESP(y), 1#
cigarettes,— # cigarettesj 1(class, = classj), 1(gender2 =
genderj )1. i and j are indices for nodes; 1 is an indicator
function; GWD stands for geometrically weighted degree and
is defined as eT EIJI,' {1 - (1 - e')'}Di for T > 0 and Di
for i = 0, 1, • • • , n — 1 represent the number of nodes whose
degree is i with constraint Ein-01 Di = n; and GWESP stands
for geometrically weighted edgewise shared partnership (ESP)
and is defined as er ErkiZ32 {1 — (1— e' )i}ESPi for 7-' > 0
and ESPi for i = 1, 2, • • • , n — 2 represents the number of
edges whose endpoints both share edges with exactly i other
nodes with constraint Ein-02 ESPi = the number of edges in
the network.

In addition, the GOF statistics in Figure 2 suggests
the mode without # of edges as a covariate captures
the original network information well. we assumed a
non-informative prior f(0) oc const and leveraged the
asymptotic normality assumption of the posterior distri-
bution of 0 to draw and sanitize the posterior samples.
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[13] propose DWRR for
sharing social network
data by synthesizing edges
via randomized response
and suggest pij = qij =
1 - 7rij = / (1 + e€u) for
all i j = 1, . . . , 71, where
pi3 is the probability of
retaining an edge nodes (i, j)
and qi3 is the probability
of retaining the absence of
an edge, and Ei is privacy
budget for retaining the edge
DP between nodes (i, j). In
their numerical examples,
Eij -= c and the probability
of edge flipping is a constant
7r = 1/(1 ee). In our case,
7r = 1/(1 eq4) (divided by
4 because 4 networks were
generated and released). For
the three budgets c = e-1, e
and e2 is 7r = 1 ( 1 + ee/4),
71 equals to 0.477, 0.336,
and 0.136, respectively.

We also designed an intuitive
approach that synthesizes the
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Fig. 2: Goodness of fit of the ERGM
in the observed college friendship
network

NR

conditional distribution of edges
given nodal attributes, referred to as the SCEA approach.
SCEA sanitizes the edge probability between two nodes
classes, where a node class refers to a cell from the full
dimensional cross-tabulation of the nodes attributes. SCEA
assumes whether a pair of nodes within the same class are
tied or not follows a Bernoulli distribution with a within-class
rate pk,k; and whether a pair of nodes from two different
classes (k, k') are connected is governed by another Bernoulli
distribution with a between-class rate poke . pok,k makes the
diagonal elements and poky makes the off-diagonal elements
in the K x K probability matrix P. For this application, there
are 4 nodal covariates: class (6 levels), gender (2 levels),
GPA converted to a 5-letter grade and number of cigarettes
grouped into 3 groups (0, [1, 10), > 10). The cross-tabulation
of the 4 nodal attributes leads to 180 cells. After discarding
the empty cells, the final P matrix is of dimension 57 x 57.
SCEA sanitizes P via a DP mechanism (such as the Laplace
mechanism) to obtain P* that satisfies the edge DP. Once
the differentially private P* is obtained, then synthetic edges
between nodes within class k are sampled independently from
Bern(p;c'k ), and those between nodes from classes k and k' are
sampled independently from Bern(pZk, ).

B. Results

Examples of the differentially private synthetic networks are
provided in Figures 3. DWRR produces very dense networks at
all examined e values. SCAE tends to produce dense networks
as well though not to the same degree as DWRR. The synthetic
networks by DP-ERGM have a similar level of denseness as
the original network.

DP-ERGM

e-1

e

DWRR SCEA

Fig. 3: Examples of differentially private synthetic college student
friendship network.

To assess the utility of the differentially private synthetic
networks, we obtain the summary statistics of edge counts,
GWESP and GWD, and run the ERGM and the latent space
model [23] on the synthetic networks from the three synthesis
approaches, and compared the private statistics and inferences
to the original. In the latent space model, we included covari-
ates of the absolute differences between nodes i and j on GPA
and the number cigarettes, and node matching on class and
gender. We set the the dimension in the latent space at 2. The
average deviations and the root mean squared deviations are
presented in Table I for the number of edges, GWESP, and
GWD based on the synthetic data from those based on the
original data, and in Table II for the ERGM model parameter
estimates.
TABLE I: Relation summary statistics from the synthetic college
friendship networks.

original edges GWESP GWD
privacy statistic 848 2472.15 398.25 
budget DP-ERGM DWRR SCEA P-ERGM DWRR SCEA P-ERGM DWRR SCEA

average deviation from the onginal
0.818 5410 1148 -590.6 24203 2404 -1.291 20.64 200.4

e 
-1.045 3818 -51.35 -596.0 17267 360.6 -1.638 20.64 200.4

e2 -0.630 1542 219.5 -600.5 5175 1104 -1.405 20.64 200.4
root mean squared deviation

53.09 5410 1150
6.545 3818 56.96
2.876 1542 59.96

e_1

e-1

ee2

632.2 24204 2409
599.4 17268 367.0
604.1 51769 367.5

3.406
3.304
3.304

20.64 200.4
20.64 200.4
20.64 200.4

DP-ERGM is the obvious winner in both analyses with the
smallest deviations on all the examined relations statistics and
almost all ERGM parameters at all three e values, except for

associated with Gender and Class. For GWD in Table I,
there is little change over E for DWRR and SCEA on both the
deviation and the root mean squared deviation; in addition, the
latter appears the same as the former. The similarity between
the root mean squared deviation and the average deviation
suggests there is little variation in GWD over the 100 repeats
of the 4 sets of synthetic networks in the case of DWRR and
SCAE, and the main contribution to the root mean squared
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TABLE II: ERGM parameter estimates based on the synthetic college
friendship networks.

Privacy parameter OGWESP
budget original -0.922

OGWD
5.592

OGPA 0#cigarettesOgender Oclass
0.073 -0.002 0.667 0.887

average deviation from the original
DP-ERGM -0.209 -0.480 -0.026 0.005 -0.298 -0.338

e- 1 DWRR 1.271 456.3 -0.087 0.020 -0.638-0.816
SCEA -2.121 -1.076x 1020-0.311 -0.054 0.457 -0.198

DP-ERGM -0.213 -0.590 -0.020 0.005 -0.298-0.334
e DWRR -0.943 -79.26 -0.073 0.000 -0.595-0.463

SCEA -1.256 -1.580 x 104 -0.314 -0.048 0.009 -0.916
DP-ERGM -0.215 -0.519 -0.025 0.006 -0.292-0.338

e2 DWRR -0.862 527.6 -0.075 0.005 -0.423 0.295
SCEA -1.248 -77.68 -0.208 -0.025 -0.141-1.417

root mean squared deviation
DP-ERGM 0.211 0.924 0.048 0.007 0.302 0.345

e- 1 DWRR 2.802 2.64 x 104 0.152 0.151 0.673 0.836
SCEA 1.365 8.518 x 1020 0.165 0.028 0.236 0.459

DP-ERGM 0.214 0.881 0.042 0.007 0.301 0.341
e DWRR 0.955 747.3 0.076 0.002 0.596 0.464

SCEA 0.631 5.66x 104 0.162 0.024 0.041 0.116
DP-ERGM 0.217 0.866 0.046 0.007 0.297 0.346

e2 DWRR 0.890 625.9 0.080 0.050 0.423 0.357
DP-ERGM 0.626 126.7 0.110 0.013 0.079 0.709

deviation comes from the deviation in both cases.

The GOF plots from the fitted ERGMs are presented in Figure
4 (due to space limitation, the GOF plots are only presented
for c = e-1 and c = e2. and those at c = e-1 are available
in the supplementary materials). The distributions of the GOF
statistics from the synthetic networks via DP-ERGM have the
best overlap with those based on the original network across
all c values, with mild deviation on ESP. For DWRR, the
distributions of the GOF statistics deviate significantly from
the original for geodesic distance at all e values, and for degree
and ESP at small E but improve as E increases. The poor GOF
statistics from SCAE suggest the synthetic networks via SCAE
preserve poorly the key original information for fitting the
EGRM.

The averaged deviation and the root mean squared deviations
of the parameter estimates from the latent space model are
presented in Table III. Among the four model parameters,
DP-EGRM has the smallest average deviations and root mean
squared deviations for two parameters, and DWRR and SCEA
each has one.

The GOF plots from the latent space model based on the
synthetic networks are presented in Figure 5. The GOF statis-
tics from the synthetic networks via DP-ERGM have the best
overlap with those based on the original network across all
e values with some mild deviation from the original in terms
of degree and ESP. For DWRR and SCEA, the degree and
geodesic distance measures based on the synthetic networks
at all levels of e and the ESP at small E deviate significantly
from the original. There is improvement for all three GOF
statistics in the case of DWRR as e increases.

IV. CONCLUSIONS AND DISCUSSION

We propose a new approach DP-ERGM that generates syn-
thetic networks with the node DP. DP-ERGM is based on

a generative model that considers high transitivity relations
whereas DWRR and SCEA are "locar generative processes
that independently sanitize edges, not taking into account the
high-order relationships. For that reason, it is not unexpected
that the empirical results suggest that DP-ERGM in general
preserves the original network information better than the
other two approaches with respect to important relationship
summary statistics and statistical inferences from different
network models. On top of the better utility, DP-ERGM also
preserves the network privacy using the node DP, a stronger
notion of privacy than the edge DP under which DWRR and
SCEA operate.

Despite the better performance of DP-ERGM than DWRR
and SCEA in general, there is room for improvement for DP-
ERGM. For example, one may spend some privacy budget in
choosing an ERGM using the data at hand rather than depend-
ing on external knowledge, compare different randomization
mechanisms that draw posterior samples of the model param-
eters privately; or develop a hybrid private network generative
model that would leverage the advantages DP-ERGM and
SCAE. In addition, we are planning to look into coupling the
DP-ERGM approach with the approaches for sanitizing nodal
data and examine the utility of the fully synthesized networks
and will continue to explore new approaches for synthesizing
and releasing private networks. Finally, we would like to apply
the synthesis techniques to other networks of various types and
sizes.
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TABLE III: Latent space model parameter estimates based on synthetic friendship networks.
privacy
budget

parameter
(original)

OGPA

(-0.169)
0# cigarette
(-0.084)

°Gender
(1.197)

°Class
(4.726)

DP-ERGM DWRR SCEA DP-ERGM DWRR SCEA DP-ERGM DWRR SCEA DP-ERGM DWRR SCEA
average deviation from the original

e- 0.249 0.167 -0.498 0.077 0.084 -0.124 -0.509 -1.185 1.180 -3.940 -4.665 3.705
e 0.239 0.157 -0.399 0.079 0.081 -0.100 -0.488 -1.118 0.909 -3.927 -4.268 2.649
e2 0.230 0.123 -0.288 0.080 0.072 -0.075 -0.479 -0.943 0.633 -3.939 -3.385 1.938

root mean squared deviation
e- 0.282 0.169 1.507 0.079 0.084 1.374 0.522 1.185 1.371 3.942 4.665 3.726
e 0.268 0.159 1.303 0.081 0.081 1.181 0.500 1.118 1.336 3.930 4.269 2.836
e2 0.255 0.127 1.805 0.083 0.072 1.760 0.492 0.943 2.008 3.942 3.385 1.969
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Fig. 4: ERGM Goodness of Fit based on the synthetic college friendship networks. From left to right: proportion of nodes vs. degree,
proportion of edges vs ESP, proportion of dyads vs geodesic distance. The solid black lines represent the statistics from the observed
network; the black box plots represent the distributions of the statistics over 100 simulated networks given the original parameter estimates.
The 100 pink lines (from 100 repetitions) in each plot represent the averaged statistics over 4 synthetic networks per repetition. The red lines
represent the averages over the 100 repetitions.
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Fig. 5: Goodness of Fit for latent space model based on the synthetic college friendship networks (refer to Figure 4 caption for what each
type of line represents in the plots).


