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Context @ e

* Point out high-level structural similarities and
differences between the validation frameworks

* Point out some low-level procedural approaches and
details that lead to substantial quantitative differences
even if similar high-level intent or paradigm for a given
element or step in the methods

* Audience familiarity with the VV10 and VV20 validation
approaches is assumed.



The Significance of Aleatory vs. Epistemic
uncertainty in model validation @ﬁ‘%ﬁﬂ‘r‘;‘m
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Given this uncertainty, is this model prediction perfect
or likely biased?

sim. experim.

¢4
<<

« Answer: it depends pivotally on the nature of the uncertainty
represented by the PDFs

— Perfect model if the PDFs represent populations of results
from a stochastic system tested multiple times w/ no other
uncer. in the tests (aleatory uncertainty only)

— Model likely has error if the PDFs represent only epistemic
uncertainty (lack of knowledge) regarding the deterministic
value of a response :




Treatment of Aleatory and Epistemic Uncertainties |
in model validation frameworks @ Natona
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— ASME V&V20 Standard for V&V in CFD and Heat Transfer
« emphasis on epistemic uncertainty and deterministic systems
 scalar QQOls, S — D subtractive metric, probabilistic uncer.
« some applicability to stochastic systems: Eca et al. 2020 V&V Symp.

— ASME V&V10 for Solid Mech., AIAA CFD (2016 Lee et al. AIAA pap.)
» emphasis on aleatory uncertainty and stochastic systems
« scalar QOQOls, Area metric difference measure for aleatory CDFs
* probabilistic aleatory and interval epistemic uncertainties

— Real Space

* fully spans both epistemic and aleatory uncertainties, deterministic or
stochastic systems

« scalar QOls, no metric (“real space” comparisons)

* interval and/or probabilistic uncertainties of deterministic or statistical
QOiIs + traveling models & uncertainties + sparse-data treatment 4
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Structural Equivalence between ASME VV20 and Real-Space

for special case:

« 1 validation test (epistemic uncertainty only, no test-to-test
aleatory variation of errors or associated uncertainty)

* Probabilistic uncertainty descriptions

* No “traveling” uncertainties (defined later)

(next 3 slides)



Equivalence between ASME VV20 and Real-Space |
. . . o Sandia
for 1 test and epistemic non-traveling uncertainties @ National

Laboratories

 Start with uncertainty in measurement of output quantity

response
value
10+ ® result, S
A=3T
Data/experimental

7T i — result, D (nominal
\ measured)

uncertainty of
measured result

Prediction bias error
(nominal) indicated in
Real Space

3+ {\ uncertainty of
prediction bias
A=3T (S — D), VV20
0 4 -
/ Boundary
Prediction bias error Condition
(nominal) indicated in parameter

Difference Space 7




Equivalence between ASME VV20 and Real-Space |
. . . o Sandia
for 1 test and epistemic non-traveling uncertainties @ National

Laboratories

* Uncertainty in measured input but no uncertainty in

measured output
Real Space choice

response response response
value value value
A
! ! ¢ —° o °
uncertainty
of measured Same |
input BC treat- / uncertainty of e N
ment § prediction bias i
T (S — D), VV20 T
0 > 0 > 0 >
BC param. BC param

BC param.



Equivalence between ASME VV20 and Real-Space |
. . . o Sandia
for 1 test and epistemic non-traveling uncertainties @ National

Laboratories

* Uncertainty in measured experimental input and output

Real Space choice

response response response
value value value
A
t X R o °
Same |
treat- / uncertainty of [
ment prediction bias
T (S — D), VV20 T
0 > 0 > 0 >
BC param. BC param

BC param.



Concept of @ Sanda
“Traveling” and “Non-Traveling” Uncertainties Laboratorie

Traveling Uncertainties are intrinsic to the model being validated

They come with the model as a consequence of model-form error
and/or lack of knowledge about values of parameters in the model.

They are consistent between the validation conditions and model
applications beyond the validation activity.

Non-Traveling uncertainties are particular to the validation activity

They are outside the traveling model of extrapolation interest



Handling Traveling Epistemic Uncertainty in Model !
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Non-Equivalence between ASME VV20 and Real-Spac@

* Model-intrinsic traveling uncertainty and uncertainty in
measured experimental output

Real Space interpretation:

Traveling
response response uncer- Model prediction
value i “ PR
ValuAe N / ity encompasses reality if

within the experimental
S — uncertainty, go forward with
T the model and traveling

D
/ uncertainty
\ 5 o4
uncertainty T Indicated uncertainty of

of measured uQ / prediction bias by (S — D), VV20

input BC :::antt' is larger than the already large-

() enough traveling uncertainty in
T the model

0 > 0 >
BC param. 1 BC param.
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ASME VV10 and AIAA CFD approaches @ Sandia
(One Experiment)

* Depending on the details, ASME VV10 and AIAA CFD
does in some cases properly account for traveling
epistemic uncertainties in the model

* But do not show how to handle complex experimental
uncertainty:

— random and systematic components of error and
correlated errors in measurements of inputs and outputs

« ASME VV20 has demonstrated complex experimental
uncertainty with probabilistic uncertainties

* Real Space has demonstrated complex experimental
uncertainty with probabilistic and/or interval
uncertainties 12




Multiple Replicate Tests with Stochastically Varying Systems

* For validation of models with traveling aleatory uncertainty
that represents the stochastic variability in the systems

« random/aleatory variation of the systems from test-to-test

 test-to-test random/aleatory variation of measurement errors
on inputs and/or outputs; associated “random” uncertainties

 test-to-test systematic (constant) errors in measurements of
iInputs and/or outputs; associated “systematic” uncertainties



Treatment of Experimental Uncertainties |
in Multiple Replicate Tests @ Natlona
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« ASME VV10 and AIAA CFD approaches

— complex experimental uncertainties on the output data samples
and input conditions have not been shown how to be treated

- ASME VV20

— treatment of complex experimental uncertainties is applied for
probabilistic uncertainties

* Real Space

— treatment of complex experimental uncertainties is applied for
probabilistic and/or interval uncertainties

— Normalization to subtract-out variability in output data samples
due to test-to-test differences of experimental inputs is also part
of the RS method (my talk earlier today) — avoids exaggeration
of response variability and yields better IID basis for statistics 14




Sparse Experimental Sample Data:

Treatment of associated Epistemic Uncertainty @ Nofioel
in CDFs or Statistics Laboratories

» Epistemic uncertainty is huge for realistically sparse sample
data in most physical engineering situations:

« Example

* A 95% coverage interval estimated from a Normal fit to 8 samples
drawn from a Normal distribution has an empirical confidence of about
26% for capturing the true central 95%, 32 samples — 28% confidence

« ASME VV10 and AIAA CFD approaches
— no demonstrated adequate treatment

« ASME VV20
— no demonstrated adequate treatment

* Real Space

— substantial theoretical and empirical basis for statistical treatments s



Real Space comparison for Stochastic
Sandia
Experimental and Simulation Results @ National

Laboratories

« Compare decision-intuitive statistical measures of response, not CDFs

experiments simulations
A\ Aleatory
|‘ —
‘ A\ uncertainty
Aleatory & | e.g. compare RN
Epistemic s 5t percentile \’¢ t Epistemic

uncertainty O/ of response \@, 3 uncertainty
/ i,

 Intuitive visual indication of how accurate the model is, on several fronts:
— Means of the predicted and experimental populations
— Variances

— Percentiles

— Range of response %age, e.g. the “central” 95% between 2.5 and 97.5 percentiles

(These last two account for combined uncertainty in mean, variance, and possible higher
moments of stochastic response and are found to be the most useful in practice)

* Percentile comparisons are particularly useful for validation of models to be
used for analysis of performance and safety margins, e.g. QMU. 16




ASME VV20 validation approach for Stochastic
Sandia
Experimental and Simulation Results @ penal

* Today’s talk by Eca et al. indicated a subtractive difference
metric and uncertainty applied to predicted and experimental
1-parameter statistics of response:

— Means of the predicted and experimental populations
— Variances

— Percentiles

— Not 2-parameter statistical quantities like prediction intervals,
central 95% range of response, etc.

* The u_val = [(u_input)? + (u_D)? + (u_num)?]"2 formulation for
uncertainty of the bias between the experimental and predicted
statistics may not give reliable results given the nature of
estimation uncertainties (e.g. one-sided bounds for percentiles)
when sparse data are involved 17



ASME VV10 and AIAA CDF validation approach for
Sandia
Stochastic Experimental and Simulation Results @ National

Laboratories

» Area metric gives a measure of disagreement of experimental and
simulated CDFs

« Somewhat difficult to interpret what it means for two CDFs to be
different by x.y in any metric, including the Area metric

* Non-uniqueness: any number of CDF mismatches can yield the
same metric value x.y

* The two CDFs being compared will in general both be uncertain, so
represented by Probability Boxes; the metric value becomes an
uncertain quantity. How best handle?

* Interpretability may hamper decision making regarding model

adequacy and correction of prediction bias and extrapolation of the

correction to new predictions 13



Prediction Bias Correction and Extrapolation
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« ASME VV10 and AIAA CFD approaches

— Bias correction according to Area metric can only be exact for at
most a single percentile of the CDF and will not be accurate for
other percentiles, same for extrapolation

« ASME VV20
— no established bias-correction or extrapolation methodology

* Real Space

— Prediction bias correction for a selected percentile of response
and Predictor-Corrector extrapolation of the correction, with
extrapolation uncertainty scaled to extrapolation distance
(V&V Symposium talk last year)
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Closing Remarks )

* Model validation is complex -- philosophically, conceptually, and
procedurally

 Many different conceptions, approaches, and frameworks exist
and the area is still rapidly evolving

* There are significant structural and procedural similarities and
differences between the reviewed model validation frameworks

* It may be beneficial to more deeply analyze and test the various

frameworks and develop a hybrid framework with the best
features of each approach
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