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Motivation

• Cattle Monitoring Application

• Firmware Updates
• Valid for any large data exchange

• LoRa Ad Hoc Networks
• LoRaWAN insufficient to meet performance specs
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Time to Update Firmware for a 128kB Image
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16 minutes

19,200

53.3 s

8

46 minutes

57,600

17.7 s

10

2.49 hours
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8.88 s

12

8.36 hours

300,000
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LoRa Background rM
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• Chirped spread spectrum technology to increase noise immunity

• Closed source protocol developed by the LoRa Alliance

• Typically used with LoRaWAN

• Configurable to increase range at the expense of data rates

• Parameters
• Spreading Factor
• Bandwidth
• Transmission Header
• Error Coding Rates
• CRC

• LoRa and FSK
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LoRa Transmit Time Model Validation

• Model based on:
8PL-4SF+28+16CRC-201H

n payload = 8 + ceil[   ](CR + 4)
4(SF-2DE)

• Experimentally Validated

7

6

5

• Loading Tx data into a buffer
• Starting timer on a microcontroller 4

• Transmitting data
i= 
3

• Stopping timer when Tx terminates
• Looping through all settings 2

• Error sources
• -'3% in oscillator tolerance
• Clock cycles to start and stop timer
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Communication Infrastructure

• 12 Possible Settings

• 5 commands
• Go to ADR mode

• Go to a specific settings

• Exit ADR

• Ping

• Acknowledge Receipt

Preamble Command Arg 1 Arg 2 Arg 3 CRC

H.011 Hill11111

6 Symbols 4 Byte Payload 2 Byte CRC
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ADR Settings aud Timeouts

Setting
Number

Alodulation
Type

Setting
Config

Master
Timeout

ED
Tiineout

FSK 300 kbps 0.1 s 0.4
1 FSK 200 kbps 0.1 s

FSK 115.2 kbps 0.1 s 0.4
3 FSK 57.6 kbps 0.1 s 0.4
4 FSK 19.2 kbps 0.1 s 0.4 s

FSK. 9.6 kbps 0.1 s 0.4 s

LoRa SF=6 0.1 s 0.4 s

7 LoRa SF=7 0.2 s 0.8 s

8 LoRa SF=8 0.25 s 1 s

9 LoRa SF=9 0.4 s 1.6 s
10 LoRa SF=1O 0.7 s 2.8 s

11 LoRa SF=11 1 s 4 s
12 LoRa SF=12 3 s 12 s
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1. Initiate an exchange on the lowest data rate setting to establish
communication.

2. The master sends the command to the end device to go to an improved
data rate setting. The value of this setting depends on the algorithm
being used.

3. Upon receiving the command, the end device will automatically
reconfigure itself to that setting and acknowledge at the higher data rate.

4. If the devices are unable to communicate at a lower setting, the master
will initiate the error recover process.

5. If both devices time out, they return to the setting they last successfully
communicated on.
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Incremental Search

• Easiest to implement but can
cause lengthy convergence times

• Walk down the settings - 12 to 0

• Better performance for higher
settings as compared to other
methods

• Poor performance for low
settings as compared to other
methods

18

16
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Binary Search

• Alternative strategy to reduce
convergence time for lower settings

• Search according to

Snext = Scurrent ceil(Scurrent—Shighest,failed
2

• Optimal performance for low
settings

• Poor performance for high settings
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Binary Search Convergence Time
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Greedy Search

• Improves search performance by
defining next setting based on
RSSI/SNR

• Does not require a communication
failure to stop

• Slightly better than binary search
for low settings

• Outperforms incremental search in
the high settings

• Harder to implement due to
measurement noise
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Acknowledgement Setting

• Master sends command to go to
lower setting

• Where does the end device ack?
• Same setting

• Lower setting

• We assumed the lower setting
for modeling
• Lower convergence time due to

master spending significantly less
time receiving the ack
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Experimental Setup & Results

• Atmel SAMR34 Boards with code
developed in C using Atmel Studio

• Data recorded and debugged using Tera
Term

• Implemented linear and binary search

• Unable to implement greedy search due to
noise in RSSI and SNR measurements

• Master timed the exchange

• Most communication errors due to the
master missing the ack

• Matched modeling or was worse
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Conclusion
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• Investigated performance between a linear, binary, greedy search
• Expanded adaptive data rate to include FSK when possible
• The greedy RSSI/SNR optimal search theoretically outperforms everywhere
but is challenging to implement

• Binary search outperforms linear search when the devices are expected to
be close

• Linear search outperforms binary search when the devices are far apart
• Future work

• Implement the greedy search
• Implement the firmware update and apply ADR to make the system resilient to

mobile devices

• Questions to heegerds@unm.edu
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